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Supplementary Material

S1 Further Details of the Direct Numerical Simulation.

The time step in our DNS At is 0.001s. The courant number is C' = 0.073, (where C' = At [A“—; + AL; + % L u' etc. are
r.m.s. velocities, Az etc. are grid spacings). The normalized maximum wavenumber simulated is ka7 = 1.2. The turbulent
flow is sustained by randomly forcing the two lowest nonzero shells of wave numbers. The integral length scale of the turbulent
flow is estimated to be L = 0.646 dm.

We study the statistics of monomers only (i.e. the particle of the same size (d) that we initially introduce into the system
and which we later replenish at a constant rate close to the monomer-monomer collision rate). In this sense, the particle
(monomers) are naturally lost from our consideration once they collide and become larger particles. Particles that become

much larger (St > 21.6) are removed from the DNS at each time step.

S2  Estimation of Leading Order Terms in the Drift Flux, e.g ag,lc)

Using the DNS data, we estimate e.g. the value of

t t
/ ay)dt’ = / T (Cite (6) Tt (8 ) Tt ()t

Note: the averaging is done over fluid particles (the theory assumed St < 1 limit, such that all velocity statistics are tied
to the fluid’s), the integrand is non-vanishing only for ¢ in the vicinity of ¢ — 7, to ¢ (where the turbulent velocity gradi-
ent I';; retains correlation), thus this quantity may be approximated as: 7,2 (T ()T, (£)T i (£)). As shown in Chun et al.
(2005), (T ()T 1 (£) i (£)) is by definition zero in fully developed turbulence due to the fact that the small-scale statistics
of turbulent flows are almost isotropic Kolmogorov (1941). However, the coagulation constraint dictates that at = d, such

averages must be taken with the condition that only fluid-particle pairs with negative radial velocity (w, < 0) are taken into
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account (that the inertial particles’ motion being tied to the fluid’s does not imply that inertial pairs sample the fluid particle
pairs’s motion uniformly). Under this condition, the DNS data gives 7,2 (T, (¢) T (£) Dt (1)) & (—0.171 x 1073 dm/s) /d.,
(d. =9.49 x 10~*dm); here, it is of value to point out that without such constraint or condition, the result for this quan-
tity from the DNS is two orders of magnitude smaller. Similarly, we found fioo a,(fi)dt’ ~ 73 (L ()T sk ()T in () Do (2)) =

(2.32x1073dm/s) /d,; for this quantity, the DNS gives roughly the same values with or without the constraint.
S3  Full Definition of the Function f;(Ro, 1,ts) in the Model for Non-local Diffusive Flux.

Derived in Chun et al. (2005), summarized here (with typo corrected), the diffusive action of the turbulence on the particle-pairs

is assumed to consist of a random sequence of uniaxial extensional or compressional flows defined, and:

fI(ROHU’?tf) = f+I+(R0nU’,tf) +f—l—(R0a,uatf)’

where Rg = ro/r, o is the initial separation distance of a particle pair before a straining event, r is the independent variable of
the equation for g(r); f+ and f_ = 1— f, are the fractions of those flows that are extensional and compressional, respectively.
Comparing with DNS, Chun et al. (2005) calibrated f and found f, = 0.188 (aresult we use here). I is an indicator function
such that it takes the value +1 (—1) when a secondary particle leaves (enters) a sphere of radius r centered on the primary
particle, and otherwise zero. p is the cosine of the angle between the axis of symmetry of the straining flow event and the
displacement vector between the two particles, ¢ is the lifetime of the event. To obtain a strain rate correlation function that

decays exponentially with a characteristic time scale 75, Chun et al. (2005) set the probability density function for ¢ to be:
[t
F(ty) =25 exp(~ty/7s).

The indicator function is used to count the net loss of particles from within the sphere over the duration of an (extensional

or compressional) event and can be expressed as:
L (Ro,pty) = H(1— Ro)H(Rpe —1) — H(Ro — 1)H(1 — Ryy),

where H (x) is the Heaviside function (zero for « < 0, unity for z > 0), R4 is the non-dimensional final position of a particle

pair with an initial position of R and can be written as:

1— 2y71/2
Ry = Ry [;ﬁeﬁ + (9”)} :
t

/1,2 1/2
Ry =Ry [92 +(1 _Mz)et} ;
t

for uniaxial extension and compression respectively, where:

_ ty
o= (Tn\/ﬁ> .
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Figure S1. MRVs of particles. Triangles: DNS result for St = 0.001. Squares: DNS result for St = 0.11. Red-dashed-line: theory’s
predictionfor St = 0.001. Gold-dotted-line: theory’s prediction for St = 0.11. Grey-solid-line: modified-theory’s prediction for St = 0.11
(details of modification in Sec. S5). Note: the predictions are based on the A, values valid in the 7 ~ d regime (d=9.49x10~* dm).
Inset) Similarplots in logarithmic axes highlighting the large-r regime. Note: the predictions are based on the A values valid in the r >

d regime. It isclear that the modified-theory’s predictions agree much better with the DNS.

S4 MRY Predictions by the Theory for Other Stokes Numbers.

As mentioned in the main text of this manuscript, even though the theory assumes that MRVs are St-independent for small
St’s. Nevertheless, it could produce separate predictions for each St. Here we show the predictions for St = 0.001 and 0.11
in Fig. 1. The prediction for St = 0.001 (red dash line) agrees well with the DNS results (symbols), but the prediction for
St =0.11 (gold dotted line) deviates significantly, suggesting that finite St effects not captured by the theory start to become

significant and thus diminish the accuracy of the theory.
S5 Derivation of Cg¢, its Role and Possibility of Further Corrections to The CK Theory.

In this work, we deviate crucially' from the CK theory Chun et al. (2005) by introducing an extra factor c,; (positive, of order

unity or less) in the model of non-local diffusion:

q?:cstr/dQ/dth(tf)/dR0R02 (P)(rRo) fr(Ro, p,t¢). (S1)
0 d/r

To determine what cg; is (or should be), we begin from an important finding in Chun et al. (2005) that if (P) is power-law of

7, i.e. (P) = Cr~°, then the non-local diffusion g2 can be cast into a differential form (which is usually only true for local

"Crucial’ refers to the fact that without cs; the theory would be inconsistent with previous experimental results (as this section will show) and it would

also produces results far from our DNS results.
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diffusion):

P
B 2aér>7 (S2)
where:
By :Tn/dﬂ/dth(tf)/dRoR()Q*leI(Ro?/iatf) (53)
0 d/r

This, together with: ¢ = —A., 7,1 (P), eventually leads to the first order equation differential equation for the RDF

(g(r) =V (P)), that has (only) power-law solutions: g(r) = VCr~. This result (i.e. g(r) or equivalently (P)(r) are power-
laws) has seen compelling validations from both experiments (e.g. Saw et al. (2012b); Lu et al. (2010); Yavuz et al. (2018)) and
DNS (e.g. Chun et al. (2005); Bec et al. (2007); Saw et al. (2012a)). We now begin from this experimentally validated result
and work backward to derive an expression for cs;. We plug the power-law form for (P) into (S2):

2 0(Cr™)

or
=—B, 7'77—1 7“20(—61)7“_61_1

D -1
g, =—ByTm, T

-1 —c
=Byt raCr

o0

:Tn_1TC1C7"_ClTn/dQ/dth<tf> /dROROZ_leI(RO,,u,tf)
0 d/r

o0

:rcl/dQ/dth(tf)/dR0R02C(rRo)_clfI(Ro,u,tf)
d/r

0
= / de2 / disF(ts) / dRo Ro® (P)(r o) fr(Ro,pt ).
0

d/r

Comparing with (S1), we have:
st = | —ai| =lal,

which is found in experiments (and theories) to be of order O to 1 and a function of particle Stokes number St; in words, this
means cg; is given by the modulus of the power-law exponent of the RDF that would arise in the collision-less case; in the case
with collision and sufficiently small particle (d/n < 1), such as in this study, c,; equals the modulus of the power-law exponent
of the RDF the range of d < r < 207 (note: power-laws RDF are empirically observed for r < 201 Saw et al. (2008, 2012a)).
Note: we have chosen to define cg; using the ‘modulus’ (instead of the ‘negative’ of the power-law exponent) since it guarantees
that ¢ is negative (positive) when g(r) is an increasing (decreasing) function of r, so that we are consistent with the fact that

qP is a diffusion flux. We note that both the CK theory and the current modified version assume St < 1.
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Chun et al. Chun et al. (2005) went further to provide a solution for ¢; (for collision-less particles, in the St < 1 limit):

Ack — AT,T>>d Tn
- )
Bnl Bnl

c = (S4)

where we have clarified that A, in our work is defined differently from "A" in (Chun et al., 2005) (we denote the latter as A x
to avoid confusion), and A, ,x.q is our A, evaluated at the large-r limit. In the current context, ¢; maybe obtained via (S4) or

alternatively directly from the power-law exponent of g(r) in the range d < r < 207 as discussed above. Using values of the

. 2 2 . . .
relevant parameters in our DNS, we found ABT TI” v 2ASLX0925 — 5 6542, which is 15% smaller than the one found in Chun

et al. (2005), i.e. ’gf’; R "60195’2%2 = 6.65t2. However, we have observed in our DNS that the direct method (by fitting power-laws
to the RDFs in the suitable r-range) gives c¢; which is 3.2 (1.9) times larger than the one obtained using (S4) for the case of
St =0.054 (0.11).

A plausible interpretation of the discrepancy described just above is that there may be another missing dimensionless factor

(of order unity, possibly weakly dependent on Reynolds-number) in the correct definition of ¢ . This is beyond the scope of
this present study (to avoid confusion, we currently restrict ourselves to the least speculative correction only) and is a good
subject for future works. However it may be informative to note that, by inspection, we find that if we further include a factor
of ~ 1/3 to 1/2 in the definition of ¢, then the agreement between the theoretical (the integral version) and DNS produced
(W,.y is strikingly better in the r >> d limit, while in the r ~ d regime, it is slightly better (the former should not come as a
surprise as this is the regime of power-law RDFs and the factor of ~ 1/3 is exactly designed to reproduce the correct ¢1).

To demonstrate the point just discussed, we show in Fig. 1 the predictions by the theory for the case of St =0.11. We see
that, in the r ~ d regime, the prediction by the original theory (dotted line in the main figure) is somewhat below the DNS result,
while the prediction by the modified theory (with a factor of 1/2 appended to the definition of ¢), shown as the solid line, is
much closer to DNS. In the r >> d regime, the modified theory’s superiority in terms of accuracy is even more pronounced (see

inset of Fig. 1).
S6 Relation Between g(7) and (P).

In the main text, we state that g(r) = V (P), where V is the spatial volume of the full domain of the problem i.e. (2)? in the
DNS. Justification: let g(r) be the ratio of probability of finding a second particle at 7 from a particle, to the probability of

= AP)wdydz — P\ Further, since system is

such finding in a perfectly random distributed particle population, thus: g(r) = Basys2) ]V =

isotropic, g(r) = g(r).
S7 Modeling of MRV based on Distribution of Particle Approach Angles P(0).

We imagine the particles are small i.e. d < 1 and St < 1. The latter implies their trajectories are almost like fluid particles’,
while the former implies that, viewed at the scale of interest r ~ d, their trajectories are almost rectilinear (since the radii of
curvature are proportional to n). Thus in the reference frame of a primary particles, no secondary particle could have a trajectory,
being straight-line, that has a history of collision with the volume of the primary (otherwise coagulation would have occurred

and the secondary particle in question would cease to exist). In trigonometric terms, let 6 be the angle between the secondary



particle’s velocity and its vector position in the rest frame of the primary particle, then we must have: sin'(d/r) < 0 < T,
120  with the convention that sin™ ' (z) € [~ %, Z].
From the above, we could then compute the MRV, (w,.), based on fluid particles’ statistics. Since collision-coagulation
affects positive and negative relative particle velocities differently, we begin by writing (w,-), as a sum of the positive (i.e. w, >
0) and negative branches (with proper statistical weights p4 to account for possible skewness of the probability distribution of

velocity):
125 (W,) = (wy), =p_(w,|w, <0), + py(w, [w, >0), .

The negative branch p_ (w, |w, < 0), is unaffected by collision-coagulation and we thus express it as a simple linear function
of r that follows from the K41-phenomenology (Kolmogorov, 1941), i.e. —p_&_r, where {1 ~ \/W, ¢ is the (kinetic)
energy dissipation rate of the flow. For the positive branch, we further assume that the (fluid particles’) joint probability density
function (PDF) of magnitude of relative velocity (secondary particle relative to primary particle) |w| and approach-angle 6,

130 P(|w|,0), is separable (note: w, = |w|cos(f)), hence:

(W, [w, > 0>*

™

:/d\w|/d9P(|w|,9)|w\cos(9)
0 Om

:/d\w|Pw(\w|)|w|/d9P9(0) cos(0)
0 O

— s [dful Pu(ful) | [do7; (6) cos(o).
0 Om
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where all the P’s are PDFs, note that py = fog Pydf, fog Pdo = fog (Py/ps+)df =1and [ Pydf =1, also note that P, =

Py(6 |w, > 0); more importantly 6,,, = sin~*(d/r) as previously explained. Further:

P+ (wr Jwy > O>*

— s [dlul Pu(fwl) | [ do P ©) cos(o)
0 Om

7r
o 7 0

=p, /d\w|Pw(\w|) |w| /d@P;(@) cos(0) + /d@P;(@) cos(6)
0 0 Oum
Jo 0 P (9) cos(6)
f()% do P, (0) cos(6)

M)

1+

- /d\w|Pw<\w|>|w| / 46 B} (6) cos()
0 0

1+

[y d6 Py (8) cos(0)
= p+§+ T o B

Ji2d6 Pyt (6) cos(9)

where in the last line, we have replaced the first two integrals, combined, with its K41 estimate, where {1 ~ /e/(15v) .

S8 Prediction of the Peak Location of the RDF Using the Differential Form of the Drift-Diffusion Equation.

_ 0 ;
7 Burt S+ g(r) [r? (W) - Ar®] = ~RZ, (s3)
A finite R} inhibit us from locating the peak of the RDF using (S5) a la Lu et al. (2010) i.e. without knowing ¢(r), since
g(r) could no longer be factored out when % = 0. However, we argue that (S5) could still give a reasonably accurate account

of the peak location. For the case of St = 0.05, at r = 3d (the approximate peak location), we found the DNS data gives
+9(r) [r2 (W) — A;r3] &~ —1.05x107% and — R} ~ —1.01 x 109
0

40
—TanlT' Fi

~

S9 General Analytical Solution for the Differential Form of the Drift-Diffusion Equation.

The general solution for the first-order non-homogenous ordinary differential equation (see e.g. Arfken and Weber (1999)),

with (w,), given by the model in the main text, is:

9= 305 [ / ﬁ(r)q(r)drw} , (56)

with ¢(r) = R} /(1) Bur?); B(r) = exp [ [ p(r)dr] and p(r) = [A;r — (w;),] /(7 Byir?). For the current model described in
the main text, the integral in (S6) could not be expressed in terms of simpler canonical functions. Hence, for specific appli-
cations, we currently anticipate that some sort of power-law expansion or asymptotic reduction (if not numerical integration)

would be needed to produce problem specific analytical approximations.
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Figure S2. Top) RDFs of particles (St = 0.054) subject to action of turbulence, collision-coagulation with and without gravity. Circles: Sq =
0(zero gravity); triangles: Sy = 0.49 (nonzero gravity). No discernible effect of gravity. Bottom) MRVs of the same cases. No

discernibleeffect of gravity.

S10 Further Details on the Effects of Gravity.

We repeat the DNS case of St = 0.054 and St = 0.54 with the particles subjected to gravity (body force), and compares results
with the zero-gravity case. Fig. 2 shows the results for case St = 0.054. There is no discernible difference between the cases
with and without gravity.

For case St = 0.54, the main RDF and MRV results is shown the main text. Here we show only the compensated-RDFs (
ge(r) ), where each g.(r) is calculated via g(r) divide by a power law (cor—') that resulted from curve-fitting to the original
g(r) in the range 0.6n < r < 3n. Fig. 3 compares g.(r) for cases with and without gravity. The fact that there is no discernible
difference implies that the uncompensated g(r) could be model as g. x g4 where g, is function that depends only on the particle

collision process while g4 depends on other factors e.g. gravity and is independent of particle collision.
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Figure S3. Compensated RDFs of particles (St = 0.54) subject to action of turbulence, collision-coagulation with and without gravity.

Circles: Sg = 0 (zero gravity); triangles: Sy = 4.9 (nonzero gravity). Interpretation in the text.
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