Articles | Volume 22, issue 16
Atmos. Chem. Phys., 22, 10425–10441, 2022
Atmos. Chem. Phys., 22, 10425–10441, 2022
Research article
16 Aug 2022
Research article | 16 Aug 2022

Ozone–gravity wave interaction in the upper stratosphere/lower mesosphere

Axel Gabriel

Related subject area

Subject: Dynamics | Research Activity: Atmospheric Modelling | Altitude Range: Stratosphere | Science Focus: Physics (physical properties and processes)
How can Brewer–Dobson circulation trends be estimated from changes in stratospheric water vapour and methane?
Liubov Poshyvailo-Strube, Rolf Müller, Stephan Fueglistaler, Michaela I. Hegglin, Johannes C. Laube, C. Michael Volk, and Felix Ploeger
Atmos. Chem. Phys., 22, 9895–9914,,, 2022
Short summary
The semi-annual oscillation (SAO) in the upper troposphere and lower stratosphere (UTLS)
Ming Shangguan and Wuke Wang
Atmos. Chem. Phys., 22, 9499–9511,,, 2022
Short summary
Interactions between the stratospheric polar vortex and Atlantic circulation on seasonal to multi-decadal timescales
Oscar Dimdore-Miles, Lesley Gray, Scott Osprey, Jon Robson, Rowan Sutton, and Bablu Sinha
Atmos. Chem. Phys., 22, 4867–4893,,, 2022
Short summary
Impacts of three types of solar geoengineering on the Atlantic Meridional Overturning Circulation
Mengdie Xie, John C. Moore, Liyun Zhao, Michael Wolovick, and Helene Muri
Atmos. Chem. Phys., 22, 4581–4597,,, 2022
Short summary
Enhanced upward motion through the troposphere over the tropical western Pacific and its implications for the transport of trace gases from the troposphere to the stratosphere
Kai Qie, Wuke Wang, Wenshou Tian, Rui Huang, Mian Xu, Tao Wang, and Yifeng Peng
Atmos. Chem. Phys., 22, 4393–4411,,, 2022
Short summary

Cited articles

Albers, J. R., McCormack, J. P., and Nathan, T. R.: Stratospheric ozone and the morphology of the northern hemisphere planetary waveguide, J. Geophys. Res.-Atmos., 118, 563–576,, 2013. 
Alexander, M. J.: Interpretations of observed climatological patterns in stratospheric gravity wave variance, J. Geophys. Res., 103, 8627–8640, 1998. 
Alexander, M. J. and Holton, J. R.: On the spectrum of vertically propagating gravity waves generated by a transient heat source, Atmos. Chem. Phys., 4, 923–932,, 2004. 
Andrews, D. G., Holton, J. R., and Leovy, C. B.: Middle Atmosphere Dynamics, Academic Press, San Diego, California, 489 pp., 1987. 
Baumgarten, K. and Stober, G.: On the evaluation of the phase relation between temperature and wind tides based on ground-based measurements and reanalysis data in the middle atmosphere, Ann. Geophys., 37, 581–602,, 2019. 
Short summary
Recent measurements show some evidence that the amplitudes of atmospheric gravity waves (horizontal wavelengths of 100–2000 km), which propagate from the troposphere (0–10 km) to the stratosphere and mesosphere (10–100 km), increase more strongly with height during daytime than during nighttime. This study shows that ozone–temperature coupling in the upper stratosphere can principally produce such an amplification. The results will help to improve atmospheric circulation models.
Final-revised paper