Articles | Volume 22, issue 17
https://doi.org/10.5194/acp-22-11173-2022
https://doi.org/10.5194/acp-22-11173-2022
Research article
 | 
01 Sep 2022
Research article |  | 01 Sep 2022

Predicting gridded winter PM2.5 concentration in the east of China

Zhicong Yin, Mingkeng Duan, Yuyan Li, Tianbao Xu, and Huijun Wang

Related authors

Distinctive dust weather intensities in North China resulted from two types of atmospheric circulation anomalies
Qianyi Huo, Zhicong Yin, Xiaoqing Ma, and Huijun Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-1923,https://doi.org/10.5194/egusphere-2024-1923, 2024
Short summary
Dipole pattern of summer ozone pollution in the east of China and its connection with climate variability
Xiaoqing Ma and Zhicong Yin
Atmos. Chem. Phys., 21, 16349–16361, https://doi.org/10.5194/acp-21-16349-2021,https://doi.org/10.5194/acp-21-16349-2021, 2021
Short summary
Comparison of the influence of two types of cold surge on haze dispersion in eastern China
Shiyue Zhang, Gang Zeng, Xiaoye Yang, Ruixi Wu, and Zhicong Yin
Atmos. Chem. Phys., 21, 15185–15197, https://doi.org/10.5194/acp-21-15185-2021,https://doi.org/10.5194/acp-21-15185-2021, 2021
Short summary
Decadal changes of connections among late-spring snow cover in West Siberia, summer Eurasia teleconnection and O3-related meteorology in North China
Zhicong Yin, Yu Wan, and Huijun Wang
Atmos. Chem. Phys., 21, 11519–11530, https://doi.org/10.5194/acp-21-11519-2021,https://doi.org/10.5194/acp-21-11519-2021, 2021
Short summary

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Improving estimation of a record-breaking east Asian dust storm emission with lagged aerosol Ångström exponent observations
Yueming Cheng, Tie Dai, Junji Cao, Daisuke Goto, Jianbing Jin, Teruyuki Nakajima, and Guangyu Shi
Atmos. Chem. Phys., 24, 12643–12659, https://doi.org/10.5194/acp-24-12643-2024,https://doi.org/10.5194/acp-24-12643-2024, 2024
Short summary
Impact of biomass burning aerosols (BBA) on the tropical African climate in an ocean–atmosphere–aerosol coupled climate model
Marc Mallet, Aurore Voldoire, Fabien Solmon, Pierre Nabat, Thomas Drugé, and Romain Roehrig
Atmos. Chem. Phys., 24, 12509–12535, https://doi.org/10.5194/acp-24-12509-2024,https://doi.org/10.5194/acp-24-12509-2024, 2024
Short summary
Retrieval of refractive index and water content for the coating materials of aged black carbon aerosol based on optical properties: a theoretical analysis
Jia Liu, Cancan Zhu, Donghui Zhou, and Jinbao Han
Atmos. Chem. Phys., 24, 12341–12354, https://doi.org/10.5194/acp-24-12341-2024,https://doi.org/10.5194/acp-24-12341-2024, 2024
Short summary
Predicting hygroscopic growth of organosulfur aerosol particles using COSMOtherm
Zijun Li, Angela Buchholz, and Noora Hyttinen
Atmos. Chem. Phys., 24, 11717–11725, https://doi.org/10.5194/acp-24-11717-2024,https://doi.org/10.5194/acp-24-11717-2024, 2024
Short summary
Dust aerosol from the Aralkum Desert influences the radiation budget and atmospheric dynamics of Central Asia
Jamie R. Banks, Bernd Heinold, and Kerstin Schepanski
Atmos. Chem. Phys., 24, 11451–11475, https://doi.org/10.5194/acp-24-11451-2024,https://doi.org/10.5194/acp-24-11451-2024, 2024
Short summary

Cited articles

An, J., Chen, Y., Qu, Y., Chen, Q., Zhuang, B., Zhang, P., and Wu, Q.: An online-coupled unified air quality forecasting model system, China, Adv. Earth Sci., 33, 445–454, https://doi.org/10.11867/j.issn.1001-8166.2018.05.0445, 2018. 
Chang, L., Wu, Z., and Xu, J.: Contribution of Northeastern Asian stratospheric warming to subseasonal prediction of the early winter haze pollution in Sichuan Basin, China, Sci. Total Environ., 751, 141823, https://doi.org/10.1016/j.scitotenv.2020.141823, 2021. 
Cheng, X. G., Boiyo, R., Zhao, T. L., Xu, X. D., Gong, S. L., Xie, X. N., and Shang, K.: Climate modulation of Niño3.4 SST-anomalies on air quality change in southern China: Application to seasonal forecast of haze pollution, Atmos. Res., 225, 157–164, https://doi.org/10.1016/j.atmosres.2019.04.002, 2019. 
CNEMC: PM2.5 monitoring network [data set], https://www.aqistudy.cn/historydata/, last access: 19 August 2022. 
Download
Short summary
The PM2.5 concentration has been greatly reduced in recent years in China and has entered a crucial stage that required fine seasonal prediction. However, there is still no study aimed at predicting gridded PM2.5 concentration. A model for seasonal prediction of gridded winter PM2.5 concentration in the east of China was developed by analyzing the contributions of emissions and climate variability, which could provide scientific support for air pollution control at the regional and city levels.
Altmetrics
Final-revised paper
Preprint