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S1 Further Details of the Direct Numerical Simulation.

The time step in our DNS 4t is 0.001s. The courant number is C = 0.073, (where C =4t
[
u′

4x + v′

4y + w′

4z

]
max

, u′ etc. are

r.m.s. velocities, ∆x etc. are grid spacings). The normalized maximum wavenumber simulated is kmaxη = 1.2. The turbulent

flow is sustained by randomly forcing the two lowest nonzero shells of wave numbers. The integral length scale of the turbulent5

flow is estimated to be L= 0.646 dm.

We study the statistics of monomers only (i.e. the particle of the same size (d) that we initially introduce into the system

and which we later replenish at a constant rate close to the monomer-monomer collision rate). In this sense, the particle

(monomers) are naturally lost from our consideration once they collide and become larger particles. Particles that become

much larger (St > 21.6) are removed from the DNS at each time step.10

S2 Estimation of Leading Order Terms in the Drift Flux, e.g a(1)
ik

Using the DNS data, we estimate e.g. the value of

t∫
−∞

a
(1)
ik dt

′ ≡
t∫

−∞

τη 〈Γik(t)Γlm(t′)Γml(t
′)〉dt′.

Note: the averaging is done over fluid particles (the theory assumed St� 1 limit, such that all velocity statistics are tied

to the fluid’s), the integrand is non-vanishing only for t′ in the vicinity of t− τη to t (where the turbulent velocity gradi-15

ent Γij retains correlation), thus this quantity may be approximated as: τη2 〈Γik(t)Γlm(t)Γml(t)〉. As shown in Chun et al.

(2005), 〈Γik(t)Γlm(t)Γml(t)〉 is by definition zero in fully developed turbulence due to the fact that the small-scale statistics

of turbulent flows are almost isotropic Kolmogorov (1941). However, the coagulation constraint dictates that at r = d, such

averages must be taken with the condition that only fluid-particle pairs with negative radial velocity (wr < 0) are taken into
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account (that the inertial particles’ motion being tied to the fluid’s does not imply that inertial pairs sample the fluid particle20

pairs’s motion uniformly). Under this condition, the DNS data gives τη2 〈Γik(t)Γlm(t)Γml(t)〉 ≈ (−0.171×10−3 dm/s)/d∗,

(d∗ =9.49×10−4dm); here, it is of value to point out that without such constraint or condition, the result for this quan-

tity from the DNS is two orders of magnitude smaller. Similarly, we found
∫ t
−∞ a

(2)
ki dt

′ ≈ τ3η 〈Γij(t)Γjk(t)Γlm(t)Γml(t)〉 ≈
(2.32×10−3 dm/s)/d∗; for this quantity, the DNS gives roughly the same values with or without the constraint.

S3 Full Definition of the Function fI(R0,µ, tf) in the Model for Non-local Diffusive Flux.25

Derived in Chun et al. (2005), summarized here (with typo corrected), the diffusive action of the turbulence on the particle-pairs

is assumed to consist of a random sequence of uniaxial extensional or compressional flows defined, and:

fI(R0,µ, tf )≡ f+I+(R0,µ, tf ) + f−I−(R0,µ, tf ) ,

where R0 ≡ r0/r, r0 is the initial separation distance of a particle pair before a straining event, r is the independent variable of

the equation for g(r); f+ and f− ≡ 1−f+ are the fractions of those flows that are extensional and compressional, respectively.30

Comparing with DNS, Chun et al. (2005) calibrated f+ and found f+ = 0.188 (a result we use here). I± is an indicator function

such that it takes the value +1 (−1) when a secondary particle leaves (enters) a sphere of radius r centered on the primary

particle, and otherwise zero. µ is the cosine of the angle between the axis of symmetry of the straining flow event and the

displacement vector between the two particles, tf is the lifetime of the event. To obtain a strain rate correlation function that

decays exponentially with a characteristic time scale τS , Chun et al. (2005) set the probability density function for tf to be:35

F (tf ) =
fstf
τS2

exp(−tf/τS) .

The indicator function is used to count the net loss of particles from within the sphere over the duration of an (extensional

or compressional) event and can be expressed as:

I±(R0,µ, tf ) =H(1−R0)H(Rf±− 1) − H(R0− 1)H(1−Rf±),

where H(x) is the Heaviside function (zero for x < 0, unity for x≥ 0), Rf± is the non-dimensional final position of a particle40

pair with an initial position of R0 and can be written as:

Rf+ =R0

[
µ2θt

2 +
(1−µ2)

θt

]1/2
,

Rf− =R0

[
µ2

θt
2 + (1−µ2)θt

]1/2
,

for uniaxial extension and compression respectively, where:45

θt ≡ exp

(
tf

τη
√

3fs

)
.
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S4 MRV Predictions by the Theory for Other Stokes Numbers.50

As mentioned in the main text of this manuscript, even though the theory assumes that MRVs are St-independent for small

St’s. Nevertheless, it could produce separate predictions for each St. Here we show the predictions for St= 0.001 and 0.11

in Fig. 1. The prediction for St= 0.001 (red dash line) agrees well with the DNS results (symbols), but the prediction for

St= 0.11 (gold dotted line) deviates significantly, suggesting that finite St effects not captured by the theory start to become

significant and thus diminish the accuracy of the theory.55

S5 Derivation of cst, its Role and Possibility of Further Corrections to The CK Theory.

In this work, we deviate crucially1 from the CK theory Chun et al. (2005) by introducing an extra factor cst (positive, of order

unity or less) in the model of non-local diffusion:

qDr =cst r

∫
dΩ

∞∫
0

dtfF (tf )

∞∫
d/r

dR0R0
2 〈P 〉(rR0)fI(R0,µ, tf ) . (S1)

To determine what cst is (or should be), we begin from an important finding in Chun et al. (2005) that if 〈P 〉 is power-law of60

r, i.e. 〈P 〉= Cr−c1 , then the non-local diffusion qDr can be cast into a differential form (which is usually only true for local

1’Crucial’ refers to the fact that without cst the theory would be inconsistent with previous experimental results (as this section will show) and it would

also produces results far from our DNS results.

3

Figure S1. MRVs of particles. Triangles: DNS result for St= 0.001. Squares: DNS result for St= 0.11. Red-dashed-line: theory’s

predictionfor St= 0.001. Gold-dotted-line: theory’s prediction for St= 0.11. Grey-solid-line: modified-theory’s prediction for St= 0.11

(details ofmodification in Sec. S5). Note: the predictions are based on the Aτ values valid in the r ∼ d regime (d=9.49×10−4 dm).

Inset) Similarplots in logarithmic axes highlighting the large-r regime. Note: the predictions are based on the Aτ values valid in the r �

d regime. It isclear that the modified-theory’s predictions agree much better with the DNS.



diffusion):

qDr =−Bnl τη−1 r2
∂ 〈P 〉
∂r

, (S2)

where:

Bnl = τη

∫
dΩ

∞∫
0

dtfF (tf )

∞∫
d/r

dR0R0
2−c1fI(R0,µ, tf ) . (S3)65

This, together with: qdi =−Ack τη−1 r 〈P 〉, eventually leads to the first order equation differential equation for the RDF

(g(r)≡ V 〈P 〉 ), that has (only) power-law solutions: g(r) = V Cr−c1 . This result (i.e. g(r) or equivalently 〈P 〉(r) are power-

laws) has seen compelling validations from both experiments (e.g. Saw et al. (2012b); Lu et al. (2010); Yavuz et al. (2018)) and

DNS (e.g. Chun et al. (2005); Bec et al. (2007); Saw et al. (2012a)). We now begin from this experimentally validated result

and work backward to derive an expression for cst. We plug the power-law form for 〈P 〉 into (S2):70

qDr =−Bnl τη−1 r2
∂(Cr−c1)

∂r

=−Bnl τη−1 r2C(−c1)r−c1−1

=Bnl τη
−1 rc1C r

−c1

= τη
−1 rc1C r

−c1τη

∫
dΩ

∞∫
0

dtfF (tf )

∞∫
d/r

dR0R0
2−c1fI(R0,µ, tf )

= rc1

∫
dΩ

∞∫
0

dtfF (tf )

∞∫
d/r

dR0R0
2C(rR0)−c1fI(R0,µ, tf )75

= c1 r

∫
dΩ

∞∫
0

dtfF (tf )

∞∫
d/r

dR0R0
2 〈P 〉(rR0)fI(R0,µ, tf ) .

Comparing with (S1), we have:

cst = | − c1| ≡ |c1| ,

which is found in experiments (and theories) to be of order 0 to 1 and a function of particle Stokes number St; in words, this80

means cst is given by the modulus of the power-law exponent of the RDF that would arise in the collision-less case; in the case

with collision and sufficiently small particle (d/η . 1 ), such as in this study, cst equals the modulus of the power-law exponent

of the RDF the range of d� r� 20η (note: power-laws RDF are empirically observed for r� 20η Saw et al. (2008, 2012a)).

Note: we have chosen to define cst using the ‘modulus’ (instead of the ‘negative’ of the power-law exponent) since it guarantees

that qDr is negative (positive) when g(r) is an increasing (decreasing) function of r, so that we are consistent with the fact that85

qDr is a diffusion flux. We note that both the CK theory and the current modified version assume St� 1.
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Chun et al. Chun et al. (2005) went further to provide a solution for c1 (for collision-less particles, in the St� 1 limit):

c1 =
Ack
Bnl
≡ Aτ,r�d τη

Bnl
, (S4)

where we have clarified that Aτ in our work is defined differently from "A" in (Chun et al., 2005) (we denote the latter as Ack

to avoid confusion), and Aτ,r�d is our Aτ evaluated at the large-r limit. In the current context, c1 maybe obtained via (S4) or90

alternatively directly from the power-law exponent of g(r) in the range d� r� 20η as discussed above. Using values of the

relevant parameters in our DNS, we found Aτ τη
Bnl
≈ 2.4St2×.0925

.0397 = 5.6St2, which is 15% smaller than the one found in Chun

et al. (2005), i.e. AckBnl
≈ .61St2

.0926 = 6.6St2. However, we have observed in our DNS that the direct method (by fitting power-laws

to the RDFs in the suitable r-range) gives c1 which is 3.2 (1.9) times larger than the one obtained using (S4) for the case of

St= 0.054 (0.11).95

A plausible interpretation of the discrepancy described just above is that there may be another missing dimensionless factor

(of order unity, possibly weakly dependent on Reynolds-number) in the correct definition of qDr . This is beyond the scope of

this present study (to avoid confusion, we currently restrict ourselves to the least speculative correction only) and is a good

subject for future works. However it may be informative to note that, by inspection, we find that if we further include a factor

of ∼ 1/3 to 1/2 in the definition of qDr , then the agreement between the theoretical (the integral version) and DNS produced100

〈Wr〉 is strikingly better in the r� d limit, while in the r ∼ d regime, it is slightly better (the former should not come as a

surprise as this is the regime of power-law RDFs and the factor of ∼ 1/3 is exactly designed to reproduce the correct c1).

To demonstrate the point just discussed, we show in Fig. 1 the predictions by the theory for the case of St= 0.11. We see

that, in the r ∼ d regime, the prediction by the original theory (dotted line in the main figure) is somewhat below the DNS result,

while the prediction by the modified theory (with a factor of 1/2 appended to the definition of qDr ), shown as the solid line, is105

much closer to DNS. In the r� d regime, the modified theory’s superiority in terms of accuracy is even more pronounced (see

inset of Fig. 1).

S6 Relation Between g(r) and 〈P 〉.

In the main text, we state that g(r)≡ V 〈P 〉, where V is the spatial volume of the full domain of the problem i.e. (2π)3 in the

DNS. Justification: let g(r) be the ratio of probability of finding a second particle at r from a particle, to the probability of110

such finding in a perfectly random distributed particle population, thus: g(r)≡ 〈P 〉δxδyδz
(δxδyδz)/V ≡ 〈P 〉V . Further, since system is

isotropic, g(r)≡ g(r) .

S7 Modeling of MRV based on Distribution of Particle Approach Angles P (θ).

We imagine the particles are small i.e. d� η and St� 1. The latter implies their trajectories are almost like fluid particles’,

while the former implies that, viewed at the scale of interest r ∼ d, their trajectories are almost rectilinear (since the radii of115

curvature are proportional to η). Thus in the reference frame of a primary particles, no secondary particle could have a trajectory,

being straight-line, that has a history of collision with the volume of the primary (otherwise coagulation would have occurred

and the secondary particle in question would cease to exist). In trigonometric terms, let θ be the angle between the secondary
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particle’s velocity and its vector position in the rest frame of the primary particle, then we must have: sin−1(d/r) ≤ θ ≤ π ,

with the convention that sin−1(x) ∈ [−π2 ,
π
2 ].120

From the above, we could then compute the MRV, 〈wr〉∗ based on fluid particles’ statistics. Since collision-coagulation

affects positive and negative relative particle velocities differently, we begin by writing 〈wr〉∗ as a sum of the positive (i.e.wr >

0) and negative branches (with proper statistical weights p± to account for possible skewness of the probability distribution of

velocity):

〈Wr〉 ≡ 〈wr〉∗ = p−〈wr |wr < 0〉∗ + p+〈wr |wr ≥ 0〉∗ .125

The negative branch p−〈wr |wr < 0〉∗ is unaffected by collision-coagulation and we thus express it as a simple linear function

of r that follows from the K41-phenomenology (Kolmogorov, 1941), i.e. −p− ξ− r, where ξ± ∼
√
ε/(15ν), ε is the (kinetic)

energy dissipation rate of the flow. For the positive branch, we further assume that the (fluid particles’) joint probability density

function (PDF) of magnitude of relative velocity (secondary particle relative to primary particle) |w| and approach-angle θ,

P (|w|,θ), is separable (note: wr ≡ |w|cos(θ)), hence:130

p+〈wr |wr ≥ 0〉∗

=

∞∫
0

d|w|

π
2∫

θm

dθP (|w|,θ) |w|cos(θ)

=

∞∫
0

d|w|Pw(|w|) |w|

π
2∫

θm

dθPθ(θ) cos(θ)

= p+

∞∫
0

d|w|Pw(|w|) |w|

π
2∫

θm

dθP+
θ (θ) cos(θ) ,
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where all the P ’s are PDFs, note that p+ ≡
∫ π

2

0
Pθ dθ ,

∫ π
2

0
P+
θ dθ ≡

∫ π
2

0
(Pθ/p+)dθ = 1 and

∫ π
0
Pθ dθ = 1, also note that P+

θ ≡135

Pθ(θ |wr ≥ 0); more importantly θm = sin−1(d/r) as previously explained. Further:

p+〈wr |wr ≥ 0〉∗

= p+

∞∫
0

d|w|Pw(|w|) |w|

π
2∫

θm

dθP+
θ (θ) cos(θ)

= p+

∞∫
0

d|w|Pw(|w|) |w|


π
2∫

0

dθP+
θ (θ) cos(θ) +

0∫
θm

dθP+
θ (θ) cos(θ)


= p+

∞∫
0

d|w|Pw(|w|) |w|

π
2∫

0

dθP+
θ (θ) cos(θ)

[
1 +

∫ 0

θm
dθP+

θ (θ) cos(θ)∫ π
2

0
dθP+

θ (θ) cos(θ)

]
140

= p+ξ+ r

[
1 +

∫ 0

θm
dθP+

θ (θ) cos(θ)∫ π
2

0
dθP+

θ (θ) cos(θ)

]
,

where in the last line, we have replaced the first two integrals, combined, with its K41 estimate, where ξ± ∼
√
ε/(15ν) .

S8 Prediction of the Peak Location of the RDF Using the Differential Form of the Drift-Diffusion Equation.

−τ−1η Bnl r
4 ∂g

∂r
+ g(r)

[
r2 〈Wr〉−Aτr3

]
=−R∗c , (S5)

A finite R∗c inhibit us from locating the peak of the RDF using (S5) à la Lu et al. (2010) i.e. without knowing g(r), since145

g(r) could no longer be factored out when ∂g
∂r = 0. However, we argue that (S5) could still give a reasonably accurate account

of the peak location. For the case of St= 0.05, at r = 3d (the approximate peak location), we found the DNS data gives

−τηBnl r4 ∂g∂r
∣∣∣
≈0

+ g(r)
[
r2 〈Wr〉−Aτr3

]
≈−1.05×10−9 and −R∗c ≈−1.01×10−9

S9 General Analytical Solution for the Differential Form of the Drift-Diffusion Equation.

The general solution for the first-order non-homogenous ordinary differential equation (see e.g. Arfken and Weber (1999)),150

with 〈wr〉∗ given by the model in the main text, is:

g(r) =
1

β(r)

[∫
β(r)q(r)dr+C

]
, (S6)

with q(r) =R∗c/(τηBnlr
4); β(r) = exp

[∫
p(r)dr

]
and p(r) = [Aτr−〈wr〉∗ ]/(τηBnlr

2). For the current model described in

the main text, the integral in (S6) could not be expressed in terms of simpler canonical functions. Hence, for specific appli-

cations, we currently anticipate that some sort of power-law expansion or asymptotic reduction (if not numerical integration)155

would be needed to produce problem specific analytical approximations.
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S10 Further Details on the Effects of Gravity.

We repeat the DNS case of St= 0.054 and St= 0.54 with the particles subjected to gravity (body force), and compares results

with the zero-gravity case. Fig. 2 shows the results for case St= 0.054. There is no discernible difference between the cases

with and without gravity.160

For case St= 0.54, the main RDF and MRV results is shown the main text. Here we show only the compensated-RDFs (

gc(r) ), where each gc(r) is calculated via g(r) divide by a power law (c0r−c1 ) that resulted from curve-fitting to the original

g(r) in the range 0.6η ≤ r ≤ 3η. Fig. 3 compares gc(r) for cases with and without gravity. The fact that there is no discernible

difference implies that the uncompensated g(r) could be model as gc×gg where gc is function that depends only on the particle

collision process while gg depends on other factors e.g. gravity and is independent of particle collision.165

8

Figure S2. Top) RDFs of particles (St= 0.054) subject to action of turbulence, collision-coagulation with and without gravity. Circles: Sg =

0 (zero gravity); triangles: Sg = 0.49 (nonzero gravity). No discernible effect of gravity. Bottom) MRVs of the same cases. No

discernibleeffect of gravity.
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Figure S3. Compensated RDFs of particles (St= 0.54) subject to action of turbulence, collision-coagulation with and without gravity.

Circles:Sg = 0 (zero gravity); triangles: Sg = 4.9 (nonzero gravity). Interpretation in the text.
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