Articles | Volume 22, issue 19
https://doi.org/10.5194/acp-22-13067-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-13067-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Technical note: Identification of two ice-nucleating regimes for dust-related cirrus clouds based on the relationship between number concentrations of ice-nucleating particles and ice crystals
School of Electronic Information, Wuhan University, Wuhan 430072,
China
Key Laboratory of Geospace Environment and Geodesy, Ministry of
Education, Wuhan 430072, China
State Observatory for Atmospheric Remote Sensing, Wuhan 430072, China
School of Remote Sensing and Information Engineering, Wuhan
University, Wuhan 430072, China
Fuchao Liu
School of Electronic Information, Wuhan University, Wuhan 430072,
China
Key Laboratory of Geospace Environment and Geodesy, Ministry of
Education, Wuhan 430072, China
State Observatory for Atmospheric Remote Sensing, Wuhan 430072, China
School of Electronic Information, Wuhan University, Wuhan 430072,
China
Key Laboratory of Geospace Environment and Geodesy, Ministry of
Education, Wuhan 430072, China
State Observatory for Atmospheric Remote Sensing, Wuhan 430072, China
Related authors
Zhaolong Wu, Patric Seifert, Yun He, Holger Baars, Haoran Li, Cristofer Jimenez, Chengcai Li, and Albert Ansmann
Atmos. Meas. Tech., 18, 3611–3634, https://doi.org/10.5194/amt-18-3611-2025, https://doi.org/10.5194/amt-18-3611-2025, 2025
Short summary
Short summary
This study introduces a novel method to detect horizontally oriented ice crystals (HOICs) using two ground-based polarization lidars at different zenith angles, based on a yearlong dataset collected in Beijing. Combined with cloud radar and reanalysis data, the fine categorization results reveal HOICs occur in calm winds and moderately cold temperatures and are influenced by turbulence near cloud bases. The results enhance our understanding of cloud processes and improve atmospheric models.
Yun He, Goutam Choudhury, Matthias Tesche, Albert Ansmann, Fan Yi, Detlef Müller, and Zhenping Yin
EGUsphere, https://doi.org/10.5194/egusphere-2025-2666, https://doi.org/10.5194/egusphere-2025-2666, 2025
Short summary
Short summary
We present a global data set of POLIPHON dust conversion factors at 532 nm obtained using Aerosol RObotic NETwork (AERONET) observations at 137 sites for INP and 123 sites for CCN calculations. We also conduct a comparison of dust CCN concentration profiles derived using both POLIPHON and the independent OMCAM (Optical Modelling of the CALIPSO Aerosol Microphysics) retrieval.
Dongzhe Jing, Yun He, Zhenping Yin, Kaiming Huang, Fuchao Liu, and Fan Yi
EGUsphere, https://doi.org/10.5194/egusphere-2025-56, https://doi.org/10.5194/egusphere-2025-56, 2025
Short summary
Short summary
We present the evolution of tropospheric aerosols over Wuhan, central China, from 2010 to 2024. The analysis highlights the long-term aerosol characteristics and separates natural (dust) and anthropogenic (non-dust) contributions. Emission control policies were highly effective during 2010–2017. However, after 2018, lidar-derived aerosol optical depth (AOD) ceased decreasing and fluctuated, and the decline in PM2.5 concentration also became slower, possibly due to atmospheric chemistry factors.
Yun He, Dongzhe Jing, Zhenping Yin, Kevin Ohneiser, and Fan Yi
Atmos. Chem. Phys., 24, 11431–11450, https://doi.org/10.5194/acp-24-11431-2024, https://doi.org/10.5194/acp-24-11431-2024, 2024
Short summary
Short summary
We present a long-term ground-based lidar observation of stratospheric aerosols at a mid-latitude site, Wuhan, in central China, from 2010 to 2021. We observed a stratospheric background period from 2013 to mid-2017, along with several perturbations from volcanic aerosols and wildfire-induced smoke. In summer, injected stratospheric aerosols are found to be captured by the Asian monsoon anticyclone, resulting in prolonged residence and regional transport in the mid-latitudes of East Asia.
Huijia Shen, Zhenping Yin, Yun He, Longlong Wang, Yifan Zhan, and Dongzhe Jing
EGUsphere, https://doi.org/10.5194/egusphere-2023-1844, https://doi.org/10.5194/egusphere-2023-1844, 2023
Preprint archived
Short summary
Short summary
With space-borne lidar and radar observations, we study two dust-cirrus interaction cases near Midway Island in the central Pacific. Partial cloud parcels show evident feature of the dominance of heterogeneous nucleation. At the upper troposphere, natural INPs such as dust and smoke may result in cooling effect by increasing the cloud cover to reflect more solar radiation and modulate the cirrus microphysical properties via different ice-nucleating regimes.
Yun He, Zhenping Yin, Albert Ansmann, Fuchao Liu, Longlong Wang, Dongzhe Jing, and Huijia Shen
Atmos. Meas. Tech., 16, 1951–1970, https://doi.org/10.5194/amt-16-1951-2023, https://doi.org/10.5194/amt-16-1951-2023, 2023
Short summary
Short summary
With the AERONET database, this study derives dust-related conversion factors at oceanic sites used in the POLIPHON method, which can convert lidar-retrieved dust extinction to ice-nucleating particle (INP)- and cloud condensation nuclei (CCN)-relevant parameters. The particle linear depolarization ratio in the AERONET aerosol inversion product is used to identify dust data points. The derived conversion factors can be applied to inverse 3-D global distributions of dust-related INPCs and CCNCs.
Yang Yi, Fan Yi, Fuchao Liu, Yunpeng Zhang, Changming Yu, and Yun He
Atmos. Chem. Phys., 21, 17649–17664, https://doi.org/10.5194/acp-21-17649-2021, https://doi.org/10.5194/acp-21-17649-2021, 2021
Short summary
Short summary
Our lidar observations reveal the complete microphysical process of hydrometeors falling from mid-level stratiform clouds. We find that the surface rainfall begins as supercooled mixed-phase hydrometeors fall out of a liquid parent cloud base. We find also that the collision–coalescence growth of precipitating raindrops and subsequent spontaneous breakup always occur around 0.6 km altitude during surface rainfalls. Our findings provide new insights into stratiform precipitation formation.
Yun He, Yunfei Zhang, Fuchao Liu, Zhenping Yin, Yang Yi, Yifan Zhan, and Fan Yi
Atmos. Meas. Tech., 14, 5939–5954, https://doi.org/10.5194/amt-14-5939-2021, https://doi.org/10.5194/amt-14-5939-2021, 2021
Short summary
Short summary
The POLIPHON method can retrieve the height profiles of dust-related particle mass and ice-nucleating particle (INP) concentrations. Applying a dust case data set screening scheme based on the lidar-derived depolarization ratio (rather than Ångström exponent for 440–870 nm and AOD at 532 nm), the mixed-dust-related conversion factors are retrieved from sun photometer observations over Wuhan, China. This method may potentially be extended to regions influenced by mixed dust.
Fuchao Liu, Fan Yi, Zhenping Yin, Yunpeng Zhang, Yun He, and Yang Yi
Atmos. Chem. Phys., 21, 2981–2998, https://doi.org/10.5194/acp-21-2981-2021, https://doi.org/10.5194/acp-21-2981-2021, 2021
Short summary
Short summary
Using high-resolution lidar measurements, this process-based study reveals that the clear-day convective boundary layer evolves in four distinct stages differing in depth growth rate and depth fluctuation magnitudes. The accompanying entrainment zone thickness (EZT) shows a discrepancy in statistical mean and standard deviation for different seasons and developing stages. Common EZT characteristics also exist. These findings help us understand the atmospheric boundary layer evolution.
Zhaolong Wu, Patric Seifert, Yun He, Holger Baars, Haoran Li, Cristofer Jimenez, Chengcai Li, and Albert Ansmann
Atmos. Meas. Tech., 18, 3611–3634, https://doi.org/10.5194/amt-18-3611-2025, https://doi.org/10.5194/amt-18-3611-2025, 2025
Short summary
Short summary
This study introduces a novel method to detect horizontally oriented ice crystals (HOICs) using two ground-based polarization lidars at different zenith angles, based on a yearlong dataset collected in Beijing. Combined with cloud radar and reanalysis data, the fine categorization results reveal HOICs occur in calm winds and moderately cold temperatures and are influenced by turbulence near cloud bases. The results enhance our understanding of cloud processes and improve atmospheric models.
Yun He, Goutam Choudhury, Matthias Tesche, Albert Ansmann, Fan Yi, Detlef Müller, and Zhenping Yin
EGUsphere, https://doi.org/10.5194/egusphere-2025-2666, https://doi.org/10.5194/egusphere-2025-2666, 2025
Short summary
Short summary
We present a global data set of POLIPHON dust conversion factors at 532 nm obtained using Aerosol RObotic NETwork (AERONET) observations at 137 sites for INP and 123 sites for CCN calculations. We also conduct a comparison of dust CCN concentration profiles derived using both POLIPHON and the independent OMCAM (Optical Modelling of the CALIPSO Aerosol Microphysics) retrieval.
Zirui Zhang, Kaiming Huang, Fan Yi, Wei Cheng, Fuchao Liu, Jian Zhang, and Yue Jia
Atmos. Chem. Phys., 25, 3347–3361, https://doi.org/10.5194/acp-25-3347-2025, https://doi.org/10.5194/acp-25-3347-2025, 2025
Short summary
Short summary
The height of the convective boundary layer (CBLH) is related to our health due to its crucial role in pollutant dispersion. The variance of vertical velocity from millimeter wave cloud radar (MMCR) can accurately capture the diurnal evolution of the CBLH, due to a small blind range and less impact by the residual layer. The CBLH is affected by radiation, humidity, cloud, and precipitation; thus, the MMCR is suitable for monitoring the CBLH, owing to its observation capability in various weather conditions.
Dongzhe Jing, Yun He, Zhenping Yin, Kaiming Huang, Fuchao Liu, and Fan Yi
EGUsphere, https://doi.org/10.5194/egusphere-2025-56, https://doi.org/10.5194/egusphere-2025-56, 2025
Short summary
Short summary
We present the evolution of tropospheric aerosols over Wuhan, central China, from 2010 to 2024. The analysis highlights the long-term aerosol characteristics and separates natural (dust) and anthropogenic (non-dust) contributions. Emission control policies were highly effective during 2010–2017. However, after 2018, lidar-derived aerosol optical depth (AOD) ceased decreasing and fluctuated, and the decline in PM2.5 concentration also became slower, possibly due to atmospheric chemistry factors.
Yun He, Dongzhe Jing, Zhenping Yin, Kevin Ohneiser, and Fan Yi
Atmos. Chem. Phys., 24, 11431–11450, https://doi.org/10.5194/acp-24-11431-2024, https://doi.org/10.5194/acp-24-11431-2024, 2024
Short summary
Short summary
We present a long-term ground-based lidar observation of stratospheric aerosols at a mid-latitude site, Wuhan, in central China, from 2010 to 2021. We observed a stratospheric background period from 2013 to mid-2017, along with several perturbations from volcanic aerosols and wildfire-induced smoke. In summer, injected stratospheric aerosols are found to be captured by the Asian monsoon anticyclone, resulting in prolonged residence and regional transport in the mid-latitudes of East Asia.
Longlong Wang, Zhenping Yin, Zhichao Bu, Anzhou Wang, Song Mao, Yang Yi, Detlef Müller, Yubao Chen, and Xuan Wang
Atmos. Meas. Tech., 16, 4307–4318, https://doi.org/10.5194/amt-16-4307-2023, https://doi.org/10.5194/amt-16-4307-2023, 2023
Short summary
Short summary
We report the lidar inter-comparison results with a reference lidar at 1064 nm, in order to homogenize the signals provided by different lidar systems for establishing a lidar network in China. The profiles of relative deviation of lidar signals are less than 5 % within 500–2000 m and 10 % within 2000–5000 m, increasing confidence in the reliability of the signals provided by each lidar system in the channels at 1064 nm for a future lidar network in China.
Huijia Shen, Zhenping Yin, Yun He, Longlong Wang, Yifan Zhan, and Dongzhe Jing
EGUsphere, https://doi.org/10.5194/egusphere-2023-1844, https://doi.org/10.5194/egusphere-2023-1844, 2023
Preprint archived
Short summary
Short summary
With space-borne lidar and radar observations, we study two dust-cirrus interaction cases near Midway Island in the central Pacific. Partial cloud parcels show evident feature of the dominance of heterogeneous nucleation. At the upper troposphere, natural INPs such as dust and smoke may result in cooling effect by increasing the cloud cover to reflect more solar radiation and modulate the cirrus microphysical properties via different ice-nucleating regimes.
Athena Augusta Floutsi, Holger Baars, Ronny Engelmann, Dietrich Althausen, Albert Ansmann, Stephanie Bohlmann, Birgit Heese, Julian Hofer, Thomas Kanitz, Moritz Haarig, Kevin Ohneiser, Martin Radenz, Patric Seifert, Annett Skupin, Zhenping Yin, Sabur F. Abdullaev, Mika Komppula, Maria Filioglou, Elina Giannakaki, Iwona S. Stachlewska, Lucja Janicka, Daniele Bortoli, Eleni Marinou, Vassilis Amiridis, Anna Gialitaki, Rodanthi-Elisavet Mamouri, Boris Barja, and Ulla Wandinger
Atmos. Meas. Tech., 16, 2353–2379, https://doi.org/10.5194/amt-16-2353-2023, https://doi.org/10.5194/amt-16-2353-2023, 2023
Short summary
Short summary
DeLiAn is a collection of lidar-derived aerosol intensive optical properties for several aerosol types, namely the particle linear depolarization ratio, the extinction-to-backscatter ratio (lidar ratio) and the Ångström exponent. The data collection is based on globally distributed, long-term, ground-based, multiwavelength, Raman and polarization lidar measurements and currently covers two wavelengths, 355 and 532 nm, for 13 aerosol categories ranging from basic aerosol types to mixtures.
Yun He, Zhenping Yin, Albert Ansmann, Fuchao Liu, Longlong Wang, Dongzhe Jing, and Huijia Shen
Atmos. Meas. Tech., 16, 1951–1970, https://doi.org/10.5194/amt-16-1951-2023, https://doi.org/10.5194/amt-16-1951-2023, 2023
Short summary
Short summary
With the AERONET database, this study derives dust-related conversion factors at oceanic sites used in the POLIPHON method, which can convert lidar-retrieved dust extinction to ice-nucleating particle (INP)- and cloud condensation nuclei (CCN)-relevant parameters. The particle linear depolarization ratio in the AERONET aerosol inversion product is used to identify dust data points. The derived conversion factors can be applied to inverse 3-D global distributions of dust-related INPCs and CCNCs.
Yang Yi, Fan Yi, Fuchao Liu, Yunpeng Zhang, Changming Yu, and Yun He
Atmos. Chem. Phys., 21, 17649–17664, https://doi.org/10.5194/acp-21-17649-2021, https://doi.org/10.5194/acp-21-17649-2021, 2021
Short summary
Short summary
Our lidar observations reveal the complete microphysical process of hydrometeors falling from mid-level stratiform clouds. We find that the surface rainfall begins as supercooled mixed-phase hydrometeors fall out of a liquid parent cloud base. We find also that the collision–coalescence growth of precipitating raindrops and subsequent spontaneous breakup always occur around 0.6 km altitude during surface rainfalls. Our findings provide new insights into stratiform precipitation formation.
Minkang Du, Kaiming Huang, Shaodong Zhang, Chunming Huang, Yun Gong, and Fan Yi
Atmos. Chem. Phys., 21, 13553–13569, https://doi.org/10.5194/acp-21-13553-2021, https://doi.org/10.5194/acp-21-13553-2021, 2021
Short summary
Short summary
El Niño has an important influence on climate systems. There are obviously negative water vapor anomalies from radiosonde observations in the tropical western Pacific during El Niño. The tropical Hadley, Walker, and monsoon circulation variations are revealed to play different roles in the observed water vapor anomaly in different types of El Niños. The Walker (monsoon) circulation anomaly made a major contribution in the 2015/16 (2009/10) strong eastern Pacific (central Pacific) El Niño event.
Yun He, Yunfei Zhang, Fuchao Liu, Zhenping Yin, Yang Yi, Yifan Zhan, and Fan Yi
Atmos. Meas. Tech., 14, 5939–5954, https://doi.org/10.5194/amt-14-5939-2021, https://doi.org/10.5194/amt-14-5939-2021, 2021
Short summary
Short summary
The POLIPHON method can retrieve the height profiles of dust-related particle mass and ice-nucleating particle (INP) concentrations. Applying a dust case data set screening scheme based on the lidar-derived depolarization ratio (rather than Ångström exponent for 440–870 nm and AOD at 532 nm), the mixed-dust-related conversion factors are retrieved from sun photometer observations over Wuhan, China. This method may potentially be extended to regions influenced by mixed dust.
Martin Radenz, Patric Seifert, Holger Baars, Athena Augusta Floutsi, Zhenping Yin, and Johannes Bühl
Atmos. Chem. Phys., 21, 3015–3033, https://doi.org/10.5194/acp-21-3015-2021, https://doi.org/10.5194/acp-21-3015-2021, 2021
Fuchao Liu, Fan Yi, Zhenping Yin, Yunpeng Zhang, Yun He, and Yang Yi
Atmos. Chem. Phys., 21, 2981–2998, https://doi.org/10.5194/acp-21-2981-2021, https://doi.org/10.5194/acp-21-2981-2021, 2021
Short summary
Short summary
Using high-resolution lidar measurements, this process-based study reveals that the clear-day convective boundary layer evolves in four distinct stages differing in depth growth rate and depth fluctuation magnitudes. The accompanying entrainment zone thickness (EZT) shows a discrepancy in statistical mean and standard deviation for different seasons and developing stages. Common EZT characteristics also exist. These findings help us understand the atmospheric boundary layer evolution.
Cristofer Jimenez, Albert Ansmann, Ronny Engelmann, David Donovan, Aleksey Malinka, Patric Seifert, Robert Wiesen, Martin Radenz, Zhenping Yin, Johannes Bühl, Jörg Schmidt, Boris Barja, and Ulla Wandinger
Atmos. Chem. Phys., 20, 15265–15284, https://doi.org/10.5194/acp-20-15265-2020, https://doi.org/10.5194/acp-20-15265-2020, 2020
Short summary
Short summary
Part 2 presents the application of the dual-FOV polarization lidar technique introduced in Part 1. A lidar system was upgraded with a second polarization telescope, and it was deployed at the southernmost tip of South America. A comparison with alternative remote sensing techniques and the evaluation of the aerosol–cloud–wind relation in a convective boundary layer in pristine marine conditions are presented in two case studies, demonstrating the potential of the approach for ACI studies.
Hannes J. Griesche, Patric Seifert, Albert Ansmann, Holger Baars, Carola Barrientos Velasco, Johannes Bühl, Ronny Engelmann, Martin Radenz, Yin Zhenping, and Andreas Macke
Atmos. Meas. Tech., 13, 5335–5358, https://doi.org/10.5194/amt-13-5335-2020, https://doi.org/10.5194/amt-13-5335-2020, 2020
Short summary
Short summary
In summer 2017, the research vessel Polarstern performed cruise PS106 to the Arctic north of Svalbard. In the frame of the cruise, remote-sensing observations of the atmosphere were performed on Polarstern to continuously monitor aerosol and clouds above the vessel. In our study, we present the deployed instrumentation and applied data analysis methods and provide case studies of the aerosol and cloud observations made during the cruise. Statistics of low-cloud occurrence are presented as well.
Cited articles
Ansmann, A., Mamouri, R.-E., Bühl, J., Seifert, P.,
Engelmann, R., Hofer, J., Nisantzi, A., Atkinson, J. D., Kanji, Z. A.,
Sierau, B., Vrekoussis, M., and Sciare, J.: Ice-nucleating particle versus
ice crystal number concentration in altocumulus and cirrus embedded in
Saharan dust: A closure study, Atmos. Chem. Phys., 19, 15087–15115,
https://doi.org/10.5194/acp-19-15087-2019, 2019a.
Ansmann, A., Mamouri, R.-E., Hofer, J., Baars, H., Althausen, D., and Abdullaev, S. F.: Dust mass, cloud condensation nuclei, and ice-nucleating particle profiling with polarization lidar: updated POLIPHON conversion factors from global AERONET analysis, Atmos. Meas. Tech., 12, 4849–4865, https://doi.org/10.5194/amt-12-4849-2019, 2019b.
Ansmann, A., Ohneiser, K., Mamouri, R.-E., Knopf, D. A., Veselovskii, I.,
Baars, H., Engelmann, R., Foth, A., Jimenez, C., Seifert, P., and Barja, B.:
Tropospheric and stratospheric wildfire smoke profiling with lidar: mass,
surface area, CCN, and INP retrieval, Atmos. Chem. Phys., 21, 9779–9807,
https://doi.org/10.5194/acp-21-9779-2021, 2021.
Bühl, J., Leinweber, R., Görsdorf, U., Radenz, M., Ansmann, A., and
Lehmann, V.: Combined vertical-velocity observations with Doppler lidar,
cloud radar and wind profiler, Atmos. Meas. Tech., 8, 3527–3536,
https://doi.org/10.5194/amt-8-3527-2015, 2015.
Bühl, J., Seifert, P., Myagkov, A., and Ansmann, A.: Measuring ice- and
liquid-water properties in mixed-phase cloud layers at the Leipzig Cloudnet
station, Atmos. Chem. Phys., 16, 10609–10620,
https://doi.org/10.5194/acp-16-10609-2016, 2016.
Bühl, J., Seifert, P., Radenz, M., Baars, H., and Ansmann, A.: Ice
crystal number concentration from lidar, cloud radar and radar wind profiler
measurements, Atmos. Meas. Tech., 12, 6601–6617,
https://doi.org/10.5194/amt-12-6601-2019, 2019.
CALIPSO: Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observation data base, https://subset.larc.nasa.gov/, last access: 7 October 2022.
Che, H., Zhang., X., Chen, H., Damiri, B., Goloub, P., Li, Z., Zhang, X.,
Wei, Y., Zhou, H., Dong, F., Li, D., and Zhou, T.: Instrument calibration
and aerosol optical depth validation of the China Aerosol Remote Sensing
Network, J. Geophys. Res., 114, D03206, https://doi.org/10.1029/2008JD011030, 2009.
Che, Y., Zhang, J., Zhao, C., Fang, W., Xue, W., Yang, W., Ji, D., Dang, L.,
Duan J., Sun, J., Shen, X., and Zhou, X.: A study on the characteristics of
ice nucleating particles concentration and aerosols and their relationship
in spring in Beijing, Atmos. Res., 247, 105196,
https://doi.org/10.1016/j.atmosres.2020.105196, 2021.
Costa, A., Meyer, J., Afchine, A., Luebke, A., Günther, G., Dorsey, J.
R., Gallagher, M. W., Ehrlich, A., Wendisch, M., Baumgardner, D., Wex, H.,
and Krämer, M.: Classification of Arctic, midlatitude and tropical
clouds in the mixed-phase temperature regime, Atmos. Chem. Phys., 17,
12219–12238, https://doi.org/10.5194/acp-17-12219-2017, 2017.
Cziczo, D., Froyd, K., Hoose, C., Jensen, E., Diao, M., Zondlo, M., Smith,
J., Twohy, C., and Murphy, D.: Clarifying the dominant sources and
mechanisms of cirrus cloud formation, Science, 340, 1320–1324,
https://doi.org/10.1126/science.1234145, 2013.
DARDAR: Cloud properties combining the CloudSat radar and the CALIPSO lidar measurment from raDAR/liDAR data base, https://www.icare.univ-lille.fr/, last access: 7 October 2022.
Delanoë, J. and Hogan, R. J.: A variational scheme for retrieving ice
cloud properties from combined radar, lidar, and infrared radiometer, J.
Geophys. Res., 113, D07204, https://doi.org/10.1029/2007JD009000, 2008.
Delanoë, J. and Hogan, R. J.: Combined CloudSat-CALIPSO-MODIS
retrievals of the properties of ice clouds, J. Geophys. Res., 115, D00H29,
https://doi.org/10.1029/2009JD012346, 2010.
DeMott, P., Cziczo, D., Prenni, A., Murphy, D., Kreidenweis, S., Thomson,
D., Borys, R., and Rogers, D.: Measurments of the concentration and
composition of nuclei for cirrus formation, P. Natl. Acad. Sci. USA, 100,
14655–14660. https://doi.org/10.1073/pnas.2532677100, 2003.
DeMott, P., Prenni, A., Liu, X., Kreidenweis, S., Petters, M., Twohy, C.,
Richardson, M., Eidhammer, T., and Rogers, D.: Predicting global atmospheric
ice nuclei distributions and their impacts on climate, P. Natl. Acad. Sci.
USA, 107, 11217–11222. https://doi.org/10.1073/pnas.0910818107, 2010.
DeMott, P., Prenni, A., McMeeking, G., Sullivan, R., Petters, M., Tobo, Y.,
Niemand, M., Möhler, O., Snider, J., Wang, Z., and Kreidenweis, S.:
Integrating laboratory and field data to quantify the immersion freezing ice
nucleation activity of mineral dust particles, Atmos. Chem. Phys., 15,
393–409, https://doi.org/10.5194/acp-15-393-2015, 2015.
Engelmann, R., Ansmann, A., Ohneiser, K., Griesche, H., Radenz, M., Hofer,
J., Althausen, D., Dahlke, S., Maturilli, M., Veselovskii, I., Jimenez, C.,
Wiesen, R., Baars, H., Bühl, J., Gebauer, H., Haarig, M., Seifert, P.,
Wandinger, U., and Macke, A.: Wildfire smoke, Arctic haze, and aerosol
effects on mixed-phase and cirrus clouds over the North Pole region during
MOSAiC: an introduction, Atmos. Chem. Phys., 21, 13397–13423,
https://doi.org/10.5194/acp-21-13397-2021, 2021.
Field, P., Lawson, P., Brown, G., Lloyd, C., Westbrook, D., Moisseev, A.,
Miltenberger, A., Nenes, A., Blyth, A., Choularton, T., Connolly, P.,
Bühl, J., Crosier, J., Cui, Z., Dearden, C., DeMott, P., Flossmann, A.,
Heymsfield, A., Huang, Y., Kalesse, H., Kanji, Z., Korolev, A.,
Kirchgaessner, A., Lasher-Trapp, S., Leisner, T., McFarquhar, G., Phillips,
V., Stith, J., and Sullivan, S.: Secondary ice production – current state
of the science and recommendations for the future, Meteor. Mon., 58,
7.1–7.20, https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0014.1, 2017.
Froyd, K. D., Yu, P., Schill, G. P. Brock, C. A., Kupc, A., Williamson, C.
J., Jensen, E. J., Ray, E., Rosenlof, K. H., Bian, H., Darmenov, A. S.,
Colarco, P. R., Diskin, G. S., Bui, T., and Murphy, D. M.: Dominant role of
mineral dust in cirrus cloud formation revealed by global-scale
measurements, Nat. Geosci. 15, 177–183, https://doi.org/10.1038/s41561-022-00901-w,
2022.
Fusina, F., Spichtinger, P., and Lohmann, U.: The impact of ice
supersaturated regions and thin cirrus on radiation in the midlatitudes, J.
Geophys. Res., 112, D24S14, https://doi.org/10.1029/2007JD008449, 2007.
Gasparini, B. and Lohmann, U.: Why cirrus cloud seeding cannot
substantially cool the planet, J. Geophys. Res.-Atmos., 121, 4877–4893,
https://doi.org/10.1002/2015JD024666, 2016.
Gryspeerdt, E., Sourdeval, O., Quaas, J., Delanoë, J., Krämer, M., and Kühne, P.: Ice crystal number concentration estimates from lidar–radar satellite remote sensing – Part 2: Controls on the ice crystal number concentration, Atmos. Chem. Phys., 18, 14351–14370, https://doi.org/10.5194/acp-18-14351-2018, 2018.
Ge, J., Zheng, C., Xie, H., Xin, Y., Huang, J., and Fu, Q.: Midlatitude
cirrus clouds at the SACOL site: Macrophysical properties and large-scale
atmospheric states, J. Geophys. Res.-Atmos., 123, 2256–2271,
https://doi.org/10.1002/2017JD027724, 2018.
Guo, J., Lou, M., Miao, Y., Wang, Y., Zeng, Z., Liu, H., He, J., Xu, H.,
Wang, F., Min, M., and Zhai, P.: Trans-Pacific transport of dust aerosol
originated from East Asia: Insights gained from multiple observations and
modeling, Environ. Pollut., 230, 1030–1039,
https://doi.org/10.1016/j.envpol.2017.07.062, 2017.
Guo, J., Li, Y., Cohen, J. B., Li, J., Chen, D., Xu, H., Liu, L., Yin, J.,
Hu, K., and Zhai, P.: Shift in the temporal trend of boundary layer height
in China using long-term (1979–2016) radiosonde data, Geophys. Res. Lett.,
46, 6080–6089, https://doi.org/10.1029/2019GL082666, 2019.
Guo, J., Chen, X., Su, T., Liu, L., Zheng, Y., Chen, D., Li, J., Xu, H., Lv,
Y., He, B., Li, Y., Hu, X., Ding, A., and Zhai, P.: The Climatology of Lower
Tropospheric Temperature Inversions in China from Radiosonde Measurements:
Roles of Black Carbon, Local Meteorology, and Large-Scale Subsidence, J.
Clim., 33, 9327–9350, https://doi.org/10.1175/jcli-d-19-0278.1, 2020.
Guo, J., Zhang, J., Yang, K., Liao, H., Zhang, S., Huang, K., Lv, Y., Shao,
J., Yu, T., Tong, B., Li, J., Su, T., Yim, S. H. L., Stoffelen, A., Zhai,
P., and Xu, X.: Investigation of near-global daytime boundary layer height
using high-resolution radiosondes: first results and comparison with ERA5,
MERRA-2, JRA-55, and NCEP-2 reanalyses, Atmos. Chem. Phys., 21,
17079–17097, https://doi.org/10.5194/acp-21-17079-2021, 2021.
Haag, W., Kärcher, B., Ström, J., Minikin, A., Lohmann, U., Ovarlez,
J., and Stohl, A.: Freezing thresholds and cirrus cloud formation mechanisms
inferred from in situ measurements of relative humidity, Atmos. Chem. Phys.,
3, 1791–1806, https://doi.org/10.5194/acp-3-1791-2003, 2003.
He, Y.: MUA PLidar and Sun Photometer Dataset for Dust-related Ice Nucleation Particle Concentration Profile, Zenodo [data set], https://doi.org/10.5281/zenodo.4683015, 2021.
He, Y. and Yi, F.: Dust aerosols detected using a ground-based polarization
lidar and CALIPSO over Wuhan (30.5∘ N, 114.4∘ E), China, Adv. Meteorol., 2015, 536762, https://doi.org/10.1155/2015/536762, 2015.
He, Y., Yi, F., Yi, Y., Liu, F., and Zhang, Y.: Heterogeneous nucleation of
midlevel cloud layer influenced by transported Asian dust over Wuhan
(30.5∘ N, 114.4∘ E), China, J. Geophys. Res.-Atmos.,
126, e2020JD033394, https://doi.org/10.1029/2020JD033394, 2021a.
He, Y., Zhang, Y., Liu, F., Yin, Z., Yi, Y., Zhan, Y., and Yi, F.:
Retrievals of dust-related particle mass and ice-nucleating particle
concentration profiles with ground-based polarization lidar and sun
photometer over a megacity in central China, Atmos. Meas. Tech., 14,
5939–5954, https://doi.org/10.5194/amt-14-5939-2021, 2021b.
He, Y., Yi, F., Liu, F., Yin, Z., and Zhou, J.: Ice nucleation of cirrus
clouds related to the transported dust layer observed by ground-based lidars
over Wuhan, China, Adv. Atmos. Sci., https://doi.org/10.1007/s00376-021-1192-x,
2022a.
He, Y., Yi, F., Liu, F., Yin, Z., Yang, Y., Zhou, J. Yu, C., and Zhang, Y.:
Natural seeder-feeder process originating from mixed-phase clouds observed
with polarization lidar and radiosonde at a mid-latitude plain site, J.
Geophys. Res.-Atmos., 127, e2021JD036094, https://doi.org/10.1029/2021JD036094,
2022b.
He, Y., Yi, F., Yin, Z., Liu, F., Yi, Y., and Zhou, J.: Mega Asian dust
event over China on 27–31 March 2021 observed with space-borne instruments
and ground-based polarization lidar, Atmos. Environ., 285, 119238,
https://doi.org/10.1016/j.atmosenv.2022.119238, 2022c.
He, Y.: IDL code for cirrus ice-nucleating regimes study (Version 1), Zenodo [code], https://doi.org/10.5281/zenodo.7156041, 2022d.
Heymsfield, A. J., Krämer, M., Luebke, A., Brown, P., Cziczo, D. J.,
Franklin, C., Lawson, P., Lohmann, U., McFarquhar, G., Ulanowski, Z., and
Van Tricht, K.: Cirrus clouds, Meteor. Mon., 58, 2.1–2.26,
https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0010.1, 2017.
Hoffmann, N., Kiselev, A., Rzesanke, D., Duft, D., and Leisner, T.:
Experimental quantification of contact freezing in an electrodynamic
balance, Atmos. Meas. Tech., 6, 2373–2382, https://doi.org/10.5194/amt-6-2373-2013,
2013.
Holben, B., Eck, T., Slutsker, I., Tanré, D., Buis, J., Setzer, A.,
Vermote, E., Reagan, J., Kaufman, Y., Nakajima, T., Lavenu, F., Jankowiak,
I., and Smirnov, A.: AERONET – A federated instrument network and data
archive for aerosol characterization, Remote Sens. Environ., 66, 1–16,
https://doi.org/10.1016/s0034-4257(98)00031-5, 1998.
Hu, Q., Goloub, P., Veselovskii, I., and Podvin, T.: The characterization of
long-range transported North American biomass burning plumes: what can a
multi-wavelength Mie–Raman-polarization-fluorescence lidar provide?, Atmos.
Chem. Phys., 22, 5399–5414, https://doi.org/10.5194/acp-22-5399-2022, 2022.
Illingworth, A. J., Barker, H. W., Beljaars, A., Ceccaldi, M., Chepfer, H.,
Clerbaux, N., Cole, J., Delanoë, J., Domenech, C., Donovan, D. P.,
Fukuda, S., Hirakata, M., Hogan, R. J., Huenerbein, A., Kollias, P., Kubota,
T., Nakajima, T., Nakajima, T. Y., Nishizawa, T., Ohno, Y., Okamoto, H.,
Oki, R., Sato, K., Satoh, M., Shephard, M., Velázquez-Blázquez, A.,
Wandinger, U.,Wehr, T., and van Zadelhoff, G.-J.: The EarthCARE Satellite: The
next step forward in global measurements of clouds, aerosols, precipitation
and radiation, B. Am. Meteorol. Soc., 96, 1311–1332,
https://doi.org/10.1175/BAMS-D-12-00227.1, 2015.
IPCC: Climate Change 2013: The Physical Science Basis, Contribution of
Working Group I to the Fifth Assessment Report of the Intergovernmental
Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, USA, https://doi.org/10.1017/CBO9781107415324, 2013.
Jensen, E., Diskin, G., Lawson, R., Lance, S., Bui, T., Hlavka, D., McGill,
M., Pfister, L., Toon, O., and Gao, R.: Ice nucleation and dehydration in
the tropical tropopause layer, P. Natl. Acad. Sci. USA, 110, 2041–2046,
https://doi.org/10.1073/pnas.1217104110, 2013.
Kanji, Z. A., Ladino, L. A., Wex, H., Boose, Y., Burkert-Kohn, M., Cziczo,
D. J., and Krämer, M.: Overview of ice nucleating particles, Meteor. Mon., 58, 1.1–1.33, https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0006.1, 2017.
Kärcher, B., DeMott, P. J., Jensen, E. J., and Harrington, J. Y.:
Studies on the competition between homogeneous and heterogeneous ice
nucleation in cirrus formation, J. Geophys. Res.-Atmos., 127,
e2021JD035805, https://doi.org/10.1029/2021JD035805, 2022.
Kienast-Sjögren, E., Rolf, C., Seifert, P., Krieger, U. K., Luo, B. P.,
Krämer, M., and Peter, T.: Climatological and radiative properties of
midlatitude cirrus clouds derived by automatic evaluation of lidar
measurements, Atmos. Chem. Phys., 16, 7605–7621,
https://doi.org/10.5194/acp-16-7605-2016, 2016.
Knopf, D. A., Barry, K. R., Brubaker, T. A., Jahl, L. G., Jankowski, K. A.,
Li, J., Lu, Y., Monroe, L. W., Moore, K. A., Rivera-Adorno, F. A., Sauceda,
K. A., Shi, Y., Tomlin, J. M., Vepuri, H. S. K., Wang, P., Lata, N. N.,
Levin, E. J. T., Creamean, J. M., Hill, T. C. J., China, S., Alpert, P. A.,
Moffet, R. C., Hiranuma, N., Sullivan, R. C., Fridlind, A. M., West, M.,
Riemer, N., Laskin, A., DeMott, P. J., and Liu, X.: Aerosol–ice formation
closure: A Southern Great Plains field campaign, Bull. Am. Meteorol. Soc.,
102, E1952–E1971, https://doi.org/10.1175/BAMS-D-20-0151.1, 2021.
Koop, T., Luo, B. P., Tsias, A., and Peter, T.: Water activity as the
determinant for homogeneous ice nucleation in aqueous solutions, Nature,
406, 611–614, https://doi.org/10.1038/35020537, 2000.
Krämer, M., Schiller, C., Afchine, A., Bauer, R., Gensch, I., Mangold,
A., Schlicht, S., Spelten, N., Sitnikov, N., Borrmann, S., de Reus, M., and
Spichtinger, P.: Ice supersaturations and cirrus cloud crystal numbers,
Atmos. Chem. Phys., 9, 3505–3522, https://doi.org/10.5194/acp-9-3505-2009, 2009.
Krämer, M., Rolf, C., Luebke, A., Afchine, A., Spelten, N., Costa, A.,
Meyer, J., Zöger, M., Smith, J., Herman, R. L., Buchholz, B., Ebert, V.,
Baumgardner, D., Borrmann, S., Klingebiel, M., and Avallone, L.: A
microphysics guide to cirrus clouds – Part 1: Cirrus types, Atmos. Chem.
Phys., 16, 3463–3483, https://doi.org/10.5194/acp-16-3463-2016, 2016.
Krämer, M., Rolf, C., Spelten, N., Afchine, A., Fahey, D., Jensen, E., Khaykin, S., Kuhn, T., Lawson, P., Lykov, A., Pan, L. L., Riese, M., Rollins, A., Stroh, F., Thornberry, T., Wolf, V., Woods, S., Spichtinger, P., Quaas, J., and Sourdeval, O.: A microphysics guide to cirrus – Part 2: Climatologies of clouds and humidity from observations, Atmos. Chem. Phys., 20, 12569–12608, https://doi.org/10.5194/acp-20-12569-2020, 2020.
Kuebbeler, M., Lohmann, U., Hendricks, J., and Kärcher, B.: Dust ice
nuclei effects on cirrus clouds, Atmos. Chem. Phys., 14, 3027–3046,
https://doi.org/10.5194/acp-14-3027-2014, 2014.
Li, Z. Q., Xu, H., Li, K. T., Li, D. H., Xie, Y. S., Li, L., Zhang, Y., Gu,
X. F., Zhao, W., Tian, Q. J., Deng, R. R., Su, X. L., Huang, B., Qiao, Y.
L., Cui, W. Y., Hu, Y., Gong, C. L., Wang, Y. Q., Wang, X. F., Wang, J. P.,
Du, W. B., Pan, Z. Q., Li, Z. Z., and Bu, D.: Comprehensive study of
optical, physical, chemical, and radiative properties of total columnar
atmospheric aerosols over China: an overview of Sun–Sky Radiometer
Observation Network (SONET) measurements, B. Am. Meteorol. Soc., 99,
739–755, https://doi.org/10.1175/bams-d-17-0133.1, 2018.
Liu, X., Shi, X., Zhang, K., Jensen, E., Gettelman, A., Barahona, D., Nenes,
A., and Lawson, P.: Sensitivity studies of dust ice nuclei effect on cirrus
clouds with the Community Atmosphere Model CAM5, Atmos. Chem. Phys., 12,
12061–12079, https://doi.org/10.5194/acp-12-12061-2012, 2012.
Lohmann, U., Spichtinger, P., Jess, S., Peter, T., and Smit, H.: Cirrus
cloud formation and ice supersaturated regions in a global climate model.
Environ. Res. Lett., 3, 045022, https://doi.org/10.1088/1748-9326/3/4/045022, 2008.
Lohmann. U. and Gasparini, B.: A cirrus cloud climate dial?, Science,
357, 248–249, https://doi.org/10.1126/science.aan3325, 2017.
Maloney, C., Toon, B., Bardeen, C., Yu, P., Froyd, K., Kay, J., and Woods,
S.: The balance between heterogeneous and homogeneous nucleation of ice
clouds using CAM5/CARMA, J. Geophys. Res.-Atmos., 127, e2021JD035540,
https://doi.org/10.1029/2021JD035540, 2022
Mamouri, R. E. and Ansmann, A.: Fine and Coarse dust separation with
polarization lidar, Atmos. Meas. Tech., 7, 3717–3735.
https://doi.org/10.5194/amt-7-3717-2014, 2014.
Mamouri, R. E. and Ansmann, A.: Estimated desert-dust ice nuclei profiles
from polarization lidar: methodology and case studies, Atmos. Chem. Phys.,
15, 3463–3477, https://doi.org/10.5194/acp-15-3463-2015, 2015.
Mamouri, R. E. and Ansmann, A.: Potential of polarization lidar to provide
profiles of CCN- and INP-relevant aerosol parameters, Atmos. Chem. Phys.,
16, 5905–5931, https://doi.org/10.5194/acp-16-5905-2016, 2016.
Mamouri, R. E. and Ansmann, A.: Potential of polarization/Raman lidar to
separate fine dust, coarse dust, maritime, and anthropogenic aerosol
profiles, Atmos. Meas. Tech., 10, 3403–3427,
https://doi.org/10.5194/amt-10-3403-2017, 2017.
Marinou, E., Tesche, M., Nenes, A., Ansmann, A., Schrod, J., Mamali, D.,
Tsekeri, A., Pikridas, M., Baars, H., Engelmann, R., Voudouri, K.-A.,
Solomos, S., Sciare, J., Groß, S., Ewald, F., and Amiridis, V.:
Retrieval of ice-nucleating particle concentrations from lidar observations
and comparison with UAV in situ measurements, Atmos. Chem. Phys., 19,
11315–11342, https://doi.org/10.5194/acp-19-11315-2019, 2019.
Marcolli, C.: Deposition nucleation viewed as homogeneous or immersion
freezing in pores and cavities, Atmos. Chem. Phys., 14, 2071–2104,
https://doi.org/10.5194/acp-14-2071-2014, 2014.
Nakajima, T., Yoon, S. C., Ramanathan, V., Shi, G. Y., Takemura, T.,
Higurashi, A., Takamura, T., Aoki, K., Sohn, B. J., Kim, S. W., Tsuruta, H.,
Sugimoto, N., Shimizu, A., Tanimoto, H., Sawa, Y., Lin, N. H., Lee, C. T.,
Goto, D., and Schutgens, N.: Overview of the atmospheric brown cloud East
Asian Regional Experiment 2005 and a study of the aerosol direct radiative
forcing in east Asia, J. Geophys. Res., 112, D24S91,
https://doi.org/10.1029/2007JD009009, 2007.
Omar, A. H., Winker, D. M., Kittaka, C., Vaughan, M. A., Liu, Z., Hu, Y.,
Rogers, R. R., Ferrare, R. A., Lee, K.-P., Kuehn, R. E., and Hostetler, C.
A.: The CALIPSO Automated Aerosol Classification and Lidar Ratio Selection
Algorithm, J. Atmos. Ocean Tech., 26, 1994–2014,
https://doi.org/10.1175/2009JTECHA1231.1, 2009.
Peng, L., Yi, F., Liu, F., Yin, Z., and He, Y.: Optical properties of aerosol
and cloud particles measured by a single-line-extracted pure rotational
Raman lidar, Opt. Express, 29, 21947–21964, https://doi.org/10.1364/OE.427864,
2021.
Prenni, A. J., DeMott, P. J., Rogers, D. C., Kreidenweis, S. M., McFarquhar,
G. M., Zhang, G., and Poellot, M. R.: Ice nuclei characteristics from M-PACE
and their relation to ice formation in clouds, Tellus B, 61, 436–448,
https://doi.org/10.1111/j.1600-0889.2009.00415.x, 2009.
Radenz, M., Bühl, J., Lehmann, V., Görsdorf, U., and Leinweber, R.:
Combining cloud radar and radar wind profiler for a value added estimate of
vertical air motion and particle terminal velocity within clouds, Atmos.
Meas. Tech., 11, 5925–5940, https://doi.org/10.5194/amt-11-5925-2018, 2018.
Radenz, M., Bühl, J., Seifert, P., Baars, H., Engelmann, R., Barja
González, B., Mamouri, R. E., Zamorano, F., and Ansmann, A.: Hemispheric
contrasts in ice formation in stratiform mixed-phase clouds: disentangling
the role of aerosol and dynamics with ground-based remote sensing, Atmos.
Chem. Phys., 21, 17969–17994, https://doi.org/10.5194/acp-21-17969-2021, 2021.
Righi, M., Hendricks, J., and Beer, C. G.: Exploring the uncertainties in
the aviation soot–cirrus effect, Atmos. Chem. Phys., 21, 17267–17289,
https://doi.org/10.5194/acp-21-17267-2021, 2021.
Spichtinger, P. and Cziczo, D.: Impact of heterogeneous ice nuclei on
homogeneous freezing events in cirrus clouds, J. Geophys. Res., 115, D14208,
https://doi.org/10.1029/2009JD012168, 2010.
Sporre, M. K., Friberg, J., Svenhag, C., Sourdeval, O., and Storelvmo, T.:
Springtime stratospheric volcanic aerosol impact on midlatitude cirrus
clouds, Geophys. Res. Lett., 49, e2021GL096171,
https://doi.org/10.1029/2021GL096171, 2022
Sourdeval, O., Gryspeerdt, E., Krämer, M., Goren, T., Delanoë, J., Afchine, A., Hemmer, F., and Quaas, J.: Ice crystal number concentration estimates from lidar–radar satellite remote sensing – Part 1: Method and evaluation, Atmos. Chem. Phys., 18, 14327–14350, https://doi.org/10.5194/acp-18-14327-2018, 2018.
Steinke, I., Hoose, C., Möhler, O., Connolly, P., and Leisner, T.: A new
temperature- and humidity-dependent surface site density approach for
deposition ice nucleation, Atmos. Chem. Phys., 15, 3703–3717,
https://doi.org/10.5194/acp-15-3703-2015, 2015.
Tesche, M., Ansmann, A., Müller, D., Althausen, D., Engelmann, R.,
Freudenthaler, V., and Groß, S.: Vertically resolved separation of dust
and smoke over Cape Verde using multiwavelength Raman and polarization
lidars during Saharan Mineral Dust Experiment 2008, J. Geophys. Res., 114,
D13202, https://doi.org/10.1029/2009JD011862, 2009.
Tesche, M., Achtert, P., Glantz, P., and Noone, K. J.: Aviation effects on
already-existing cirrus clouds, Nat. Commun., 7, 12016,
https://doi.org/10.1038/ncomms12016, 2016.
Ullrich, R., Hoose, C., Möhler, O., Niemand, M., Wagner, R., Höhler,
K., Hiranuma, N., Saathoff, H., and Leisner, T.: A new ice nucleation active
site parameterization for desert dust and soot, J. Atmos. Sci., 74, 699–717, 2017.
Vaillant de Guélis, T., Ancellet, G., Garnier, A., C.-Labonnote, L.,
Pelon, J., Vaughan, M. A., Liu, Z., and Winker, D. M.: Assessing the
benefits of Imaging Infrared Radiometer observations for the CALIOP version
4 cloud and aerosol discrimination algorithm, Atmos. Meas. Tech., 15,
1931–1956, https://doi.org/10.5194/amt-15-1931-2022, 2022.
Wang, W., Yi, F., Liu, F., Zhang, Y., Yu, C., and Yin, Z.: Characteristics
and seasonal variations of cirrus clouds from polarization lidar
observations at a 30∘ N plain site, Remote Sens., 12, 3998,
https://doi.org/10.3390/rs12233998020, 2020.
Wieder, J., Ihn, N., Mignani, C., Haarig, M., Bühl, J., Seifert, P.,
Engelmann, R., Ramelli, F., Kanji, Z. A., Lohmann, U., and Henneberger, J.:
Retrieving ice-nucleating particle concentration and ice multiplication
factors using active remote sensing validated by in situ observations,
Atmos. Chem. Phys., 22, 9767–9797,
https://doi.org/10.5194/acp-22-9767-2022, 2022.
Winker, D., Hunt, W., and McGill, M.: Initial performance assessment of
CALIOP, Geophys. Res. Lett., 34, L19803, https://doi.org/10.1029/2007GL030135,
2007.
Wolf, V., Kuhn, T., and Krämer, M.: On the dependence of cirrus
parametrizations on the cloud origin, Geophys. Res. Lett., 46, 12565–12571,
https://doi.org/10.1029/2019GL083841, 2019.
Wuhan Radiosonde: Wuhan Radiosonde Data, http://data.cma.cn/en/, last access: 7 October 2022.
Yang, K., Wang Z., Luo, T., Liu, X., and Wu, M.: Upper troposphere dust belt
formation processes vary seasonally and spatially in the Northern
Hemisphere, Commun. Earth Environ., 3, 24,
https://doi.org/10.1038/s43247-022-00353-5, 2022.
Yin, Z., Yi, F., He, Y., Liu, D., Yu, C., and Zhang, Y.: Asian dust impacts
on heterogeneous ice formation at Wuhan based on polarization lidar
measurements, Atmos. Environ., 246, 118166,
https://doi.org/10.1016/j.atmosenv.2020.118166, 2021.
Zhao, B., Wang, Y., Gu, Y., Liou K.-N., Jiang, J. H., Fan, J., Liu, X.,
Huang, L., and Yung, Y. L.: Ice nucleation by aerosols from anthropogenic
pollution, Nat. Geosci., 12, 602–607, https://doi.org/10.1038/s41561-019-0389-4,
2019.
Zhao, X., Zhao, C., Yang, Y., Sun, Y., Xia, Y., Yang, X., and Fan, T.:
Distinct changes of cloud microphysical properties and height development by
dust aerosols from a case study over Inner-Mongolia region, Atmos. Res.,
273, 106175, https://doi.org/10.1016/j.atmosres.2022.106175, 2022.
Zhu, Q., Liu, Y., Shao, T., Luo, R., and Tan, Z.: A simulation study on the
new transport pathways of global tropopause dust layer, Geophys. Res. Lett.,
48, e2021GL096063, https://doi.org/10.1029/2021GL096063, 2022.
Short summary
A method is proposed to identify the sole presence of heterogeneous nucleation and competition between heterogeneous and homogeneous nucleation for dust-related cirrus clouds by characterizing the relationship between dust ice-nucleating particle concentration calculated from CALIOP using the POLIPHON method and in-cloud ice crystal number concentration from the DARDAR-Nice dataset. Two typical cirrus cases are shown as a demonstration, and the proposed method can be extended to a global scale.
A method is proposed to identify the sole presence of heterogeneous nucleation and competition...
Altmetrics
Final-revised paper
Preprint