Articles | Volume 22, issue 23
https://doi.org/10.5194/acp-22-15179-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-15179-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Ice crystal characterization in cirrus clouds III: retrieval of ice crystal shape and roughness from observations of halo displays
Linda Forster
CORRESPONDING AUTHOR
Meteorologisches Institut, Ludwig-Maximilians-Universität, Munich, Germany
Bernhard Mayer
Meteorologisches Institut, Ludwig-Maximilians-Universität, Munich, Germany
also at: Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen, Germany
Related authors
Heike Konow, Florian Ewald, Geet George, Marek Jacob, Marcus Klingebiel, Tobias Kölling, Anna E. Luebke, Theresa Mieslinger, Veronika Pörtge, Jule Radtke, Michael Schäfer, Hauke Schulz, Raphaela Vogel, Martin Wirth, Sandrine Bony, Susanne Crewell, André Ehrlich, Linda Forster, Andreas Giez, Felix Gödde, Silke Groß, Manuel Gutleben, Martin Hagen, Lutz Hirsch, Friedhelm Jansen, Theresa Lang, Bernhard Mayer, Mario Mech, Marc Prange, Sabrina Schnitt, Jessica Vial, Andreas Walbröl, Manfred Wendisch, Kevin Wolf, Tobias Zinner, Martin Zöger, Felix Ament, and Bjorn Stevens
Earth Syst. Sci. Data, 13, 5545–5563, https://doi.org/10.5194/essd-13-5545-2021, https://doi.org/10.5194/essd-13-5545-2021, 2021
Short summary
Short summary
The German research aircraft HALO took part in the research campaign EUREC4A in January and February 2020. The focus area was the tropical Atlantic east of the island of Barbados. We describe the characteristics of the 15 research flights, provide auxiliary information, derive combined cloud mask products from all instruments that observe clouds on board the aircraft, and provide code examples that help new users of the data to get started.
Bjorn Stevens, Sandrine Bony, David Farrell, Felix Ament, Alan Blyth, Christopher Fairall, Johannes Karstensen, Patricia K. Quinn, Sabrina Speich, Claudia Acquistapace, Franziska Aemisegger, Anna Lea Albright, Hugo Bellenger, Eberhard Bodenschatz, Kathy-Ann Caesar, Rebecca Chewitt-Lucas, Gijs de Boer, Julien Delanoë, Leif Denby, Florian Ewald, Benjamin Fildier, Marvin Forde, Geet George, Silke Gross, Martin Hagen, Andrea Hausold, Karen J. Heywood, Lutz Hirsch, Marek Jacob, Friedhelm Jansen, Stefan Kinne, Daniel Klocke, Tobias Kölling, Heike Konow, Marie Lothon, Wiebke Mohr, Ann Kristin Naumann, Louise Nuijens, Léa Olivier, Robert Pincus, Mira Pöhlker, Gilles Reverdin, Gregory Roberts, Sabrina Schnitt, Hauke Schulz, A. Pier Siebesma, Claudia Christine Stephan, Peter Sullivan, Ludovic Touzé-Peiffer, Jessica Vial, Raphaela Vogel, Paquita Zuidema, Nicola Alexander, Lyndon Alves, Sophian Arixi, Hamish Asmath, Gholamhossein Bagheri, Katharina Baier, Adriana Bailey, Dariusz Baranowski, Alexandre Baron, Sébastien Barrau, Paul A. Barrett, Frédéric Batier, Andreas Behrendt, Arne Bendinger, Florent Beucher, Sebastien Bigorre, Edmund Blades, Peter Blossey, Olivier Bock, Steven Böing, Pierre Bosser, Denis Bourras, Pascale Bouruet-Aubertot, Keith Bower, Pierre Branellec, Hubert Branger, Michal Brennek, Alan Brewer, Pierre-Etienne Brilouet, Björn Brügmann, Stefan A. Buehler, Elmo Burke, Ralph Burton, Radiance Calmer, Jean-Christophe Canonici, Xavier Carton, Gregory Cato Jr., Jude Andre Charles, Patrick Chazette, Yanxu Chen, Michal T. Chilinski, Thomas Choularton, Patrick Chuang, Shamal Clarke, Hugh Coe, Céline Cornet, Pierre Coutris, Fleur Couvreux, Susanne Crewell, Timothy Cronin, Zhiqiang Cui, Yannis Cuypers, Alton Daley, Gillian M. Damerell, Thibaut Dauhut, Hartwig Deneke, Jean-Philippe Desbios, Steffen Dörner, Sebastian Donner, Vincent Douet, Kyla Drushka, Marina Dütsch, André Ehrlich, Kerry Emanuel, Alexandros Emmanouilidis, Jean-Claude Etienne, Sheryl Etienne-Leblanc, Ghislain Faure, Graham Feingold, Luca Ferrero, Andreas Fix, Cyrille Flamant, Piotr Jacek Flatau, Gregory R. Foltz, Linda Forster, Iulian Furtuna, Alan Gadian, Joseph Galewsky, Martin Gallagher, Peter Gallimore, Cassandra Gaston, Chelle Gentemann, Nicolas Geyskens, Andreas Giez, John Gollop, Isabelle Gouirand, Christophe Gourbeyre, Dörte de Graaf, Geiske E. de Groot, Robert Grosz, Johannes Güttler, Manuel Gutleben, Kashawn Hall, George Harris, Kevin C. Helfer, Dean Henze, Calvert Herbert, Bruna Holanda, Antonio Ibanez-Landeta, Janet Intrieri, Suneil Iyer, Fabrice Julien, Heike Kalesse, Jan Kazil, Alexander Kellman, Abiel T. Kidane, Ulrike Kirchner, Marcus Klingebiel, Mareike Körner, Leslie Ann Kremper, Jan Kretzschmar, Ovid Krüger, Wojciech Kumala, Armin Kurz, Pierre L'Hégaret, Matthieu Labaste, Tom Lachlan-Cope, Arlene Laing, Peter Landschützer, Theresa Lang, Diego Lange, Ingo Lange, Clément Laplace, Gauke Lavik, Rémi Laxenaire, Caroline Le Bihan, Mason Leandro, Nathalie Lefevre, Marius Lena, Donald Lenschow, Qiang Li, Gary Lloyd, Sebastian Los, Niccolò Losi, Oscar Lovell, Christopher Luneau, Przemyslaw Makuch, Szymon Malinowski, Gaston Manta, Eleni Marinou, Nicholas Marsden, Sebastien Masson, Nicolas Maury, Bernhard Mayer, Margarette Mayers-Als, Christophe Mazel, Wayne McGeary, James C. McWilliams, Mario Mech, Melina Mehlmann, Agostino Niyonkuru Meroni, Theresa Mieslinger, Andreas Minikin, Peter Minnett, Gregor Möller, Yanmichel Morfa Avalos, Caroline Muller, Ionela Musat, Anna Napoli, Almuth Neuberger, Christophe Noisel, David Noone, Freja Nordsiek, Jakub L. Nowak, Lothar Oswald, Douglas J. Parker, Carolyn Peck, Renaud Person, Miriam Philippi, Albert Plueddemann, Christopher Pöhlker, Veronika Pörtge, Ulrich Pöschl, Lawrence Pologne, Michał Posyniak, Marc Prange, Estefanía Quiñones Meléndez, Jule Radtke, Karim Ramage, Jens Reimann, Lionel Renault, Klaus Reus, Ashford Reyes, Joachim Ribbe, Maximilian Ringel, Markus Ritschel, Cesar B. Rocha, Nicolas Rochetin, Johannes Röttenbacher, Callum Rollo, Haley Royer, Pauline Sadoulet, Leo Saffin, Sanola Sandiford, Irina Sandu, Michael Schäfer, Vera Schemann, Imke Schirmacher, Oliver Schlenczek, Jerome Schmidt, Marcel Schröder, Alfons Schwarzenboeck, Andrea Sealy, Christoph J. Senff, Ilya Serikov, Samkeyat Shohan, Elizabeth Siddle, Alexander Smirnov, Florian Späth, Branden Spooner, M. Katharina Stolla, Wojciech Szkółka, Simon P. de Szoeke, Stéphane Tarot, Eleni Tetoni, Elizabeth Thompson, Jim Thomson, Lorenzo Tomassini, Julien Totems, Alma Anna Ubele, Leonie Villiger, Jan von Arx, Thomas Wagner, Andi Walther, Ben Webber, Manfred Wendisch, Shanice Whitehall, Anton Wiltshire, Allison A. Wing, Martin Wirth, Jonathan Wiskandt, Kevin Wolf, Ludwig Worbes, Ethan Wright, Volker Wulfmeyer, Shanea Young, Chidong Zhang, Dongxiao Zhang, Florian Ziemen, Tobias Zinner, and Martin Zöger
Earth Syst. Sci. Data, 13, 4067–4119, https://doi.org/10.5194/essd-13-4067-2021, https://doi.org/10.5194/essd-13-4067-2021, 2021
Short summary
Short summary
The EUREC4A field campaign, designed to test hypothesized mechanisms by which clouds respond to warming and benchmark next-generation Earth-system models, is presented. EUREC4A comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. It was the first campaign that attempted to characterize the full range of processes and scales influencing trade wind clouds.
Linda Forster, Anna Weber, and Bernhard Mayer
EGUsphere, https://doi.org/10.5194/egusphere-2025-1369, https://doi.org/10.5194/egusphere-2025-1369, 2025
Short summary
Short summary
CrystalTrace is a Monte Carlo raytracing algorithm for simulating radiative transfer in ice clouds with different crystal shapes and orientations. Integrated into libradtran’s MYSTIC solver, it enables efficient, realistic simulations of ice alongside water clouds. By computing single-scattering properties online at the crystal scale, it eliminates the need for precomputed lookup tables, improving efficiency and angular resolution for satellite, airborne, and ground-based observation retrievals.
Anna Weber, Gregor Köcher, and Bernhard Mayer
EGUsphere, https://doi.org/10.5194/egusphere-2025-2554, https://doi.org/10.5194/egusphere-2025-2554, 2025
Short summary
Short summary
A neural-network-based fast forward operator for polarized 3D radiative transfer is presented. The forward operator uses the new independent column local half-sphere approximation (IDEFAX). Polarized radiances simulated with IFEDAX and the forward operator were validated against full 3D radiative transfer simulations with MYSTIC and show a significantly improved representation of 3D radiative effects compared to the plane-parallel independent column approximation at comparable computation times.
Lea Volkmer, Tobias Kölling, Tobias Zinner, and Bernhard Mayer
Atmos. Meas. Tech., 17, 6807–6817, https://doi.org/10.5194/amt-17-6807-2024, https://doi.org/10.5194/amt-17-6807-2024, 2024
Short summary
Short summary
The importance of the consideration of cloud motion for the stereographic determination of cloud top height from aircraft observations is demonstrated using measurements of the airborne spectrometer of the Munich Aerosol Cloud Scanner (specMACS). A method for cloud motion correction using model winds from the European Centre for Medium-Range Weather Forecasts is presented and validated using both real measurements and realistic radiative transfer simulations.
Claudia Emde, Veronika Pörtge, Mihail Manev, and Bernhard Mayer
Atmos. Meas. Tech., 17, 6769–6789, https://doi.org/10.5194/amt-17-6769-2024, https://doi.org/10.5194/amt-17-6769-2024, 2024
Short summary
Short summary
We introduce an innovative method to retrieve the cloud fraction and optical thickness of liquid water clouds over the ocean based on polarimetry. This is well suited for satellite observations providing multi-angle polarization measurements. Cloud fraction and cloud optical thickness can be derived from measurements at two viewing angles: one within the cloudbow and one in the sun glint region.
Johanna Mayer, Bernhard Mayer, Luca Bugliaro, Ralf Meerkötter, and Christiane Voigt
Atmos. Meas. Tech., 17, 5161–5185, https://doi.org/10.5194/amt-17-5161-2024, https://doi.org/10.5194/amt-17-5161-2024, 2024
Short summary
Short summary
This study uses radiative transfer calculations to characterize the relation of two satellite channel combinations (namely infrared window brightness temperature differences – BTDs – of SEVIRI) to the thermodynamic cloud phase. A sensitivity analysis reveals the complex interplay of cloud parameters and their contribution to the observed phase dependence of BTDs. This knowledge helps to design optimal cloud-phase retrievals and to understand their potential and limitations.
Manfred Wendisch, Susanne Crewell, André Ehrlich, Andreas Herber, Benjamin Kirbus, Christof Lüpkes, Mario Mech, Steven J. Abel, Elisa F. Akansu, Felix Ament, Clémantyne Aubry, Sebastian Becker, Stephan Borrmann, Heiko Bozem, Marlen Brückner, Hans-Christian Clemen, Sandro Dahlke, Georgios Dekoutsidis, Julien Delanoë, Elena De La Torre Castro, Henning Dorff, Regis Dupuy, Oliver Eppers, Florian Ewald, Geet George, Irina V. Gorodetskaya, Sarah Grawe, Silke Groß, Jörg Hartmann, Silvia Henning, Lutz Hirsch, Evelyn Jäkel, Philipp Joppe, Olivier Jourdan, Zsofia Jurányi, Michail Karalis, Mona Kellermann, Marcus Klingebiel, Michael Lonardi, Johannes Lucke, Anna E. Luebke, Maximilian Maahn, Nina Maherndl, Marion Maturilli, Bernhard Mayer, Johanna Mayer, Stephan Mertes, Janosch Michaelis, Michel Michalkov, Guillaume Mioche, Manuel Moser, Hanno Müller, Roel Neggers, Davide Ori, Daria Paul, Fiona M. Paulus, Christian Pilz, Felix Pithan, Mira Pöhlker, Veronika Pörtge, Maximilian Ringel, Nils Risse, Gregory C. Roberts, Sophie Rosenburg, Johannes Röttenbacher, Janna Rückert, Michael Schäfer, Jonas Schaefer, Vera Schemann, Imke Schirmacher, Jörg Schmidt, Sebastian Schmidt, Johannes Schneider, Sabrina Schnitt, Anja Schwarz, Holger Siebert, Harald Sodemann, Tim Sperzel, Gunnar Spreen, Bjorn Stevens, Frank Stratmann, Gunilla Svensson, Christian Tatzelt, Thomas Tuch, Timo Vihma, Christiane Voigt, Lea Volkmer, Andreas Walbröl, Anna Weber, Birgit Wehner, Bruno Wetzel, Martin Wirth, and Tobias Zinner
Atmos. Chem. Phys., 24, 8865–8892, https://doi.org/10.5194/acp-24-8865-2024, https://doi.org/10.5194/acp-24-8865-2024, 2024
Short summary
Short summary
The Arctic is warming faster than the rest of the globe. Warm-air intrusions (WAIs) into the Arctic may play an important role in explaining this phenomenon. Cold-air outbreaks (CAOs) out of the Arctic may link the Arctic climate changes to mid-latitude weather. In our article, we describe how to observe air mass transformations during CAOs and WAIs using three research aircraft instrumented with state-of-the-art remote-sensing and in situ measurement devices.
Johanna Mayer, Luca Bugliaro, Bernhard Mayer, Dennis Piontek, and Christiane Voigt
Atmos. Meas. Tech., 17, 4015–4039, https://doi.org/10.5194/amt-17-4015-2024, https://doi.org/10.5194/amt-17-4015-2024, 2024
Short summary
Short summary
ProPS (PRObabilistic cloud top Phase retrieval for SEVIRI) is a method to detect clouds and their thermodynamic phase with a geostationary satellite, distinguishing between clear sky and ice, mixed-phase, supercooled and warm liquid clouds. It uses a Bayesian approach based on the lidar–radar product DARDAR. The method allows studying cloud phases, especially mixed-phase and supercooled clouds, rarely observed from geostationary satellites. This can be used for comparison with climate models.
Richard Maier, Fabian Jakub, Claudia Emde, Mihail Manev, Aiko Voigt, and Bernhard Mayer
Geosci. Model Dev., 17, 3357–3383, https://doi.org/10.5194/gmd-17-3357-2024, https://doi.org/10.5194/gmd-17-3357-2024, 2024
Short summary
Short summary
Based on the TenStream solver, we present a new method to accelerate 3D radiative transfer towards the speed of currently used 1D solvers. Using a shallow-cumulus-cloud time series, we evaluate the performance of this new solver in terms of both speed and accuracy. Compared to a 3D benchmark simulation, we show that our new solver is able to determine much more accurate irradiances and heating rates than a 1D δ-Eddington solver, even when operated with a similar computational demand.
Ilias Fountoulakis, Alexandra Tsekeri, Stelios Kazadzis, Vassilis Amiridis, Angelos Nersesian, Maria Tsichla, Emmanouil Proestakis, Antonis Gkikas, Kyriakoula Papachristopoulou, Vasileios Barlakas, Claudia Emde, and Bernhard Mayer
Atmos. Chem. Phys., 24, 4915–4948, https://doi.org/10.5194/acp-24-4915-2024, https://doi.org/10.5194/acp-24-4915-2024, 2024
Short summary
Short summary
In our study we provide an assessment, through a sensitivity study, of the limitations of models to calculate the dust direct radiative effect (DRE) due to the underrepresentation of its size, refractive index (RI), and shape. Our results indicate the necessity of including more realistic sizes and RIs for dust particles in dust models, in order to derive better estimations of the dust direct radiative effects.
Behrooz Keshtgar, Aiko Voigt, Bernhard Mayer, and Corinna Hoose
Atmos. Chem. Phys., 24, 4751–4769, https://doi.org/10.5194/acp-24-4751-2024, https://doi.org/10.5194/acp-24-4751-2024, 2024
Short summary
Short summary
Cloud-radiative heating (CRH) affects extratropical cyclones but is uncertain in weather and climate models. We provide a framework to quantify uncertainties in CRH within an extratropical cyclone due to four factors and show that the parameterization of ice optical properties contributes significantly to uncertainty in CRH. We also argue that ice optical properties, by affecting CRH on spatial scales of 100 km, are relevant for the large-scale dynamics of extratropical cyclones.
Lea Volkmer, Veronika Pörtge, Fabian Jakub, and Bernhard Mayer
Atmos. Meas. Tech., 17, 1703–1719, https://doi.org/10.5194/amt-17-1703-2024, https://doi.org/10.5194/amt-17-1703-2024, 2024
Short summary
Short summary
Three-dimensional radiative transfer simulations are used to evaluate the performance of retrieval algorithms in the derivation of cloud geometry (cloud top heights) and cloud droplet size distributions from two-dimensional polarized radiance measurements of the airborne spectrometer of the Munich Aerosol Cloud Scanner. The cloud droplet size distributions are derived for the effective radius and variance. The simulations are based on cloud data from highly resolved large-eddy simulations.
Anna Weber, Tobias Kölling, Veronika Pörtge, Andreas Baumgartner, Clemens Rammeloo, Tobias Zinner, and Bernhard Mayer
Atmos. Meas. Tech., 17, 1419–1439, https://doi.org/10.5194/amt-17-1419-2024, https://doi.org/10.5194/amt-17-1419-2024, 2024
Short summary
Short summary
In this work, we introduce the 2D RGB polarization-resolving cameras of the airborne hyperspectral and polarized imaging system specMACS. A full characterization and calibration of the cameras including a geometric calibration as well as a radiometric characterization is provided, allowing for the computation of absolute calibrated, georeferenced Stokes vectors rotated into the scattering plane. We validate the calibration by comparing sunglint measurements to radiative transfer simulations.
James Barry, Stefanie Meilinger, Klaus Pfeilsticker, Anna Herman-Czezuch, Nicola Kimiaie, Christopher Schirrmeister, Rone Yousif, Tina Buchmann, Johannes Grabenstein, Hartwig Deneke, Jonas Witthuhn, Claudia Emde, Felix Gödde, Bernhard Mayer, Leonhard Scheck, Marion Schroedter-Homscheidt, Philipp Hofbauer, and Matthias Struck
Atmos. Meas. Tech., 16, 4975–5007, https://doi.org/10.5194/amt-16-4975-2023, https://doi.org/10.5194/amt-16-4975-2023, 2023
Short summary
Short summary
Measured power data from solar photovoltaic (PV) systems contain information about the state of the atmosphere. In this work, power data from PV systems in the Allgäu region in Germany were used to determine the solar irradiance at each location, using state-of-the-art simulation and modelling. The results were validated using concurrent measurements of the incoming solar radiation in each case. If applied on a wider scale, this algorithm could help improve weather and climate models.
Philipp Gregor, Tobias Zinner, Fabian Jakub, and Bernhard Mayer
Atmos. Meas. Tech., 16, 3257–3271, https://doi.org/10.5194/amt-16-3257-2023, https://doi.org/10.5194/amt-16-3257-2023, 2023
Short summary
Short summary
This work introduces MACIN, a model for short-term forecasting of direct irradiance for solar energy applications. MACIN exploits cloud images of multiple cameras to predict irradiance. The model is applied to artificial images of clouds from a weather model. The artificial cloud data allow for a more in-depth evaluation and attribution of errors compared with real data. Good performance of derived cloud information and significant forecast improvements over a baseline forecast were found.
Veronika Pörtge, Tobias Kölling, Anna Weber, Lea Volkmer, Claudia Emde, Tobias Zinner, Linda Forster, and Bernhard Mayer
Atmos. Meas. Tech., 16, 645–667, https://doi.org/10.5194/amt-16-645-2023, https://doi.org/10.5194/amt-16-645-2023, 2023
Short summary
Short summary
In this work, we analyze polarized cloudbow observations by the airborne camera system specMACS to retrieve the cloud droplet size distribution defined by the effective radius (reff) and the effective variance (veff). Two case studies of trade-wind cumulus clouds observed during the EUREC4A field campaign are presented. The results are combined into maps of reff and veff with a very high spatial resolution (100 m × 100 m) that allow new insights into cloud microphysics.
Behrooz Keshtgar, Aiko Voigt, Corinna Hoose, Michael Riemer, and Bernhard Mayer
Weather Clim. Dynam., 4, 115–132, https://doi.org/10.5194/wcd-4-115-2023, https://doi.org/10.5194/wcd-4-115-2023, 2023
Short summary
Short summary
Forecasting extratropical cyclones is challenging due to many physical factors influencing their behavior. One such factor is the impact of heating and cooling of the atmosphere by the interaction between clouds and radiation. In this study, we show that cloud-radiative heating (CRH) increases the intensity of an idealized cyclone and affects its predictability. We find that CRH affects the cyclone mostly via increasing latent heat release and subsequent changes in the synoptic circulation.
Huan Yu, Claudia Emde, Arve Kylling, Ben Veihelmann, Bernhard Mayer, Kerstin Stebel, and Michel Van Roozendael
Atmos. Meas. Tech., 15, 5743–5768, https://doi.org/10.5194/amt-15-5743-2022, https://doi.org/10.5194/amt-15-5743-2022, 2022
Short summary
Short summary
In this study, we have investigated the impact of 3D clouds on the tropospheric NO2 retrieval from UV–visible sensors. We applied standard NO2 retrieval methods including cloud corrections to synthetic data generated by the 3D radiative transfer model. A sensitivity study was done for synthetic data, and dependencies on various parameters were investigated. Possible mitigation strategies were investigated and compared based on 3D simulations and observed data.
Arve Kylling, Claudia Emde, Huan Yu, Michel van Roozendael, Kerstin Stebel, Ben Veihelmann, and Bernhard Mayer
Atmos. Meas. Tech., 15, 3481–3495, https://doi.org/10.5194/amt-15-3481-2022, https://doi.org/10.5194/amt-15-3481-2022, 2022
Short summary
Short summary
Atmospheric trace gases such as nitrogen dioxide (NO2) may be measured by satellite instruments sensitive to solar ultraviolet–visible radiation reflected from Earth and its atmosphere. For a single pixel, clouds in neighbouring pixels may affect the radiation and hence the retrieved trace gas amount. We found that for a solar zenith angle less than about 40° this cloud-related NO2 bias is typically below 10 %, while for larger solar zenith angles the NO2 bias is on the order of tens of percent.
Luca Bugliaro, Dennis Piontek, Stephan Kox, Marius Schmidl, Bernhard Mayer, Richard Müller, Margarita Vázquez-Navarro, Daniel M. Peters, Roy G. Grainger, Josef Gasteiger, and Jayanta Kar
Nat. Hazards Earth Syst. Sci., 22, 1029–1054, https://doi.org/10.5194/nhess-22-1029-2022, https://doi.org/10.5194/nhess-22-1029-2022, 2022
Short summary
Short summary
The monitoring of ash dispersion in the atmosphere is an important task for satellite remote sensing since ash represents a threat to air traffic. We present an AI-based method that retrieves the spatial extension and properties of volcanic ash clouds with high temporal resolution during day and night by means of geostationary satellite measurements. This algorithm, trained on realistic observations simulated with a radiative transfer model, runs operationally at the German Weather Service.
Claudia Emde, Huan Yu, Arve Kylling, Michel van Roozendael, Kerstin Stebel, Ben Veihelmann, and Bernhard Mayer
Atmos. Meas. Tech., 15, 1587–1608, https://doi.org/10.5194/amt-15-1587-2022, https://doi.org/10.5194/amt-15-1587-2022, 2022
Short summary
Short summary
Retrievals of trace gas concentrations from satellite observations can be affected by clouds in the vicinity, either by shadowing or by scattering of radiation from clouds in the clear region. We used a Monte Carlo radiative transfer model to generate synthetic satellite observations, which we used to test retrieval algorithms and to quantify the error of retrieved NO2 vertical column density due to cloud scattering.
Heike Konow, Florian Ewald, Geet George, Marek Jacob, Marcus Klingebiel, Tobias Kölling, Anna E. Luebke, Theresa Mieslinger, Veronika Pörtge, Jule Radtke, Michael Schäfer, Hauke Schulz, Raphaela Vogel, Martin Wirth, Sandrine Bony, Susanne Crewell, André Ehrlich, Linda Forster, Andreas Giez, Felix Gödde, Silke Groß, Manuel Gutleben, Martin Hagen, Lutz Hirsch, Friedhelm Jansen, Theresa Lang, Bernhard Mayer, Mario Mech, Marc Prange, Sabrina Schnitt, Jessica Vial, Andreas Walbröl, Manfred Wendisch, Kevin Wolf, Tobias Zinner, Martin Zöger, Felix Ament, and Bjorn Stevens
Earth Syst. Sci. Data, 13, 5545–5563, https://doi.org/10.5194/essd-13-5545-2021, https://doi.org/10.5194/essd-13-5545-2021, 2021
Short summary
Short summary
The German research aircraft HALO took part in the research campaign EUREC4A in January and February 2020. The focus area was the tropical Atlantic east of the island of Barbados. We describe the characteristics of the 15 research flights, provide auxiliary information, derive combined cloud mask products from all instruments that observe clouds on board the aircraft, and provide code examples that help new users of the data to get started.
Bjorn Stevens, Sandrine Bony, David Farrell, Felix Ament, Alan Blyth, Christopher Fairall, Johannes Karstensen, Patricia K. Quinn, Sabrina Speich, Claudia Acquistapace, Franziska Aemisegger, Anna Lea Albright, Hugo Bellenger, Eberhard Bodenschatz, Kathy-Ann Caesar, Rebecca Chewitt-Lucas, Gijs de Boer, Julien Delanoë, Leif Denby, Florian Ewald, Benjamin Fildier, Marvin Forde, Geet George, Silke Gross, Martin Hagen, Andrea Hausold, Karen J. Heywood, Lutz Hirsch, Marek Jacob, Friedhelm Jansen, Stefan Kinne, Daniel Klocke, Tobias Kölling, Heike Konow, Marie Lothon, Wiebke Mohr, Ann Kristin Naumann, Louise Nuijens, Léa Olivier, Robert Pincus, Mira Pöhlker, Gilles Reverdin, Gregory Roberts, Sabrina Schnitt, Hauke Schulz, A. Pier Siebesma, Claudia Christine Stephan, Peter Sullivan, Ludovic Touzé-Peiffer, Jessica Vial, Raphaela Vogel, Paquita Zuidema, Nicola Alexander, Lyndon Alves, Sophian Arixi, Hamish Asmath, Gholamhossein Bagheri, Katharina Baier, Adriana Bailey, Dariusz Baranowski, Alexandre Baron, Sébastien Barrau, Paul A. Barrett, Frédéric Batier, Andreas Behrendt, Arne Bendinger, Florent Beucher, Sebastien Bigorre, Edmund Blades, Peter Blossey, Olivier Bock, Steven Böing, Pierre Bosser, Denis Bourras, Pascale Bouruet-Aubertot, Keith Bower, Pierre Branellec, Hubert Branger, Michal Brennek, Alan Brewer, Pierre-Etienne Brilouet, Björn Brügmann, Stefan A. Buehler, Elmo Burke, Ralph Burton, Radiance Calmer, Jean-Christophe Canonici, Xavier Carton, Gregory Cato Jr., Jude Andre Charles, Patrick Chazette, Yanxu Chen, Michal T. Chilinski, Thomas Choularton, Patrick Chuang, Shamal Clarke, Hugh Coe, Céline Cornet, Pierre Coutris, Fleur Couvreux, Susanne Crewell, Timothy Cronin, Zhiqiang Cui, Yannis Cuypers, Alton Daley, Gillian M. Damerell, Thibaut Dauhut, Hartwig Deneke, Jean-Philippe Desbios, Steffen Dörner, Sebastian Donner, Vincent Douet, Kyla Drushka, Marina Dütsch, André Ehrlich, Kerry Emanuel, Alexandros Emmanouilidis, Jean-Claude Etienne, Sheryl Etienne-Leblanc, Ghislain Faure, Graham Feingold, Luca Ferrero, Andreas Fix, Cyrille Flamant, Piotr Jacek Flatau, Gregory R. Foltz, Linda Forster, Iulian Furtuna, Alan Gadian, Joseph Galewsky, Martin Gallagher, Peter Gallimore, Cassandra Gaston, Chelle Gentemann, Nicolas Geyskens, Andreas Giez, John Gollop, Isabelle Gouirand, Christophe Gourbeyre, Dörte de Graaf, Geiske E. de Groot, Robert Grosz, Johannes Güttler, Manuel Gutleben, Kashawn Hall, George Harris, Kevin C. Helfer, Dean Henze, Calvert Herbert, Bruna Holanda, Antonio Ibanez-Landeta, Janet Intrieri, Suneil Iyer, Fabrice Julien, Heike Kalesse, Jan Kazil, Alexander Kellman, Abiel T. Kidane, Ulrike Kirchner, Marcus Klingebiel, Mareike Körner, Leslie Ann Kremper, Jan Kretzschmar, Ovid Krüger, Wojciech Kumala, Armin Kurz, Pierre L'Hégaret, Matthieu Labaste, Tom Lachlan-Cope, Arlene Laing, Peter Landschützer, Theresa Lang, Diego Lange, Ingo Lange, Clément Laplace, Gauke Lavik, Rémi Laxenaire, Caroline Le Bihan, Mason Leandro, Nathalie Lefevre, Marius Lena, Donald Lenschow, Qiang Li, Gary Lloyd, Sebastian Los, Niccolò Losi, Oscar Lovell, Christopher Luneau, Przemyslaw Makuch, Szymon Malinowski, Gaston Manta, Eleni Marinou, Nicholas Marsden, Sebastien Masson, Nicolas Maury, Bernhard Mayer, Margarette Mayers-Als, Christophe Mazel, Wayne McGeary, James C. McWilliams, Mario Mech, Melina Mehlmann, Agostino Niyonkuru Meroni, Theresa Mieslinger, Andreas Minikin, Peter Minnett, Gregor Möller, Yanmichel Morfa Avalos, Caroline Muller, Ionela Musat, Anna Napoli, Almuth Neuberger, Christophe Noisel, David Noone, Freja Nordsiek, Jakub L. Nowak, Lothar Oswald, Douglas J. Parker, Carolyn Peck, Renaud Person, Miriam Philippi, Albert Plueddemann, Christopher Pöhlker, Veronika Pörtge, Ulrich Pöschl, Lawrence Pologne, Michał Posyniak, Marc Prange, Estefanía Quiñones Meléndez, Jule Radtke, Karim Ramage, Jens Reimann, Lionel Renault, Klaus Reus, Ashford Reyes, Joachim Ribbe, Maximilian Ringel, Markus Ritschel, Cesar B. Rocha, Nicolas Rochetin, Johannes Röttenbacher, Callum Rollo, Haley Royer, Pauline Sadoulet, Leo Saffin, Sanola Sandiford, Irina Sandu, Michael Schäfer, Vera Schemann, Imke Schirmacher, Oliver Schlenczek, Jerome Schmidt, Marcel Schröder, Alfons Schwarzenboeck, Andrea Sealy, Christoph J. Senff, Ilya Serikov, Samkeyat Shohan, Elizabeth Siddle, Alexander Smirnov, Florian Späth, Branden Spooner, M. Katharina Stolla, Wojciech Szkółka, Simon P. de Szoeke, Stéphane Tarot, Eleni Tetoni, Elizabeth Thompson, Jim Thomson, Lorenzo Tomassini, Julien Totems, Alma Anna Ubele, Leonie Villiger, Jan von Arx, Thomas Wagner, Andi Walther, Ben Webber, Manfred Wendisch, Shanice Whitehall, Anton Wiltshire, Allison A. Wing, Martin Wirth, Jonathan Wiskandt, Kevin Wolf, Ludwig Worbes, Ethan Wright, Volker Wulfmeyer, Shanea Young, Chidong Zhang, Dongxiao Zhang, Florian Ziemen, Tobias Zinner, and Martin Zöger
Earth Syst. Sci. Data, 13, 4067–4119, https://doi.org/10.5194/essd-13-4067-2021, https://doi.org/10.5194/essd-13-4067-2021, 2021
Short summary
Short summary
The EUREC4A field campaign, designed to test hypothesized mechanisms by which clouds respond to warming and benchmark next-generation Earth-system models, is presented. EUREC4A comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. It was the first campaign that attempted to characterize the full range of processes and scales influencing trade wind clouds.
Florian Ewald, Silke Groß, Martin Wirth, Julien Delanoë, Stuart Fox, and Bernhard Mayer
Atmos. Meas. Tech., 14, 5029–5047, https://doi.org/10.5194/amt-14-5029-2021, https://doi.org/10.5194/amt-14-5029-2021, 2021
Short summary
Short summary
In this study, we show how solar radiance observations can be used to validate and further constrain ice cloud microphysics retrieved from the synergy of radar–lidar measurements. Since most radar–lidar retrievals rely on a global assumption about the ice particle shape, ice water content and particle size biases are to be expected in individual cloud regimes. In this work, we identify and correct these biases by reconciling simulated and measured solar radiation reflected from these clouds.
Nina Črnivec and Bernhard Mayer
Geosci. Model Dev., 14, 3663–3682, https://doi.org/10.5194/gmd-14-3663-2021, https://doi.org/10.5194/gmd-14-3663-2021, 2021
Short summary
Short summary
This study aims to advance the cloud–radiation interplay treatment in global weather and climate prediction, focusing on cloud horizontal inhomogeneity misrepresentation. We explore the potential of the Tripleclouds method for diverse cloud types, namely the stratocumulus, cirrus and cumulonimbus. The validity of global cloud variability estimate with various condensate distribution assumptions is assessed. Optimizations for overcast and extremely heterogeneous cloudiness are further endorsed.
Manuel Gutleben, Silke Groß, Martin Wirth, and Bernhard Mayer
Atmos. Chem. Phys., 20, 12313–12327, https://doi.org/10.5194/acp-20-12313-2020, https://doi.org/10.5194/acp-20-12313-2020, 2020
Short summary
Short summary
Airborne lidar measurements in the vicinity of Barbados are used to investigate radiative effects of long-range-transported Saharan air layers. Derived atmospheric heating rates indicate that observed enhanced water vapor concentrations inside these layers are the main drivers for dust vertical mixing inside the layers. Additionally, they may play a major role for the suppression of subjacent convective cloud development.
Nina Črnivec and Bernhard Mayer
Atmos. Chem. Phys., 20, 10733–10755, https://doi.org/10.5194/acp-20-10733-2020, https://doi.org/10.5194/acp-20-10733-2020, 2020
Short summary
Short summary
Unresolved interaction between clouds and atmospheric radiation is a source of uncertainty in weather and climate models. The present study highlights the potential of the state-of-the-art Tripleclouds radiative solver for shallow cumulus clouds, exposing the significance of properly representing subgrid cloud horizontal heterogeneity. The Tripleclouds concept was thereby incorporated in the widely employed δ-Eddington two-stream radiation scheme within the comprehensive libRadtran library.
Cited articles
Abdelmonem, A., Järvinen, E., Duft, D., Hirst, E., Vogt, S., Leisner, T., and Schnaiter, M.: PHIPS–HALO: the airborne Particle Habit Imaging and Polar Scattering probe – Part 1: Design and operation, Atmos. Meas. Tech., 9, 3131–3144, https://doi.org/10.5194/amt-9-3131-2016, 2016. a
AERONET: AERONET observations [data set], https://aeronet.gsfc.nasa.gov/, last access: 3 November 2022. a
Bailey, M. and Hallett, J.: Nucleation effects on the habit of vapour grown
ice crystals from −18 to −42∘ C, Q. J. Roy. Meteor. Soc., 128, 1461–1483, https://doi.org/10.1002/qj.200212858304, 2002. a
Bailey, M. and Hallett, J.: Growth rates and habits of ice crystals between
−20 and −70∘ C, J. Atmos. Sci., 61, 514–544,
https://doi.org/10.1175/1520-0469(2004)061<0514:GRAHOI>2.0.CO;2, 2004. a
Bailey, M. and Hallett, J.: Ice Crystal Linear Growth Rates from −20 to
−70∘ C: Confirmation from Wave Cloud Studies, J. Atmos. Sci., 69,
390–402, https://doi.org/10.1175/JAS-D-11-035.1, 2012. a
Bailey, M. P. and Hallett, J.: A Comprehensive Habit Diagram for Atmospheric
Ice Crystals: Confirmation from the Laboratory, AIRS II, and Other Field
Studies, J. Atmos. Sci., 66, 2888–2899, https://doi.org/10.1175/2009JAS2883.1,
2009. a, b
Baldridge, A., Hook, S., Grove, C., and Rivera, G.: The ASTER spectral library
version 2.0, Remote Sens. Environ., 113, 711–715,
https://doi.org/10.1016/j.rse.2008.11.007, 2009. a
Baran, A., Watts, P., and Francis, P.: Testing the coherence of cirrus
microphysical and bulk properties retrieved from dual-viewing multispectral
satellite radiance measurements, J. Geophys. Res., 104,
31673–31683, https://doi.org/10.1029/1999JD900842, 1999. a, b, c
Baran, A., Francis, P., Havemann, S., and Yang, P.: A study of the absorption
and extinction properties of hexagonal ice columns and plates in random and
preferred orientation, using T-Matrix theory and aircraft observations of
cirrus, J. Quant. Spectrosc. Ra., 70, 505–518,
https://doi.org/10.1016/S0022-4073(01)00025-5, 2001. a
Baran, A. J.: A review of the light scattering properties of cirrus, J. Quant. Spectrosc. Ra., 110, 1239–1260,
https://doi.org/10.1016/j.jqsrt.2009.02.026, 2009. a
Baran, A. J.: From the single-scattering properties of ice crystals to climate
prediction: A way forward, Atmos. Res., 112, 45–69,
https://doi.org/10.1016/j.atmosres.2012.04.010, 2012. a, b, c
Baran, A. J. and Labonnote, L. C.: On the reflection and polarisation
properties of ice cloud, J. Quant. Spectrosc. Ra., 100,
41–54, https://doi.org/10.1016/j.jqsrt.2005.11.062, 2006. a, b
Baran, A. J., Watts, P. D., and Foot, J. S.: Potential retrieval of dominating
crystal habit and size using radiance data from a dual-view and
multiwavelength instrument: A tropical cirrus anvil case, J. Geophys. Res., 103, 6075–6082, https://doi.org/10.1029/97JD03122, 1998. a, b
Chepfer, H., Goloub, P., Riedi, J., De Haan, J. F., Hovenier, J., and
Flamant, P.: Ice crystal shapes in cirrus clouds derived from
POLDER/ADEOS-1, J. Geophys. Res., 106, 7955–7966,
https://doi.org/10.1029/2000JD900285, 2001. a, b
Cole, B. H., Yang, P., Baum, B. A., Riedi, J., and C.-Labonnote, L.: Ice particle habit and surface roughness derived from PARASOL polarization measurements, Atmos. Chem. Phys., 14, 3739–3750, https://doi.org/10.5194/acp-14-3739-2014, 2014. a
Crépel, O., Gayet, J.-F., Fournol, J.-F., and Oshchepkov, S.: A new airborne Polar Nephelometer for the measurement of optical and microphysical cloud properties. Part II: Preliminary tests, Ann. Geophys., 15, 460–470, https://doi.org/10.1007/s00585-997-0460-0, 1997. a
Descloitres, J., Buriez, J.-C., Parol, F., and Fouquart, Y.: POLDER
observations of cloud bidirectional reflectances compared to a plane-parallel
model using the International Satellite Cloud Climatology Project cloud phase
functions, J. Geophys. Res., 103, 11411–11418,
https://doi.org/10.1029/98JD00592, 1998. a, b
Eichler, H., Ehrlich, A., Wendisch, M., Mioche, G., Gayet, J.-F., Wirth, M.,
Emde, C., and Minikin, A.: Influence of ice crystal shape on retrieval of
cirrus optical thickness and effective radius: A case study, J.
Geophys. Res., 114, D19203, https://doi.org/10.1029/2009JD012215, 2009. a
Emde, C., Buras, R., Mayer, B., and Blumthaler, M.: The impact of aerosols on polarized sky radiance: model development, validation, and applications, Atmos. Chem. Phys., 10, 383–396, https://doi.org/10.5194/acp-10-383-2010, 2010. a
Emde, C., Buras-Schnell, R., Kylling, A., Mayer, B., Gasteiger, J., Hamann, U., Kylling, J., Richter, B., Pause, C., Dowling, T., and Bugliaro, L.: The libRadtran software package for radiative transfer calculations (version 2.0.1), Geosci. Model Dev., 9, 1647–1672, https://doi.org/10.5194/gmd-9-1647-2016, 2016. a, b
Field, P. R., Hogan, R. J., Brown, P. R. A., Illingworth, A. J., Choularton,
T. W., and Cotton, R. J.: Parametrization of ice-particle size distributions
for mid-latitude stratiform cloud, Q. J. Roy. Meteor. Soc., 131, 1997–2017, https://doi.org/10.1256/qj.04.134, 2005. a
Flatau, P. J. and Draine, B. T.: Light scattering by hexagonal columns in the
discrete dipole approximation, Opt. Express, 22, 21834–21846,
https://doi.org/10.1364/OE.22.021834, 2014. a
Forster, L., Seefeldner, M., Wiegner, M., and Mayer, B.: Ice crystal characterization in cirrus clouds: a sun-tracking camera system and automated detection algorithm for halo displays, Atmos. Meas. Tech., 10, 2499–2516, https://doi.org/10.5194/amt-10-2499-2017, 2017. a, b, c, d, e, f, g, h, i, j, k, l
Forster, L., Seefeldner, M., Baumgartner, A., Kölling, T., and Mayer, B.: Ice crystal characterization in cirrus clouds II: radiometric characterization of HaloCam for the quantitative analysis of halo displays, Atmos. Meas. Tech., 13, 3977–3991, https://doi.org/10.5194/amt-13-3977-2020, 2020. a, b, c, d, e, f, g, h, i, j, k, l
Fraser, A. B.: What size of ice crystals causes the halos?, J. Opt. Soc. Am.,
69, 1112–1118, https://doi.org/10.1364/JOSA.69.001112, 1979. a, b
Freudenthaler, V., Esselborn, M., Wiegner, M., Heese, B., Tesche, M., Ansmann,
A., Müller, D., Althausen, D., Wirth, M., Fix, A., Ehret, G., Knippertz,
P., Toledano, C., Gasteiger, J., Garhammer, M., and Seefeldner, M.:
Depolarization ratio profiling at several wavelengths in pure Saharan dust
during SAMUM 2006, Tellus B, 61, 165–179,
https://doi.org/10.1111/j.1600-0889.2008.00396.x, 2009. a
Garrett, T. J., Kimball, M. B., Mace, G. G., and Baumgardner, D. G.: Observing cirrus halos to constrain in-situ measurements of ice crystal size, Atmos. Chem. Phys. Discuss., 7, 1295–1325, https://doi.org/10.5194/acpd-7-1295-2007, 2007. a
Gayet, J. F., Crépel, O., Fournol, J. F., and Oshchepkov, S.: A new airborne polar Nephelometer for the measurements of optical and microphysical cloud properties. Part I: Theoretical design, Ann. Geophys., 15, 451–459, https://doi.org/10.1007/s00585-997-0451-1, 1997. a
Gedzelman, S. D. and Vollmer, M.: Atmospheric Optical Phenomena and Radiative
Transfer, B. Am. Meteorol. Soc., 89, 471–485,
https://doi.org/10.1175/BAMS-89-4-471, 2008. a
Görsdorf, U., Lehmann, V., Bauer-Pfundstein, M., Peters, G., Vavriv, D.,
Vinogradov, V., and Volkov, V.: A 35-GHz Polarimetric Doppler Radar for
Long-Term Observations of Cloud Parameters – Description of System and Data
Processing, J. Atmos. Ocean. Tech., 32, 675–690,
https://doi.org/10.1175/JTECH-D-14-00066.1, 2015. a
Greenler, R.: Rainbows, Halos and Glories, Cambridge University Press,
Cambridge, ISBN 978-0521236058, 1980. a
Guerrero-Rascado, J. L., Costa, M. J., Silva, A. M., and Olmo, F. J.:
Retrieval and variability analysis of optically thin cloud optical depths
from a Cimel sun-photometer, Atmos. Res., 127, 210–220, 2013. a
Hausmann, P.: Ground-based remote sensing of optically thin ice clouds,
Master's thesis, Ludwig-Maximilians-Universität München, M.S. thesis, 2012. a
Hess, M., Koepke, P., and Schult, I.: Optical properties of aerosols and
clouds: the software package OPAC, B. Am. Meteorol. Soc., 79, 831–844,
1998. a
Heymsfield, A. and Platt, C.: A parameterization of the particle size spectrum
of ice clouds in terms of the ambient temperature and the ice water content,
J. Atmos. Sci., 41, 846–855,
https://doi.org/10.1175/1520-0469(1984)041<0846:APOTPS>2.0.CO;2, 1984. a
Heymsfield, A. J., Schmitt, C., and Bansemer, A.: Ice Cloud Particle Size
Distributions and Pressure-Dependent Terminal Velocities from In Situ
Observations at Temperatures from 0∘to −86∘ C, J. Atmos. Sci., 70,
4123–4154, https://doi.org/10.1175/JAS-D-12-0124.1, 2013. a
Hogan, R., Behera, M., O'Connor, E., and Illingworth, A.: Estimate of the
global distribution of stratiform supercooled liquid water clouds using the
LITE radar, Geophys. Res. Lett., 31, L05106, https://doi.org/10.1029/2003GL018977,
2004. a
Holben, B., Eck, T., Slutsker, I., Tanré, D., Buis, J., Setzer, A.,
Vermote, E., Reagan, J., Kaufman, Y., Nakajima, T., Lavenu, F., Jankowiak,
I., and Smirnov, A.: AERONET - A Federated Instrument Network and Data
Archive for Aerosol Characterization, Remote Sens. Environ., 66, 1–16,
https://doi.org/10.1016/S0034-4257(98)00031-5, 1998. a, b
Holz, R. E., Platnick, S., Meyer, K., Vaughan, M., Heidinger, A., Yang, P., Wind, G., Dutcher, S., Ackerman, S., Amarasinghe, N., Nagle, F., and Wang, C.: Resolving ice cloud optical thickness biases between CALIOP and MODIS using infrared retrievals, Atmos. Chem. Phys., 16, 5075–5090, https://doi.org/10.5194/acp-16-5075-2016, 2016. a, b, c, d, e, f
Hu, Y., Rodier, S., Xu, K., Sun, W., Huang, J., Lin, B., Zhai, P., and Josset,
D.: Occurrence, liquid water content, and fraction of supercooled water
clouds from combined CALIOP/IIR/MODIS measurements, J. Geophys. Res., 115, D00H34, https://doi.org/10.1029/2009JD012384, 2010. a, b, c
Illingworth, A. J., Hogan, R. J., O'Connor, E., Bouniol, D., Brooks, M. E.,
Delanoe, J., Donovan, D. P., Eastment, J. D., Gaussiat, N., Goddard, J.
W. F., Haeffelin, M., Baltink, H. K., Krasnov, O. A., Pelon, J., Piriou,
J.-M., Protat, A., Russchenberg, H. W. J., Seifert, A., Tompkins, A. M., van
Zadelhoff, G.-J., Vinit, F., Willen, U., Wilson, D. R., and Wrench, C. L.:
Cloudnet, B. Am. Meteorol. Soc., 88, 883–898,
https://doi.org/10.1175/BAMS-88-6-883, 2007. a
Järvinen, E., Jourdan, O., Neubauer, D., Yao, B., Liu, C., Andreae, M. O., Lohmann, U., Wendisch, M., McFarquhar, G. M., Leisner, T., and Schnaiter, M.: Additional global climate cooling by clouds due to ice crystal complexity, Atmos. Chem. Phys., 18, 15767–15781, https://doi.org/10.5194/acp-18-15767-2018, 2018. a, b
Jensen, A. A., Harrington, J. Y., and Morrison, H.: Impacts of Ice Particle
Shape and Density Evolution on the Distribution of Orographic Precipitation,
J. Atmos. Sci., 75, 3095–3114,
https://doi.org/10.1175/JAS-D-17-0400.1,
2018. a
Key, J., Yang, P., Baum, B., and Nasiri, S.: Parameterization of shortwave ice
cloud optical properties for various particle habits, J. Geophys. Res., 107, https://doi.org/10.1029/2001JD000742, 2002. a
Liou, K.-N.: Influence of cirrus clouds on weather and climate processes: A
global perspective, Month. Weather Rev., 114, 1167–1199,
https://doi.org/10.1175/1520-0493(1986)114<1167:IOCCOW>2.0.CO;2, 1986. a
Liou, K.-N. and Yang, P.: Light Scattering by Ice Crystals: Fundamentals and
Applications, Cambridge University Press, Cambridge, ISBN 978-0521889162, 2016. a
Liu, C., Yang, P., Minnis, P., Loeb, N., Kato, S., Heymsfield, A., and Schmitt, C.: A two-habit model for the microphysical and optical properties of ice clouds, Atmos. Chem. Phys., 14, 13719–13737, https://doi.org/10.5194/acp-14-13719-2014, 2014. a, b
Lynch, D. K. and Schwartz, P.: Intensity profile of the 22∘ halo,
J. Opt. Soc. Am. A, 2, 584–589, https://doi.org/10.1364/JOSAA.2.000584, 1985. a, b
Macke, A., Mishchenko, M., and Cairns, B.: The influence of inclusions on
light scattering by large ice particles, J. Geophys. Res.,
101, 23311–23316, 1996. a
Magee, N., Boaggio, K., Staskiewicz, S., Lynn, A., Zhao, X., Tusay, N., Schuh, T., Bandamede, M., Bancroft, L., Connelly, D., Hurler, K., Miner, B., and Khoudary, E.: Captured cirrus ice particles in high definition, Atmos. Chem. Phys., 21, 7171–7185, https://doi.org/10.5194/acp-21-7171-2021, 2021. a
Magono, C. and Lee, C. W.: Meteorological classification of natural snow
crystals, J. Fac. Sci., 2, 321–335, 1966. a
Mayer, B.: Radiative transfer in the cloudy atmosphere, Europ. Phys. J. Conf., 1, 75–99, https://doi.org/10.1140/epjconf/e2009-00912-1, 2009. a
Mayer, B. and Kylling, A.: Technical note: The libRadtran software package for radiative transfer calculations - description and examples of use, Atmos. Chem. Phys., 5, 1855–1877, https://doi.org/10.5194/acp-5-1855-2005, 2005. a
McFarlane, S. A. and Marchand, R. T.: Analysis of ice crystal habits derived
from MISR and MODIS observations over the ARM Southern Great Plains site,
J. Geophys. Res.-Atmos., 113, D07209,
https://doi.org/10.1029/2007JD009191, 2008. a, b, c
Minnaert, M.: Rainbows, Halos, and Coronas, Springer New York,
New York, NY, 185–258, https://doi.org/10.1007/978-1-4612-2722-9_10, 1993. a
Mishchenko, M. and Macke, A.: How big should hexagonal ice crystals be to
produce halos?, Appl. Opt., 38, 1626–1629,
https://doi.org/10.1364/AO.38.001626, 1999. a
Mishchenko, M., Rossow, W., Macke, A., and Lacis, A.: Sensitivity of cirrus
cloud albedo, bidirectional reflectance and optical thickness retrieval
accuracy to ice particle shape, J. Geophys. Res., 101,
16973–16985, https://doi.org/10.1029/96JD01155, 1996. a
MODIS: MODIS albedo data [data set], https://opendap.cr.usgs.gov/opendap/hyrax//MODV6_Cmp_B/MOTA/MCD43A3.006/, last access: 3 November 2022. a
Platnick, S., Meyer, K. G., King, M. D., Wind, G., Amarasinghe, N., Marchant,
B., Arnold, G. T., Zhang, Z., Hubanks, P. A., Holz, R. E., Yang, P., Ridgway,
W. L., and Riedi, J.: The MODIS Cloud Optical and Microphysical Products:
Collection 6 Updates and Examples From Terra and Aqua, IEEE T. Geosci. Remote, 55, 502–525, https://doi.org/10.1109/TGRS.2016.2610522,
2017. a, b
Radiosonde: Radiosonde observations [data set], http://weather.uwyo.edu/upperair/sounding.html, last access: 3 November 2022. a
Reinhardt, B., Buras, R., Bugliaro, L., Wilbert, S., and Mayer, B.: Determination of circumsolar radiation from Meteosat Second Generation, Atmos. Meas. Tech., 7, 823–838, https://doi.org/10.5194/amt-7-823-2014, 2014. a, b, c, d
Saito, M., Iwabuchi, H., Yang, P., Tang, G., King, M. D., and Sekiguchi, M.:
Ice particle morphology and microphysical properties of cirrus clouds
inferred from combined CALIOP-IIR measurements, J. Geophys. Res.-Atmos., 122, 4440–4462, https://doi.org/10.1002/2016JD026080, 2017. a
Sassen, K. and Liou, K.-N.: Scattering of polarized laser light by water
droplet, mixed-phase and ice crystal clouds. Part I: Angular scattering
patterns, J. Atmos. Sci., 36, 838–851,
https://doi.org/10.1175/1520-0469(1979)036<0838:SOPLLB>2.0.CO;2, 1979. a
Sassen, K., Knight, N. C., Takano, Y., and Heymsfield, A. J.: Effects of
ice-crystal structure on halo formation: cirrus cloud experimental and
ray-tracing modeling studies, Appl. Opt., 33, 4590–4601,
https://doi.org/10.1364/AO.33.004590, 1994. a, b
Sassen, K., Zhu, J., and Benson, S.: Midlatitude cirrus cloud climatology from
the Facility for Atmospheric Remote Sensing, IV. Optical displays, Appl. Opt., 42, 332–341, https://doi.org/10.1364/AO.42.000332, 2003. a
Schmitt, C. G. and Heymsfield, A. J.: Observational quantification of the
separation of simple and complex atmospheric ice particles, Geophys. Res. Lett., 41, 1301–1307, https://doi.org/10.1002/2013GL058781, 2013GL058781,
2014. a
Schnaiter, M., Järvinen, E., Vochezer, P., Abdelmonem, A., Wagner, R., Jourdan, O., Mioche, G., Shcherbakov, V. N., Schmitt, C. G., Tricoli, U., Ulanowski, Z., and Heymsfield, A. J.: Cloud chamber experiments on the origin of ice crystal complexity in cirrus clouds, Atmos. Chem. Phys., 16, 5091–5110, https://doi.org/10.5194/acp-16-5091-2016, 2016. a
Schnaiter, M., Järvinen, E., Abdelmonem, A., and Leisner, T.: PHIPS-HALO: the airborne particle habit imaging and polar scattering probe – Part 2: Characterization and first results, Atmos. Meas. Tech., 11, 341–357, https://doi.org/10.5194/amt-11-341-2018, 2018. a
Segal-Rosenheimer, M., Russell, P. B., Livingston, J. M., Ramachandran, S.,
Redemann, J., and Baum, B. A.: Retrieval of cirrus properties by Sun
photometry: A new perspective on an old issue, J. Geophys. Res.-Atmos., 118, 4503–4520, https://doi.org/10.1002/jgrd.50185, 2013. a
Shiobara, M. and Asano, S.: Estimation of cirrus optical thickness from sun
photometer measurements, J. Appl. Meteorol., 33, 672–681,
https://doi.org/10.1175/1520-0450(1994)033<0672:EOCOTF>2.0.CO;2, 1994. a
Stamnes, K., Tsay, S., Wiscombe, W., and Jayaweera, K.: A numerically stable
algorithm for discrete-ordinate-method radiative transfer in multiple
scattering and emitting layered media, Appl. Opt., 27, 2502–2509,
https://doi.org/10.1364/AO.27.002502, 1988. a, b
Stephens, G. L., Tsay, S., Stackhouse Jr., P. W., and Flatau, P. J.: The Relevance
of the Microphysical and Radiative Properties of Cirrus Clouds to Climate and
Climatic Feedback, J. Atmos. Sci., 47, 1742–1754,
https://doi.org/10.1175/1520-0469(1990)047<1742:TROTMA>2.0.CO;2, 1990. a
Strahler, A., Muller, J., Lucht, W., Schaaf, C., Tsang, T., Gao, F., Li, X.,
Lewis, P., and Barnsley, M.: MODIS BRDF/albedo product: algorithm
theoretical basis document version 5.0, MODIS documentation, 1999. a
Stubenrauch, C. J., Chédin, A., Rädel, G., Scott, N. A., and Serrar,
S.: Cloud Properties and Their Seasonal and Diurnal Variability from TOVS
Path-B, J. Climate, 19, 5531–5553, https://doi.org/10.1175/JCLI3929.1, 2006. a
Sun, W., Loeb, N. G., and Yang, P.: On the retrieval of ice cloud particle
shapes from POLDER measurements, J. Quant. Spectrosc. Ra.,
101, 435–447, https://doi.org/10.1016/j.jqsrt.2006.02.071, 2006. a, b
Toledano, C., Wiegner, M., Garhammer, M., Seefeldner, M., Gasteiger, J.,
Müller, D., and Koepke, P.: Spectral aerosol optical depth
characterization of desert dust during SAMUM 2006, Tellus B, 61, 216–228,
https://doi.org/10.1111/j.1600-0889.2008.00382.x, 2009. a, b
Toledano, C., Wiegner, M., Groß, S., Freudenthaler, V., Gasteiger, J.,
Müller, D., Müller, T., Schladitz, A., Weinzierl, B., Torres, B., and
O'Neill, N. T.: Optical properties of aerosol mixtures derived from sun-sky
radiometry during SAMUM-2, Tellus B, 63, 635–648,
https://doi.org/10.1111/j.1600-0889.2011.00573.x, 2011. a
Ulanowski, Z., Kaye, P. H., Hirst, E., Greenaway, R. S., Cotton, R. J., Hesse, E., and Collier, C. T.: Incidence of rough and irregular atmospheric ice particles from Small Ice Detector 3 measurements, Atmos. Chem. Phys., 14, 1649–1662, https://doi.org/10.5194/acp-14-1649-2014, 2014. a
Um, J. and McFarquhar, G. M.: Formation of atmospheric halos and applicability
of geometric optics for calculating single-scattering properties of hexagonal
ice crystals: Impacts of aspect ratio and ice crystal size, J. Quant. Spectrosc. Ra., 165, 134–152,
https://doi.org/10.1016/j.jqsrt.2015.07.001, 2015. a, b
Um, J., McFarquhar, G. M., Hong, Y. P., Lee, S.-S., Jung, C. H., Lawson, R. P., and Mo, Q.: Dimensions and aspect ratios of natural ice crystals, Atmos. Chem. Phys., 15, 3933–3956, https://doi.org/10.5194/acp-15-3933-2015, 2015. a, b
van Diedenhoven, B.: The prevalence of the 22∘ halo in cirrus clouds, J. Quant. Spectrosc. Ra., 146, 475–479,
https://doi.org/10.1016/j.jqsrt.2014.01.012, 2014. a, b, c, d
van Diedenhoven, B.: Variation of Ice Microphysical Properties With
Temperature and Humidity at Tops of Convective Clouds, Geophys. Res. Lett., 48, e2021GL093673, https://doi.org/10.1029/2021GL093673,
2021. a, b
van Diedenhoven, B., Fridlind, A. M., Ackerman, A. S., and Cairns, B.:
Evaluation of Hydrometeor Phase and Ice Properties in Cloud-Resolving Model
Simulations of Tropical Deep Convection Using Radiance and Polarization
Measurements, J. Atmos. Sci., 69, 3290–3314,
https://doi.org/10.1175/JAS-D-11-0314.1, 2012. a, b
van Diedenhoven, B., Cairns, B., Fridlind, A. M., Ackerman, A. S., and Garrett, T. J.: Remote sensing of ice crystal asymmetry parameter using multi-directional polarization measurements – Part 2: Application to the Research Scanning Polarimeter, Atmos. Chem. Phys., 13, 3185–3203, https://doi.org/10.5194/acp-13-3185-2013, 2013. a
van Diedenhoven, B., Ackerman, A. S., Fridlind, A. M., Cairns, B., and Riedi,
J.: Global Statistics of Ice Microphysical and Optical Properties at Tops of
Optically Thick Ice Clouds, J. Geophys. Res.-Atmos.,
125, e2019JD031811, https://doi.org/10.1029/2019JD031811, 2020. a
Wang, C., Yang, P., Dessler, A., Baum, B. A., and Hu, Y.: Estimation of the
cirrus cloud scattering phase function from satellite observations, J. Quant. Spectrosc. Ra., 138, 36–49,
https://doi.org/10.1016/j.jqsrt.2014.02.001, 2014. a, b, c, d
Wang, Y., Hioki, S., Yang, P., King, M. D., Di Girolamo, L., Fu, D., and
Baum, B. A.: Inference of an Optimal Ice Particle Model through Latitudinal
Analysis of MISR and MODIS Data, Remote Sens., 10,
https://doi.org/10.3390/rs10121981, 2018. a
Wang, Y., Yang, P., King, M. D., and Baum, B. A.: Optical Property Model for
Cirrus Clouds Based on Airborne Multi-Angle Polarization Observations,
Remote Sens., 13, 2754, https://doi.org/10.3390/rs13142754, 2021. a, b
Wegener, A.: Theorie der Haupthalos, vol. 43, Aus dem Archiv der Deutschen
Seewarte und des Marineobservatoriums, Hamburg, 1925. a
Weickmann, H.: Die Eisphase in der Atmosphäre, Royal Aircraft
Establishment, ASIN: B0007K3DCU, 1947. a
Wendisch, M., Yang, P., and Pilewskie, P.: Effects of ice crystal habit on
thermal infrared radiative properties and forcing of cirrus, J.
Geophys. Res., 112, D08201, https://doi.org/10.1029/2006JD007899, 2007. a
Wielicki, B., Cess, R., King, M., Randall, D., and Harrison, E.: Mission to
planet Earth: Role of clouds and radiation in climate, B. Am. Meteorol. Soc., 76, 2125–2153, https://doi.org/10.1175/1520-0477(1995)076<2125:MTPERO>2.0.CO;2,
1995.
a
Wiscombe, W.: Improved Mie scattering algorithms, Appl. Opt., 19,
1505–1509, https://doi.org/10.1364/AO.19.001505, 1980. a
Wylie, D. P. and Menzel, W. P.: Eight Years of High Cloud Statistics Using
HIRS, J. Climate, 12, 170–184,
https://doi.org/10.1175/1520-0442(1999)012<0170:EYOHCS>2.0.CO;2, 1999. a
Yang, P. and Liou, K.-N.: Geometric-optics-integral-equation method for light
scattering by nonspherical ice crystals, Appl. Opt., 35, 6568–6584,
https://doi.org/10.1364/AO.35.006568, 1996. a
Yang, P., Bi, L., Baum, B. A., Liou, K.-N., Kattawar, G. W., Mishchenko, M. I.,
and Cole, B.: Spectrally Consistent Scattering, Absorption, and Polarization
Properties of Atmospheric Ice Crystals at Wavelengths from 0.2 to 100
μm, J. Atmos. Sci., 70, 330–347, https://doi.org/10.1175/JAS-D-12-039.1, 2013. a, b, c, d
Yang, P., Liou, K.-N., Bi, L., Liu, C., Yi, B., and Baum, B. A.: On the
radiative properties of ice clouds: Light scattering, remote sensing, and
radiation parameterization, Adv. Atmos. Sci., 32, 32–63,
https://doi.org/10.1007/s00376-014-0011-z, 2015. a, b
Yang, P., Hioki, S., Saito, M., Kuo, C.-P., Baum, B. A., and Liou, K.-N.: A
Review of Ice Cloud Optical Property Models for Passive Satellite Remote
Sensing, Atmosphere, 9, 499, https://doi.org/10.3390/atmos9120499, 2018. a, b
Yang, S., Ricchiazzi, P., and Gautier, C.: Modified correlated k-distribution
methods for remote sensing applications, J. Quant. Spectrosc. Ra., 64, 585–608, https://doi.org/10.1016/S0022-4073(99)00140-5, 2000. a
Yi, B., Yang, P., Baum, B. A., L'Ecuyer, T., Oreopoulos, L., Mlawer, E. J.,
Heymsfield, A. J., and Liou, K.-N.: Influence of Ice Particle Surface
Roughening on the Global Cloud Radiative Effect, J. Atmos. Sci., 70,
2794–2807, https://doi.org/10.1175/JAS-D-13-020.1, 2013. a
Yi, B., Rapp, A. D., Yang, P., Baum, B. A., and King, M. D.: A comparison of
Aqua MODIS ice and liquid water cloud physical and optical properties between
collection 6 and collection 5.1: Cloud radiative effects, J. Geophys. Res., 122, 4550–4564, https://doi.org/10.1002/2016JD025654,
2017. a
Zinner, T., Hausmann, P., Ewald, F., Bugliaro, L., Emde, C., and Mayer, B.: Ground-based imaging remote sensing of ice clouds: uncertainties caused by sensor, method and atmosphere, Atmos. Meas. Tech., 9, 4615–4632, https://doi.org/10.5194/amt-9-4615-2016, 2016. a
Short summary
We present a novel retrieval using ground-based imaging observations of halo displays together with radiative transfer simulations to help improve our understanding of ice crystal properties representative of cirrus clouds. Analysis of 4400 calibrated HaloCam images featuring a 22° halo revealed aggregates of hexagonal columns of 20 µm effective radius with a mixture of about 37 % smooth and 63% severely roughened surfaces as the best match in general.
We present a novel retrieval using ground-based imaging observations of halo displays together...
Altmetrics
Final-revised paper
Preprint