Articles | Volume 22, issue 6
Atmos. Chem. Phys., 22, 3779–3788, 2022
Atmos. Chem. Phys., 22, 3779–3788, 2022
Research article
22 Mar 2022
Research article | 22 Mar 2022

Intricate relations among particle collision, relative motion and clustering in turbulent clouds: computational observation and theory

Ewe-Wei Saw and Xiaohui Meng

Related subject area

Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
The effect of marine ice-nucleating particles on mixed-phase clouds
Tomi Raatikainen, Marje Prank, Jaakko Ahola, Harri Kokkola, Juha Tonttila, and Sami Romakkaniemi
Atmos. Chem. Phys., 22, 3763–3778,,, 2022
Short summary
A strong statistical link between aerosol indirect effects and the self-similarity of rainfall distributions
Kalli Furtado and Paul Field
Atmos. Chem. Phys., 22, 3391–3407,,, 2022
Short summary
Quantifying albedo susceptibility biases in shallow clouds
Graham Feingold, Tom Goren, and Takanobu Yamaguchi
Atmos. Chem. Phys., 22, 3303–3319,,, 2022
Short summary
Primary and secondary ice production: interactions and their relative importance
Xi Zhao and Xiaohong Liu
Atmos. Chem. Phys., 22, 2585–2600,,, 2022
Short summary
Microphysical processes producing high ice water contents (HIWCs) in tropical convective clouds during the HAIC-HIWC field campaign: dominant role of secondary ice production
Yongjie Huang, Wei Wu, Greg M. McFarquhar, Ming Xue, Hugh Morrison, Jason Milbrandt, Alexei V. Korolev, Yachao Hu, Zhipeng Qu, Mengistu Wolde, Cuong Nguyen, Alfons Schwarzenboeck, and Ivan Heckman
Atmos. Chem. Phys., 22, 2365–2384,,, 2022
Short summary

Cited articles

Balkovsky, E., Falkovich, G., and Fouxon, A.: Intermittent Distribution of Inertial Particles in Turbulent Flows, Phys. Rev. Lett., 86, 2790, 2001. a
Bec, J., Biferale, L., Cencini, M., Lanotte, A., Musacchio, S., and Toschi, F.: Heavy Particle Concentration in Turbulence at Dissipative and Inertial Scales, Phys. Rev. Lett., 98, 084502, 2007. a, b
Bec, J., Ray, S. S., Saw, E. W., and Homann, H.: Abrupt growth of large aggregates by correlated coalescences in turbulent flow, Phys. Rev. E, 93, 031102, 2016. a
Bragg, A. D., Hammond, A. L., Dhariwal, R., and Meng, H.: Hydrodynamic interactions and extreme particle clustering in turbulence, J. Fluid Mech., 933, A31,, 2022. a
Chun, J., Koch, D. L., Rani, S. L., Ahluwalia, A., and Collins, L. R.: Clustering of aerosol particles in isotropic turbulence, J. Fluid Mech., 536, 219–251, 2005. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x
Short summary
Collision–coagulation of small droplets in turbulent clouds leads to the production of rain. Turbulence causes droplet clustering and higher relative droplet velocities, and these should enhance the collision–coagulation rate. We find, surprisingly, that collision–coagulation starkly diminishes clustering and strongly alters relative velocities. We provide a theory that explains this result. Our results call for a new perspective on how we understand particle/droplet collision in clouds.
Final-revised paper