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Abstract. Exposure to high concentration levels of fine particle matter with diameter ≤ 2.5 µm (PM2.5) can
lead to great threats to human health in the east of China. Air pollution control has greatly reduced the PM2.5
concentration and entered a crucial stage that required support like fine seasonal prediction. In this study, we
analyzed the contributions of emission predictors and climate variability to seasonal prediction of PM2.5 con-
centration. The socioeconomic PM2.5, isolated by atmospheric chemical models, could well describe the gradual
increasing trend of PM2.5 during the winters of 2001–2012 and the sharp decreasing trend since 2013. The pre-
ceding climate predictors have successfully simulated the interannual variability in winter PM2.5 concentration.
Based on the year-to-year increment approach, a model for seasonal prediction of gridded winter PM2.5 con-
centration (10 km× 10 km) in the east of China was trained by integrating emission and climate predictors. The
area-averaged percentage of same sign was 81.4 % (relative to the winters of 2001–2019) in the leave-one-out
validation. In three densely populated and heavily polluted regions, the correlation coefficients were 0.93 (North
China), 0.95 (Yangtze River Delta) and 0.87 (Pearl River Delta) during 2001–2019, and the root-mean-square
errors were 6.8, 4.2 and 4.7 µg m−3. More important, the significant decrease in PM2.5 concentration, result-
ing from the implementation of strict emission control measures in recent years, was also reproduced. In the
recycling independent tests, the prediction model developed in this study also maintained high accuracy and
robustness. Furthermore, the accurate gridded PM2.5 prediction had the potential to support air pollution control
on regional and city scales.

1 Introduction

Exposure to fine particle matter with diameter ≤ 2.5 µm
(PM2.5) can lead to severe respiratory and cardiovascular
diseases (Cohen et al., 2017) and can even directly induce
DNA damage (Wu et al., 2017). According to the newly rec-
ommended air quality guidelines, the level of annual mean
PM2.5 < 5 µg m−3 has the potential to threaten human health
(World Health Organization, 2021). In 2020, the average
PM2.5 concentration in cities of China was 33 µg m−3, al-

though the implementation of strict air quality control mea-
sures substantially reduced the emission of primary pollu-
tants (Zhang et al., 2022). The changes in the emission of
air pollutants also resulted in the shift of winter PM2.5 trend
in the east of China; that is, the winter PM2.5 concentration
gradually increased during 2000–2012 but has been decreas-
ing since 2013 (Fig. 1a). Evident interannual variation was
also to be found in the changes in PM2.5 concentration in
winter (December–January–February), which was largely at-
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tributed to climate variability (Yin et al., 2020). Given the se-
vere impact of PM2.5 pollution and yearly plan of control ac-
tion, it is meaningful and urgent to develop prediction mod-
els to forecast PM2.5 concentration 1–3 months in advance.
Furthermore, the predicting results should have high resolu-
tion to provide valuable information on the regional and city
levels.

To accurately predict climate anomalies is still a real chal-
lenge, while predicting air pollution on seasonal scale is
much harder than predicting routine meteorological elements
(Wang et al., 2021). In general, the methods of climate pre-
diction included numerical climate models and statistical ap-
proaches. Despite the great advances in atmospheric chem-
ical models in recent years, most of these models were not
designed for real-time operation of seasonal predictions and
lacked the coupling of the atmospheric chemical composi-
tion and the entire earth system (An et al., 2018). Addition-
ally, statistical prediction of winter PM2.5 concentration was
limited by the short sequences of observed atmospheric com-
position because broad observations only started in 2014 in
China. The gray prediction model performed well in dealing
with small sample data and thus was used to forecast PM2.5
concentration (Wang and Du, 2021; Wu et al., 2019; Xiong
et al., 2019). Considering the strong control measures imple-
mented to improve air quality, the buffer operators can be
added to the discrete gray prediction model to reduce devia-
tions (Dun et al., 2020). These mathematical models showed
certain predictive skills but lacked underlying physical mech-
anisms and long-standing robustness.

Many previous studies employed the long-term observed
visibility, air humidity and weather phenomena to reconstruct
data of haze (Xu et al., 2016; Zou et al., 2017; He et al.,
2019; Yin et al., 2020). The change in winter haze days con-
sists of long-term trend and interannual–decadal variations.
The long-term trend of haze was mainly determined by hu-
man activities (i.e., primary pollutants emission and climate
change), while its interannual–decadal variations had close
relationships with climate variability (Yin et al., 2020; Geng
et al., 2021a). Besides analysis of climate mechanisms, the
number of haze days was also used as a proxy predictand
of PM2.5 pollution. Taking advantage of the memory effect
in slow-varying climate forcings (e.g., sea surface tempera-
ture and sea ice), the number of haze days was successfully
predicted in North China (Yin and Wang, 2016a; Yin et al.,
2017), Yangtze River Delta (Dong et al., 2021) and Fenwei
Plain (Zhao et al., 2021). Chang et al. (2021) used regional
stratospheric warming over northeastern Asia in November
to predict haze pollution in the Sichuan Basin for 5–7 weeks.
Information from the preceding autumn’s El Niño was also
extracted to predict winter haze days in South China (Cheng
et al., 2019) and aerosol optical depth over northern India
(Gao et al., 2019). In most of these studies, the predictand
is the area-averaged number of haze days, which was a bit
different from PM2.5 concentration in use, and fine spatial
information was missing.

The Tracking Air Pollution (TAP) database combines
information from ground observations, satellite retrievals,
emission inventories and chemical transport model simula-
tions based on data fusion. A full-coverage PM2.5 reanalysis
dataset with a spatial resolution of 10 km× 10 km from 2000
until present has been released (Geng et al., 2021b). It be-
comes feasible to develop a statistical prediction model of
PM2.5 concentration based on this long-range dataset. Fur-
thermore, as reviewed by Yin et al. (2022), the predictability
of winter haze decreased after 2014, which was mainly at-
tributed to the disturbances from super-strict emissions re-
duction in China. Rapid changes in human activities and
changes in climate anomalies both should be considered and
included in PM2.5 prediction models. This is the major mo-
tivation of the present study, which is to build a climate–
emission hybrid model for the prediction of gridded PM2.5
concentration in the east of China. The findings of this study
have enormous potentials to support fine designs and imple-
mentation of air pollution control in advance.

2 Datasets and method

2.1 Data

The monthly sea ice concentration (SI) and sea surface tem-
perature (SST) dataset from 2000 to 2019, with a spatial res-
olution of 1◦× 1◦, was provided by the Met Office Hadley
Centre (Rayner et al., 2003, https://www.metoffice.gov.uk/
hadobs/hadisst/, last access: 19 August 2022). Monthly soil
moisture (Soilw), snow depth (SD), geopotential height
at 500 hPa (Z500) and 850 hPa (Z850), sea level pressure
(SLP), and 10 m wind were extracted from the fifth gen-
eration reanalysis product (ERA5) produced by the Euro-
pean Center for Medium Range Weather Forecasts (Hers-
bach et al., 2020, https://cds.climate.copernicus.eu/, last ac-
cess: 19 August 2022). Annual emissions of ammonia, ni-
trogen oxide, black oxide carbon (BOC), primary PM2.5 and
sulfur dioxide in China were derived from the MEIC model
(http://www.meicmodel.org/, last access: 19 August 2022; Li
et al., 2017).

Hourly site-observed PM2.5 concentrations during 2014–
2019 were also employed in the present study (https://
www.aqistudy.cn/historydata/, last access: 19 August 2022).
The long-term and high-resolution TAP PM2.5 concentra-
tion dataset during 2000–2019 can be downloaded from
http://tapdata.org.cn/ (last access: 19 August 2022; Geng et
al., 2021b). The PM2.5 reanalysis data were used as training
data, as well as test data, in the construction of the predic-
tion model, and the observed PM2.5 concentrations were also
applied to verify the prediction skill of the model.

2.2 Isolation of socioeconomic PM2.5

We employed the simulated annual mean PM2.5 concentra-
tions that exclude the meteorological contributions to repre-
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Figure 1. Variation in (a) winter PM2.5 concentration (black; unit:
µg m−3), (b) PM2.5 anomalies (gray; compared to the mean of
2000–2019; unit: µg m−3) and PM2.5 DY (black; unit: µg m−3).
Color lines in (a) indicate relative variations in annual emissions
(compared to that in 2008, unit: %) of ammonia (NH3; red), ni-
trogen oxide (NOx ; purple), BOC (green), PM2.5 (blue) and sulfur
dioxide (SO2; yellow) in the east of China. The black dashed line
in (a) indicates the linear trend of PM2.5 concentration.

sent the impacts of anthropogenic emissions. Compared with
the direct use of emission inventory of primary pollutants, the
isolated socioeconomic PM2.5 (SE-PM2.5) involved both re-
sults of emission changes and follow-up physical and chem-
ical reactions in the air. To remove the meteorological in-
fluences from the TAP PM2.5 data, we used chemical trans-
port models and emission inventories to separate the con-
tributions from emission and meteorology changes. Follow-
ing the approach proposed by Xiao et al. (2021), we used a
“fixed-emission” scenario to quantify the impacts of interan-
nual meteorological variation on PM2.5 concentration in the
Community Multiscale Air Quality (CMAQ) model. Subse-
quently, a full simulation with year-by-year emissions and
meteorology was completed. Differences between the “fixed-
emission” simulation and the full simulation were considered
to be PM2.5 concentrations driven by anthropogenic emis-
sions. These data have been analyzed to quantify relative in-
fluences of different drivers on PM2.5-related deaths in China
(Geng et al., 2021b).

2.3 Year-to-year increment prediction

The year-to-year increment approach is proposed to improve
the skill of climate prediction (Wang et al., 2008), in which
the predicted object is not climate anomalies but is the dif-

ference between the current and the previous year (DY).
After adding the predicted DY to the observed predictand
in the year before, the final predicted results during 2001–
2019 were obtained. Based on full use of observations in
the previous year, the gradually changing trend and inter-
decadal components can be reproduced well. The anthro-
pogenic natural forcing predictand could be represented by
Y =YS+YC, where YS and YC denote the slowly varying
socioeconomic and climatic components, respectively. In the
DY approach, which was expressed by

DY=Yt −Yt−1 = (YSt +YCt )− (YSt−1+YCt−1)

= (YSt −YSt−1)+ (YCt −YCt−1) ,

the subscripts t and t − 1 indicate the current and the pre-
vious years. Before 2013, the difference between anthro-
pogenic emissions in two adjacent years was small, and
Yin and Wang (2016a) assumed (YSt −YSt−1)≈ 0 and pro-
posed that DY was mainly influenced by climate variability.
However, due to significant reduction of anthropogenic emis-
sions after the implementation of China’s Air Pollution Pre-
vention and Control Action Plan (Zhang and Geng, 2020),
the assumption of (YSt −YSt−1)≈ 0 was no longer com-
pletely valid. Therefore, it is meaningful to consider the in-
formation of rapid emission changes and re-build the predic-
tion model (Yin et al., 2022).

1. Seasonal prediction model based on SE-PM2.5(SP-SE).
This prediction model unilaterally emphasized the im-
pacts of human activities and was trained by DY of SE-
PM2.5 in each grid.

2. Seasonal prediction model based on preceding climate
variability (SP-CV). This prediction model was highly
focused on the impacts of climate condition and trained
by DY of closely related climate factors.

3. Seasonal prediction model based on both SE-PM2.5and
climate (SP-EC). The contributions of emissions and
climate factors are incorporated into one prediction
model, i.e., combining the PM2.5 DY from SP-SE and
SP-CV.

In the leave-one-out cross validation, root-mean-square error
(RMSE), relative bias and correlation coefficient (CC) were
calculated. When discussing the CC after the detrending, the
linear trend was removed by stages (i.e., winters of 2001–
2011 and 2012–2019). The percentage of the same sign (PSS;
same sign means the mathematical sign of the fitted and ob-
served PM2.5 anomalies was the same) was also computed.

3 Relative contributions of emission and climate
predictors

3.1 Roles of emissions

Human activities are the major source of haze pollution
in the east of China (Zhang and Geng, 2020), which im-
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Figure 2. Variations in reanalysis (black) and SP-SE predicted winter PM2.5 concentration in (a) NC (orange), (b) the YRD (blue), and
(c) the PRD (green) from 2001 to 2019 before (upper) and after (lower) detrending. The predicted PM2.5 is dependent on the leave-one-out
validation. (d–f) are the same as (a–c) but for SP-CV. (g–i) are the same as (a–c) but for SP-EC.

plies that a large proportion of PM2.5 concentration is pre-
dictable. Particularly, the large reduction of anthropogenic
emissions since 2013 has determined the decreasing trend of
winter PM2.5 concentration (Fig. 1a). As mentioned above,
the socioeconomic PM2.5 (i.e., SE-PM2.5) isolated by CMAQ
could well reflect the impacts of human activities and was
a potentially effective predictor for seasonal prediction of
PM2.5 concentration. As expected, the one-variable linear
regression model based on anomalies of SE-PM2.5 suc-
cessfully reproduced different slopes of trend during 2001–
2007, 2008–2013 and 2014–2019, but the predicted PM2.5
concentration varied too smoothly (Fig. S1a in the Sup-
plement). Furthermore, the quantities were underestimated
when observed PM2.5 concentration increased and overesti-
mated when PM2.5 concentration rapidly decreased. To elim-
inate the influence of trend shift, we calculated DY of PM2.5
and SE-PM2.5. Compared with its anomalies, PM2.5 DY did
not show a significant trend but displayed regularly oscillat-
ing characteristics (Fig. 1b), and its predictability was much
better (Wang et al., 2008). The SP-SE model was trained by
DY of SE-PM2.5 in each grid to predict PM2.5 DY. After
adding the predicted PM2.5 DY to observed PM2.5 in the pre-
vious year, the final PM2.5 concentration was obtained. The
CC between predicted and observed PM2.5 was 0.87 during
2001–2019 in the east of China. The underestimated (2001–

Table 1. The leave-one-out validated root-mean-square errors (RM-
SEs), relative biases (absolute bias mean; %) and percentages of
same sign (PSS) for three statistical models.

RMSE (µg m−3) Relative bias (%)

NC YRD PRD NC YRD PRD

SP-SE 12.2 6.2 6.8 8.5 6.9 12.9
SP-CV 8.0 4.8 5.2 5.3 6.2 9.9
SP-EC 6.8 4.2 4.7 5.1 4.9 8.8

2007) and overestimated (2014–2019) values in Fig. S1a
were largely corrected, and interannual variation also ap-
peared in the results of SP-SE prediction (Fig. S1b). The
staged trends from the SP-SE model almost overlapped with
the observed trends, indicating the model performed well in
capturing the changes in trend (Fig. S2).

North China (NC; 34–42◦ N, 114–120◦ E), the Yangtze
River Delta (YRD; 27–34◦ N, 117–122◦ E) and the Pearl
River Delta (PRD; 21.5–25◦ N, 112–116◦ E) are three re-
gions that have been experiencing severe PM2.5 pollution
(Yin et al., 2015). Thus, the performance of the SP-SE
model in NC, the YRD and the PRD was validated sepa-
rately (Table 1, Fig. 2a–c). The RMSEs were 12.2, 6.2 and
6.8 µg m−3in NC, the YRD and the PRD, respectively (Ta-
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Figure 3. Spatial patterns (a–d) and corresponding PCs (e–h) of the first four EOF modes for winter PM2.5 DY in the east of China during
2000–2019. The variance accounted for by each EOF mode is given in the panel.

ble 1). Larger RMSE in NC did not indicate the SP-SE model
performs worse in NC than in the YRD and the PRD because
the mean value of PM2.5 concentration was the highest in
NC. The relative bias (absolute bias/mean) in NC was 8.5 %,
which was smaller than that in the PRD (12.9 %). Consistent
with its performance in the east of China, the SP-SE model
also reproduced well the staged trends in NC, the YRD and
the PRD (Fig. 2a–c). However, when the linear trend was
removed, the CC between predicted and observed PM2.5 sig-
nificantly decreases in all the three PM2.5-polluted regions
(NC: from 0.78 to −0.13; YRD: from 0.88 to −0.28; PRD:
from 0.74 to 0.16). That is, the prediction model trained by
the socioeconomic PM2.5 could predict the values and staged
linear trends well. However, it certainly had no ability to sim-
ulate the interannual variability in PM2.5 concentration.

3.2 Impacts of climate variability

Decomposition and prediction of dominant modes of climate
conditions were applied in short-term prediction of precipi-
tation (Huang et al., 2022) and surface air temperature (Hsu
et al., 2020) in the east of China. In this study, we decom-
pose the first four leading modes of PM2.5 DY during 2001–
2019 (accumulated variance contribution= 81 %) produced
by empirical orthogonal function (EOF) analysis, built a pre-
diction model for each respective principal component, recal-
culated the predicted PM2.5 DY by projecting the predicted
PCs onto the observed EOF spatial patterns and finally added
the predicted PM2.5 DY to the observation in the previous

year to finish the development of SP-CV (Fig. S3, Table S1 in
the Supplement). The interannual–decadal variation in haze
pollution could be explained well by meteorological condi-
tion and preceding climate forcings (Yin et al., 2020) such as
the Arctic sea ice extent (Wang et al., 2015; Yin et al., 2019),
Eurasia snow (Zou et al., 2017) and soil moisture (Yin and
Wang, 2018), and SST in the Pacific (Yin and Wang, 2016b;
He et al., 2019) and Atlantic (Yin and Zhang, 2020). Predic-
tion signals from these climate anomalies could be observed
before winter and had specific physical implications.

The first EOF mode of PM2.5 DY illustrated the heavily
haze-polluted status in NC (Fig. 3a, e). According to the
correlation analysis, the September SST DY in the south-
west Pacific (CC with PC1=−0.73; Fig. 4a) and October
SST DY in the Sargasso Sea (CC=−0.73; Fig. 4b) were se-
lected to be the two predictors for PC1 of PM2.5 DY (Ta-
ble S1). Both of the predictors had close relationships with
the dipole pattern of Eurasian cyclonic and northeast Asian
anti-cyclonic circulations (Fig. S4b, c), which were identical
to those associated with PC1 (Fig. S4a) and could restrain the
invasion of cold air from high latitude into NC. The second
EOF mode of PM2.5 DY showed a “north–south” dipole pat-
tern (Fig. 3b, f). The variations in PM2.5 DY in Huanghuai
and the YRD accounted for a large proportion. The Octo-
ber soil moisture DY in the Indo-China Peninsula (CC with
PC2= 0.73; Fig. 4c) and June–August SST DY in the Gulf
of Alaska (CC=−0.69; Fig. 4d) were selected to build the
prediction model of PC2 (Table S1). The anomalous atmo-
spheric circulation associated with PC2 and its predictors
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Figure 4. CCs between climate predictors and (a–b) PC1, (c–d) PC2, (e–g) PC3, (h–j) PC4 from 2000 to 2019. The predictors for PC1 are
(a) September SST over the South Pacific Ocean and (b) October SST over the Sargasso Sea. The predictors for PC2 are (c) October Soilw
over the Indo-China Peninsula and (d) June–August SST over the Gulf of Alaska. The predictors for PC3 are (e) October SD over eastern
Siberia, (f) October SI over the Kara Sea and (g) September–October Soilw over the Indian Peninsula. The predictors for PC4 are (h) October
SI over the Chukchi Sea, (i) October Soilw over the Kamchatka Peninsula and (j) August–September SST over the Arabian Sea and the Bay
of Bengal. The slashes indicate CCs exceeding the 95 % confidence level. The black boxes indicate the regions over which the predictors are
calculated.

could enhance cold air invasion to NC (strong northerlies)
but prevented the cold air from moving further south (weak
10 m winds in Fig. S4d–f).

The third EOF mode indicated a triple pattern with cen-
ters located in the east of Inner Mongolia, the Fenwei
Plain and South China (Fig. 3c, g). The Fenwei Plain was

highly polluted and gained great attention in recent years,
while the other two centers have relatively better air qual-
ity (Zhao et al., 2021). The October snow depth DY in east-
ern Siberia (CC with PC3=−0.65; Fig. 4e), October sea ice
DY in the north to Barents Sea (CC=−0.60; Fig. 4f) and
September–October soil moisture DY in the Indian Penin-
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Figure 5. Scatter plots of normalized observed (x axis) and pre-
dicted (y axis) PC1 (blue), PC2 (orange), PC3 (green) and PC4
(gray) from 2000 to 2019. The predicted PCs are dependent on the
leave-one-out cross validation.

sula (CC=−0.79; Fig. 4g) were considered in the predic-
tion model (Table S1). The predictors possibly induced at-
mospheric responses in winter (Fig. S4h–j) that were simi-
lar to PC3 (Fig. S4g). The abnormal northerlies over North
China and South China enhanced the horizontal dispersion
of haze particles (Zhong et al., 2019), while the weak wind
speed and surface wind convergence in central China were
conductive to the accumulation of pollutants. A statistical
model (Table S1) was also developed to predict the “east–
west” dipole shown in the fourth EOF mode (Fig. 3d,h) based
on October sea ice DY in the Chukchi Sea (CC=−0.64;
Fig. 4h), October soil moisture DY on the Kamchatka Penin-
sula (CC= 0.72; Fig. 4i) and August–September SST DY
in the Arabian Sea (CC=−0.77; Fig. 4j). The atmospheric
anomalies in the lower troposphere and near surface, which
were associated with the above predictors and PC4, also had
similar impacts on haze pollution (Fig. S4k–n).

As shown in Fig. 5, multiple linear regression models
demonstrated good performance in simulating the variation
in each PC. The CCs between observed and predicted first to
fourth PCs were 0.82, 0.80, 0.75 and 0.93, respectively, all
of which were above the 99 % confidence level, indicating
that the model successfully reproduced each individual EOF
mode. Meanwhile, the yearly increment approach had the
ability to address the trend and its changes that were not ob-
viously mutational (Yin and Wang, 2016a). The CC between
observed and predicted PM2.5 concentrations before (after)
detrending by stages was 0.91 (0.63) in NC, 0.94 (0.61) in the
YRD and 0.83 (0.64) in the PRD in the leave-one-out vali-
dation (Fig. 2d–f). Thus, the SP-CV model simulated well
both the trend of and the interannual variation in PM2.5 con-

centration in the east of China. In addition, the RMSEs in
NC, the YRD and the PRD were 8.0, 4.8 and 5.2 µg m−3,
and the relative biases were 5.3 %, 6.2 % and 9.9 %, respec-
tively (Table 1), all of which were obviously smaller than
those of SP-SE. The PSS, which is an important indicator
of climate prediction, was also evaluated relative to the win-
ters of 2001–2019. The area-averaged PSS from SP-CV was
79.9 % in the east of China, which was 7.9 % higher than
that from SP-SE (Fig. 6). Although the SP-CV model per-
formed better than the SP-SE, especially that it could capture
the sharp downward trend after 2013 in NC and YRD, the
RMSEs of the SP-CV simulations for the period 2015–2019
increased up to 11.6, 6.5 and 5.3 µg m−3in NC, the YRD and
the PRD compared to that of the SP-SE simulations. Obvious
positive biases were found in the predictions of PM2.5 con-
centration after 2014 (Fig. 2d–f) because the SP-CV model
was short of information about the super-strict emission reg-
ulations (Fig. S2). Based on different levels of haze pollu-
tion, various degrees of air pollution control were carried out
in NC, the YRD and the PRD (Zhang and Geng, 2020). In
NC, where anthropogenic emissions were most prominently
restricted, the predicted biases were also the largest (Fig. 2d).
The predicted biases were the smallest in the PRD, while
those in the YRD were in between. These results were con-
sistent with different intensities of pollution control in the
three regions (Fig. 2e, f), which further indicated the impor-
tance of fully taking into account the impacts of climate vari-
ability and anthropogenic emissions.

4 PM2.5 prediction with integrated factors

As mentioned above, the SP-SE model trained by the SE-
PM2.5 DY considered the impacts of emission changes one-
sidedly and could simulate well the values and staged trends.
However, it completely failed to reproduce the interannual
variation in winter PM2.5 concentration in the east of China
(Fig. 2a–c). Differently, the predictors of climate variability
could introduce the interannual variation in winter PM2.5,
and the yearly increment approach had the ability to bring
in the slow trend. The SP-CV model successfully predicted
most of the trend of and interannual variation in PM2.5 con-
centration (Fig. 2d–f) but underestimated the sharp decreas-
ing trend (Fig. S2), which led to positive forecast biases after
2013 (Fig. 2d–f).

To fully contain predictive signals of human activities and
climate anomalies, the predicted PM2.5 DY values from SP-
SE and SP-CV model for the current year were added up,
and the sum was added to PM2.5 observations in the previ-
ous year to develop the final prediction model, i.e., the SP-
EC model. As expected, the performance of SP-EC model
was better than that of both SP-SE and SP-CV models. Area-
averaged PSS was 81.4 % in the east of China (Fig. 6). The
CC between observed and SP-EC-predicted PM2.5 concen-
trations before (after) detrending was 0.96 (0.74) in the east
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Figure 6. Distributions of PSS (shadings) and RMSE (dots) from (a) SP-SE, (b) SP-CV and (c) SP-EC. The boxes represent NC, the YRD
and the PRD, respectively, and the arrows point to the SP-EC-predicted PM2.5 in recycling independent tests (bars) and observations (dashed
lines) corresponding to the area. The subscript in the legend of (d) indicates the model trained from 2000 to this year, and the PM2.5 from
the next year to 2019 are independently predicted.

of China; the RMSE was 2.7 µg m−3, which was 43.8 %
(32.5 %) smaller than the RMSE of SP-SE (SP-CV) in the
leave-one-out validation. That is, the trend simulated by the
SP-EC model almost overlapped with the trend of observa-
tions (similar to results of SP-SE), and the interannual varia-
tion was also reproduced (similar to results of SP-CV). The
CCs between observed and SP-EC-predicted PM2.5 concen-

trations before (after) detrending were 0.93 (0.67) in NC,
0.95 (0.42) in the YRD and 0.87 (0.67) in the PRD (Fig. 2g–
i). The RMSEs were 6.8 in NC, 4.2 in YRD and 4.7 µg m−3

in PRD, which were 44.3 % (15.0 %), 32.3 % (12.5 %) and
30.9 % (9.6 %) lower than that of SP-SE (SP-CV), indicating
greater improvements in NC than in the other two regions
(Table 1). According to the relative biases, the SP-EC model
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Figure 7. Scatter plots of the reanalysis (x axis) and predictions of (y axis) PM2.5 concentration by SP-CV (green) and SP-EC (blue) in
(a) the east of China, (b) NC, (c) the YRD and (d) the PRD. The points during 2012–2019 are filled and the short lines between SP-CV and
SP-EC points indicate the calibrations.

also demonstrated a better skill in NC (5.1 %) than that in the
YRD (4.9 %) and the PRD (8.8 %) in the leave-one-out vali-
dation. As shown in Fig. 7, the decreases in PM2.5 resulting
from the implementation of strict emission control measures
in recent years were also reproduced by the SP-EC model.
The evident and positive biases in the SP-CV results were
largely corrected in the east of China, NC, the YRD and the
PRD (Fig. 7).

High spatial resolution was one of the advantages of the
seasonal prediction model developed in this study. That
is, the SP-EC model could predict winter PM2.5 concen-
tration at each 10 km× 10 km grid in the east of China.
When only considering emission predictors (i.e., SP-SE),
RMSEs > 12 µg m−3 were found in the middle part of the
study region, and the PSS was lower than 60 % in South
China and Inner Mongolia (Fig. 6a). When only consider-
ing climate predictors (i.e., SP-CV), RMSEs > 12 µg m−3

existed in Beijing and its surrounding areas, and PSS signif-
icantly increased compared to the result of SP-SE (Fig. 6b).
When integrating both of the emission predictors and cli-

mate predictors (i.e., SP-EC), the RMSE in each grid fur-
ther decreased, and the PSS also increased (Fig. 6c). In the
middle part of the study region, the PSS was higher than
80 %. In view of gaps between site observations and model
simulations, the SP-EC-predicted PM2.5 concentrations were
compared with site observations (Fig. 8). NC was the most
severely polluted area, and the SP-EC model could capture
the PM2.5 values and interannual differences. Particularly,
the SP-EC model reproduced the sudden rebound of PM2.5
pollution in 2018 (Fig. 8e) that was mainly the result of cli-
mate anomalies (Yin and Zhang, 2020).

Due to the limitation of the short sequence of data, recy-
cling independent tests (RITs) were designed to further ver-
ify the performance of the SP-EC model. In the RIT pre-
dictions, the prediction model was trained by samples from
2001 to the expiration year of training data, and the PM2.5
anomalies from the next year to 2019 were independently
predicted. For example, the prediction model trained by the
data from 2001 to 2014 can produce independent predictions
from 2015 to 2019. The expiration year of the training data
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Figure 8. SP-EC-predicted (shading) and site-observed (scatter) PM2.5 concentrations (units: µg m−3) in (a) 2014, (b) 2015, (c) 2016,
(d) 2017, (e) 2018 and (f) 2019. The boxes represent NC, the YRD and the PRD respectively.

moved forward from 2015 to 2019, so there were 15 inde-
pendent predictions. The PM2.5 concentration was indepen-
dently predicted five times for 2019, four times for 2018, and
so on. The PSS of PM2.5 anomalies was 100 %, not only rel-
ative to winters of 2001–2019 but also 2015–2019, indicat-
ing a high accuracy of prediction in the east of China. The
predicted values for each year did not vary much (Fig. 6d),
indicating a high reliability and robustness of the model. For
example, when the SP-EC model was trained by the samples
only from 2000 to 2014, the predicted PM2.5 anomalies for
2018 and 2019 were also close to the results of leave-one-out
validations and the measurements.

5 Conclusions and discussion

The change in haze pollution consisted of long-term trends,
interannual–decadal variations, synoptic disturbances and
so on. Seasonal prediction focused on predicting long-term
trends and interannual–decadal variations 1–3 months in ad-

vance (Wang et al., 2021). Because of the limitation of short
observational period, many previous studies employed the
number of haze days as a proxy of PM2.5 pollution to build
statistical prediction models (Yin and Wang, 2016a; Yin et
al., 2017; Dong et al., 2021; Zhao et al., 2021; Chang et al.,
2021). Since 2020, several high-resolution PM2.5 reanalysis
datasets have been successively released, which greatly in-
creased the possibility for direct seasonal prediction of PM2.5
concentration that is more familiar to decision makers and
the public (Yin et al., 2021).

In this study, two seasonal prediction models were sep-
arately trained by emission factor (i.e., SP-SE) or preced-
ing climate predictors (i.e., SP-CV) to discuss their relative
contributions. The SP-SE model could simulate the slow ris-
ing trend of PM2.5 concentration before 2012 and the strong
downward trend after 2012. However, it was incapable of im-
porting the interannual component. The SP-CV model ben-
efited from the year-to-year increment approach and could
introduce a large portion of the linear trend except the sharp
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decrease in winter PM2.5 concentration from 2013. Further-
more, the SP-CV model performed well in predicting the ob-
vious interannual variation in PM2.5 concentration. We inte-
grated the emission and climate factors to establish the final
prediction model (i.e., SP-EC), which could reproduce well
both the trend of and the interannual variation in PM2.5 con-
centration. The area-averaged PSS was 81.4 % in the east of
China and CC between observed and predicted PM2.5 con-
centrations before (after) the detrending was 0.96 (0.74). The
RMSEs were 6.8 in NC, 4.2 in the YRD and 4.7 µg m−3in
the PRD, which were 44.3 % (15.0 %), 32.3 % (12.5 %) and
30.9 % (9.6 %) lower than the results of SP-SE (SP-CV). Due
to the implementation of the super-strict emission control
measures, the air quality has been substantially improved,
and this improvement was also perfectly predicted by the
SP-EC model. During recycling independent tests, the PSS
of PM2.5 anomalies was 100 %, demonstrating high accu-
racy and robustness. The high-resolution PM2.5 prediction
could provide scientific support for air pollution control at
the regional and city levels. For example, real-time PM2.5
prediction is highly demanded for determining how to reduce
anthropogenic emissions and how much should be reduced;
10 km× 10 km gridded PM2.5 information also had the po-
tential to support finely and dynamically regional manage-
ment and collaborations.

This study mainly focused on developments of a seasonal
PM2.5 prediction model. Related theories and methods are
still exploratory and need further discoveries. Although the
SP-EC model was proven to be skilled, the underlying phys-
ical mechanisms of climate predictors were not sufficiently
explained and needed further in-deep studies. As shown in
Fig. 8f, the SP-EC model failed to predict well the evident
PM2.5 drops in the east of China caused by COVID-19 quar-
antines in the winter of 2019 (especially February in 2020)
(Yin et al., 2021). Therefore, such sudden fluctuations of
PM2.5 concentration were not involved in the established pre-
diction model. Furthermore, the EOF pattern of PM2.5 pos-
sibly changed under climate change and must influence the
climate component of PM2.5, which should be updated in
time. Although the SP-EC model had high spatial resolu-
tion, it could only output winter mean PM2.5 concentration.
It was meaningful to build sub-seasonal models to provide
more detailed predictions. Modern weather and climate fore-
casts were heavily dependent on numerical prediction mod-
els. Thus, it is imperative to design and develop numerical
models that target routine seasonal prediction of air pollution
(Yin et al., 2021).
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