Articles | Volume 21, issue 2
https://doi.org/10.5194/acp-21-813-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-813-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Quantification of the role of stabilized Criegee intermediates in the formation of aerosols in limonene ozonolysis
Yiwei Gong
State Key Laboratory of Environmental Simulation and Pollution
Control, College of Environmental Sciences and Engineering, Peking
University, Beijing 100871, China
Zhongming Chen
CORRESPONDING AUTHOR
State Key Laboratory of Environmental Simulation and Pollution
Control, College of Environmental Sciences and Engineering, Peking
University, Beijing 100871, China
Related authors
Xiaoning Xuan, Zhongming Chen, Yiwei Gong, Hengqing Shen, and Shiyi Chen
Atmos. Chem. Phys., 20, 5513–5526, https://doi.org/10.5194/acp-20-5513-2020, https://doi.org/10.5194/acp-20-5513-2020, 2020
Short summary
Short summary
In this study, we found that the effective field-derived Henry's law constant for the ground rainwater and the gas-phase H2O2 was about 2.5 times that of the theoretical value, and the effective gas–particle partitioning coefficient for the aerosol particle and the gas-phase H2O2 was 4 orders of magnitude higher than the theoretical one. We suggested the missing source of H2O2 in the particulate phase, e.g. the contribution from the decomposition/hydrolysis of organic peroxides.
Yiwei Gong, Zhongming Chen, and Huan Li
Atmos. Chem. Phys., 18, 15105–15123, https://doi.org/10.5194/acp-18-15105-2018, https://doi.org/10.5194/acp-18-15105-2018, 2018
Short summary
Short summary
In limonene ozonolysis, the endocyclic double bond is inclined to generate hydroxy radicals, while the exocyclic double bond has a higher fraction of forming stabilized Criegee intermediates. The oxidation that happens on the exocyclic double bond greatly contributes to the organic peroxides, which account for a considerable proportion of secondary organic aerosol. Terpenes with multiple double bonds may have more complex effects on the atmosphere than previously thought.
Jiayun Xu, Zhongming Chen, Xuan Qin, and Ping Dong
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-444, https://doi.org/10.5194/acp-2022-444, 2022
Revised manuscript not accepted
Short summary
Short summary
We investigated the photooxidation of isoprene in the presence of water. We found that water enhanced the formation of methacrolein and methyl vinyl ketone in the first-generation reactions by changing the structures of the reaction intermediates and raised formic acid and acetic acid yields considerably in the multi-generation reactions. The results of this study help understand the fate of isoprene in the atmosphere and improve the effect of the atmospheric simulations.
Jingcheng Hu, Zhongming Chen, Xuan Qin, and Ping Dong
Atmos. Chem. Phys., 22, 6971–6987, https://doi.org/10.5194/acp-22-6971-2022, https://doi.org/10.5194/acp-22-6971-2022, 2022
Short summary
Short summary
The gas–particle partitioning process of glyoxal and methylglyoxal could contribute to secondary organic aerosol formation. Here, we launched five observations in different seasons and simultaneously measured glyoxal and methylglyoxal in the gas and particle phases. Compared to reversible pathways, irreversible pathways played a dominant role with a proportion of more than 90 % in the ambient atmosphere, and the proportion was influenced by relative humidity and inorganic components in aerosols.
Xiaoning Xuan, Zhongming Chen, Yiwei Gong, Hengqing Shen, and Shiyi Chen
Atmos. Chem. Phys., 20, 5513–5526, https://doi.org/10.5194/acp-20-5513-2020, https://doi.org/10.5194/acp-20-5513-2020, 2020
Short summary
Short summary
In this study, we found that the effective field-derived Henry's law constant for the ground rainwater and the gas-phase H2O2 was about 2.5 times that of the theoretical value, and the effective gas–particle partitioning coefficient for the aerosol particle and the gas-phase H2O2 was 4 orders of magnitude higher than the theoretical one. We suggested the missing source of H2O2 in the particulate phase, e.g. the contribution from the decomposition/hydrolysis of organic peroxides.
Yiwei Gong, Zhongming Chen, and Huan Li
Atmos. Chem. Phys., 18, 15105–15123, https://doi.org/10.5194/acp-18-15105-2018, https://doi.org/10.5194/acp-18-15105-2018, 2018
Short summary
Short summary
In limonene ozonolysis, the endocyclic double bond is inclined to generate hydroxy radicals, while the exocyclic double bond has a higher fraction of forming stabilized Criegee intermediates. The oxidation that happens on the exocyclic double bond greatly contributes to the organic peroxides, which account for a considerable proportion of secondary organic aerosol. Terpenes with multiple double bonds may have more complex effects on the atmosphere than previously thought.
Yin Wang, Zhongming Chen, Qinqin Wu, Hao Liang, Liubin Huang, Huan Li, Keding Lu, Yusheng Wu, Huabin Dong, Limin Zeng, and Yuanhang Zhang
Atmos. Chem. Phys., 16, 10985–11000, https://doi.org/10.5194/acp-16-10985-2016, https://doi.org/10.5194/acp-16-10985-2016, 2016
Short summary
Short summary
Comparison of modeled and measured peroxide concentrations at a rural site in the summer North China Plain demonstrated an underestimation during biomass burning events and an overestimation on haze days, which were related to the direct production of peroxides from biomass burning and the heterogeneous uptake of peroxides by aerosols, respectively. Our findings are of great significance for comprehensively understanding the chemical budget of atmospheric peroxides in detail.
Huan Li, Zhongming Chen, Liubin Huang, and Dao Huang
Atmos. Chem. Phys., 16, 1837–1848, https://doi.org/10.5194/acp-16-1837-2016, https://doi.org/10.5194/acp-16-1837-2016, 2016
Short summary
Short summary
The formation, gas-particle partitioning, and evolution of atmospheric organic peroxides are unclear. We investigated the ozonolysis of α-pinene, and focused on peroxides. We found that gas-particle partitioning coefficients of peroxides are much higher than the values from our theoretical prediction, and some gaseous peroxides undergo rapid heterogeneous decomposition on SOA particles in the presence of water vapor, resulting in the additional production of hydrogen peroxide.
Q. Q. Wu, L. B. Huang, H. Liang, Y. Zhao, D. Huang, and Z. M. Chen
Atmos. Chem. Phys., 15, 6851–6866, https://doi.org/10.5194/acp-15-6851-2015, https://doi.org/10.5194/acp-15-6851-2015, 2015
Short summary
Short summary
The present study provides the first measurement for the uptake coefficient of gaseous peroxide compounds including peroxyacetic acid and hydrogen peroxide on the ambient particles (PM2.5 and Asian Storm Dust) over a wide range of relative humidity. The measured uptake coefficient values suggest that the heterogeneous reaction on the ambient particles plays an important role in the atmospheric budgets of peroxide compounds and potentially affects the components of aerosols in the atmosphere.
H. Liang, Z. M. Chen, D. Huang, Q. Q. Wu, and L. B. Huang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-15-2055-2015, https://doi.org/10.5194/acpd-15-2055-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
The present field measurements have provided strong evidence for the existence of peroxyformic acid (HC(O)OOH) in the atmosphere for the first time. Moreover, the potential impact of peroxyformic acid chemistry on the formic acid production and the radical budget has been evaluated on the basis of model calculations. Our findings are of importance for a full understanding of the cycling of oxidants and the source of organic acids in the atmosphere.
H. Liang, Z. M. Chen, D. Huang, Y. Zhao, and Z. Y. Li
Atmos. Chem. Phys., 13, 11259–11276, https://doi.org/10.5194/acp-13-11259-2013, https://doi.org/10.5194/acp-13-11259-2013, 2013
R. Zhang, J. Jing, J. Tao, S.-C. Hsu, G. Wang, J. Cao, C. S. L. Lee, L. Zhu, Z. Chen, Y. Zhao, and Z. Shen
Atmos. Chem. Phys., 13, 7053–7074, https://doi.org/10.5194/acp-13-7053-2013, https://doi.org/10.5194/acp-13-7053-2013, 2013
D. Huang, Z. M. Chen, Y. Zhao, and H. Liang
Atmos. Chem. Phys., 13, 5671–5683, https://doi.org/10.5194/acp-13-5671-2013, https://doi.org/10.5194/acp-13-5671-2013, 2013
Related subject area
Subject: Aerosols | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Characterization of the particle size distribution, mineralogy, and Fe mode of occurrence of dust-emitting sediments from the Mojave Desert, California, USA
Measurement report: Effects of transition metal ions on the optical properties of humic-like substances (HULIS) reveal a structural preference – a case study of PM2.5 in Beijing, China
The Impact of Aqueous Phase Replacement Reaction on the Phase State of Internally Mixed Organic/ammonium Aerosols
Probing Iceland's dust-emitting sediments: particle size distribution, mineralogy, cohesion, Fe mode of occurrence, and reflectance spectra signatures
Photoenhanced sulfate formation by the heterogeneous uptake of SO2 on non-photoactive mineral dust
Comparison of water-soluble and water-insoluble organic compositions attributing to different light absorption efficiency between residential coal and biomass burning emissions
Technical note: High-resolution analyses of concentrations and sizes of black carbon particles deposited on northwest Greenland over the past 350 years – Part 1. Continuous flow analysis of the SIGMA-D ice core using a Wide-Range Single-Particle Soot Photometer and a high-efficiency nebulizer
Suppressed atmospheric chemical aging of cooking organic aerosol particles in wintertime conditions
Formation and loss of light absorbance by phenolic aqueous SOA by ●OH and an organic triplet excited state
Nocturnal Atmospheric Synergistic Oxidation Reduces the Formation of Low-volatility Organic Compounds from Biogenic Emissions
Technical Note: A technique to convert NO2 to NO2− with S(IV) and its application to measuring nitrate photolysis
Measurement report: The Fifth International Workshop on Ice Nucleation Phase 1 (FIN-01): Intercomparison of Single Particle Mass Spectrometers
Distribution, chemical, and molecular composition of high and low molecular weight humic-like substances in ambient aerosols
Desorption lifetimes and activation energies influencing gas–surface interactions and multiphase chemical kinetics
Molecular analysis of secondary organic aerosol and brown carbon from the oxidation of indole
Secondary organic aerosol formed by Euro 5 gasoline vehicle emissions: chemical composition and gas-to-particle phase partitioning
Assessment of the contribution of residential waste burning to ambient PM10 concentrations in Hungary and Romania
Source differences in the components and cytotoxicity of PM2.5 from automobile exhaust, coal combustion, and biomass burning contributing to urban aerosol toxicity
Chamber studies of OH + dimethyl sulfoxide and dimethyl disulfide: insights into the dimethyl sulfide oxidation mechanism
Low-temperature ice nucleation of sea spray and secondary marine aerosols under cirrus cloud conditions
Temperature-dependent aqueous OH kinetics of C2–C10 linear and terpenoid alcohols and diols: new rate coefficients, structure–activity relationship, and atmospheric lifetimes
A possible unaccounted source of nitrogen-containing compound formation in aerosols: amines reacting with secondary ozonides
Seasonal variations in photooxidant formation and light absorption in aqueous extracts of ambient particles
Variability in sediment particle size, mineralogy, and Fe mode of occurrence across dust-source inland drainage basins: the case of the lower Drâa Valley, Morocco
Gas–particle partitioning of toluene oxidation products: an experimental and modeling study
Chemically speciated air pollutant emissions from open burning of household solid waste from South Africa
Bulk and molecular-level composition of primary organic aerosol from wood, straw, cow dung, and plastic burning
Volatile oxidation products and secondary organosiloxane aerosol from D5 + OH at varying OH exposures
Molecular fingerprints and health risks of smoke from home-use incense burning
High enrichment of heavy metals in fine particulate matter through dust aerosol generation
Production of ice-nucleating particles (INPs) by fast-growing phytoplankton
Technical note: In situ measurements and modelling of the oxidation kinetics in films of a cooking aerosol proxy using a quartz crystal microbalance with dissipation monitoring (QCM-D)
Particulate emissions from cooking activities: emission factors, emission dynamics, and mass spectrometric analysis for different preparation methods
Contrasting impacts of humidity on the ozonolysis of monoterpenes: insights into the multi-generation chemical mechanism
Quantifying the seasonal variations in and regional transport of PM2.5 in the Yangtze River Delta region, China: characteristics, sources, and health risks
Opinion: Atmospheric multiphase chemistry – past, present, and future
Distinct photochemistry in glycine particles mixed with different atmospheric nitrate salts
Effects of storage conditions on the molecular-level composition of organic aerosol particles
Characterization of gas and particle emissions from open burning of household solid waste from South Africa
Chemically distinct particle-phase emissions from highly controlled pyrolysis of three wood types
Predicting photooxidant concentrations in aerosol liquid water based on laboratory extracts of ambient particles
Physicochemical characterization of free troposphere and marine boundary layer ice-nucleating particles collected by aircraft in the eastern North Atlantic
Large differences of highly oxygenated organic molecules (HOMs) and low-volatile species in secondary organic aerosols (SOAs) formed from ozonolysis of β-pinene and limonene
Impact of fossil and non-fossil fuel sources on the molecular compositions of water-soluble humic-like substances in PM2.5 at a suburban site of Yangtze River Delta, China
Technical note: Improved synthetic routes to cis- and trans-(2-methyloxirane-2,3-diyl)dimethanol (cis- and trans-β-isoprene epoxydiol)
Technical note: Intercomparison study of the elemental carbon radiocarbon analysis methods using synthetic known samples
Chemical evolution of primary and secondary biomass burning aerosols during daytime and nighttime
Formation of highly oxygenated organic molecules from the oxidation of limonene by OH radical: significant contribution of H-abstraction pathway
Measurement report: Atmospheric aging of combustion-derived particles – impact on stable free radical concentration and its ability to produce reactive oxygen species in aqueous media
Photoaging of phenolic secondary organic aerosol in the aqueous phase: evolution of chemical and optical properties and effects of oxidants
Adolfo González-Romero, Cristina González-Flórez, Agnesh Panta, Jesús Yus-Díez, Patricia Córdoba, Andres Alastuey, Natalia Moreno, Melani Hernández-Chiriboga, Konrad Kandler, Martina Klose, Roger N. Clark, Bethany L. Ehlmann, Rebecca N. Greenberger, Abigail M. Keebler, Phil Brodrick, Robert Green, Paul Ginoux, Xavier Querol, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 24, 9155–9176, https://doi.org/10.5194/acp-24-9155-2024, https://doi.org/10.5194/acp-24-9155-2024, 2024
Short summary
Short summary
In this research, we studied the dust-emitting properties of crusts and aeolian ripples from the Mojave Desert. These properties are key to understanding the effect of dust upon climate. We found two different playa lakes according to the groundwater regime, which implies differences in crusts' cohesion state and mineralogy, which can affect the dust emission potential and properties. We also compare them with Moroccan Sahara crusts and Icelandic top sediments.
Juanjuan Qin, Leiming Zhang, Yuanyuan Qin, Shaoxuan Shi, Jingnan Li, Zhao Shu, Yuwei Gao, Ting Qi, Jihua Tan, and Xinming Wang
Atmos. Chem. Phys., 24, 7575–7589, https://doi.org/10.5194/acp-24-7575-2024, https://doi.org/10.5194/acp-24-7575-2024, 2024
Short summary
Short summary
The present research unveiled that acidity dominates while transition metal ions harmonize with the light absorption properties of humic-like substances (HULIS). Cu2+ has quenching effects on HULIS by complexation, hydrogen substitution, or electrostatic adsorption, with aromatic structures of HULIS. Such effects are less pronounced if from Mn2+, Ni2+, Zn2+, and Cu2+. Oxidized HULIS might contain electron-donating groups, whereas N-containing compounds might contain electron-withdrawing groups.
Hui Yang, Fengfeng Dong, Li Xia, Qishen Huang, Shufeng Pang, and Yunhong Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2024-1556, https://doi.org/10.5194/egusphere-2024-1556, 2024
Short summary
Short summary
Atmospheric secondary aerosols often contain a mix of organic and inorganic components, which can undergo complex reactions, leading to significant uncertainty in their phase state. Using molecular spectroscopic methods, we demonstrated that the aqueous replacement reaction, unique to these mixed aerosols and promoted by the presence of ammonium, significantly alters their phase behavior. This effect complicates the prediction of aerosol phase states and the corresponding atmospheric processes.
Adolfo González-Romero, Cristina González-Flórez, Agnesh Panta, Jesús Yus-Díez, Patricia Córdoba, Andres Alastuey, Natalia Moreno, Konrad Kandler, Martina Klose, Roger N. Clark, Bethany L. Ehlmann, Rebecca N. Greenberger, Abigail M. Keebler, Phil Brodrick, Robert O. Green, Xavier Querol, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 24, 6883–6910, https://doi.org/10.5194/acp-24-6883-2024, https://doi.org/10.5194/acp-24-6883-2024, 2024
Short summary
Short summary
The knowledge of properties from dust emitted in high latitudes such as in Iceland is scarce. This study focuses on the particle size, mineralogy, cohesion, and iron mode of occurrence and reflectance spectra of dust-emitting sediments. Icelandic top sediments have lower cohesion state, coarser particle size, distinctive mineralogy, and 3-fold bulk Fe content, with a large presence of magnetite compared to Saharan crusts.
Wangjin Yang, Jiawei Ma, Hongxing Yang, Fu Li, and Chong Han
Atmos. Chem. Phys., 24, 6757–6768, https://doi.org/10.5194/acp-24-6757-2024, https://doi.org/10.5194/acp-24-6757-2024, 2024
Short summary
Short summary
We provide evidence that light enhances the conversion of SO2 to sulfates on non-photoactive mineral dust, where triplet states of SO2 (3SO2) can act as a pivotal trigger to generate sulfates. Photochemical sulfate formation depends on H2O, O2, and basicity of mineral dust. The SO2 photochemistry on non-photoactive mineral dust contributes to sulfates, highlighting previously unknown pathways to better explain the missing sources of atmospheric sulfates.
Lu Zhang, Jin Li, Yaojie Li, Xinlei Liu, Zhihan Luo, Guofeng Shen, and Shu Tao
Atmos. Chem. Phys., 24, 6323–6337, https://doi.org/10.5194/acp-24-6323-2024, https://doi.org/10.5194/acp-24-6323-2024, 2024
Short summary
Short summary
Brown carbon (BrC) is related to radiative forcing and climate change. The BrC fraction from residential coal and biomass burning emissions, which were the major source of BrC, was characterized at the molecular level. The CHOS aromatic compounds explained higher light absorption efficiencies of biomass burning emissions compared to coal. The unique formulas of coal combustion aerosols were characterized by higher unsaturated compounds, and such information could be used for source appointment.
Kumiko Goto-Azuma, Remi Dallmayr, Yoshimi Ogawa-Tsukagawa, Nobuhiro Moteki, Tatsuhiro Mori, Sho Ohata, Yutaka Kondo, Makoto Koike, Motohiro Hirabayashi, Jun Ogata, Kyotaro Kitamura, Kenji Kawamura, Koji Fujita, Sumito Matoba, Naoko Nagatsuka, Akane Tsushima, Kaori Fukuda, and Teruo Aoki
EGUsphere, https://doi.org/10.5194/egusphere-2024-1496, https://doi.org/10.5194/egusphere-2024-1496, 2024
Short summary
Short summary
We developed a continuous flow analysis system to analyse an ice core from northwest Greenland, and coupled it with an improved BC measurement technique. This coupling allowed accurate high-resolution analyses of BC particles' size distributions and concentrations with diameters between 70 nm and 4 μm for the past 350 years. Our results provide crucial insights into BC's climatic effects. We also found that previous ice core studies substantially underestimated the BC mass concentrations.
Wenli Liu, Longkun He, Yingjun Liu, Keren Liao, Qi Chen, and Mikinori Kuwata
Atmos. Chem. Phys., 24, 5625–5636, https://doi.org/10.5194/acp-24-5625-2024, https://doi.org/10.5194/acp-24-5625-2024, 2024
Short summary
Short summary
Cooking is a major source of particles in urban areas. Previous studies demonstrated that the chemical lifetimes of cooking organic aerosols (COAs) were much shorter (~minutes) than the values reported by field observations (~hours). We conducted laboratory experiments to resolve the discrepancy by considering suppressed reactivity under low temperature. The parameterized k2–T relationships and observed surface temperature data were used to estimate the chemical lifetimes of COA particles.
Stephanie Arciva, Lan Ma, Camille Mavis, Chrystal Guzman, and Cort Anastasio
Atmos. Chem. Phys., 24, 4473–4485, https://doi.org/10.5194/acp-24-4473-2024, https://doi.org/10.5194/acp-24-4473-2024, 2024
Short summary
Short summary
We measured changes in light absorption during the aqueous oxidation of six phenols with hydroxyl radical (●OH) or an organic triplet excited state (3C*). All the phenols formed light-absorbing secondary brown carbon (BrC), which then decayed with continued oxidation. Extrapolation to ambient conditions suggest ●OH is the dominant sink of secondary phenolic BrC in fog/cloud drops, while 3C* controls the lifetime of this light absorption in particle water.
Han Zang, Zekun Luo, Chenxi Li, Ziyue Li, Dandan Huang, and Yue Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2024-1131, https://doi.org/10.5194/egusphere-2024-1131, 2024
Short summary
Short summary
Atmospheric organics are subject to synergistic oxidation by different oxidants, yet the mechanisms of such processes are poorly understood. Here, using direct measurements and kinetic modelling, we probe the nocturnal synergistic oxidation mechanism of α-pinene by O3 and NO3 radicals and in particular the fate of peroxy radical intermediates of different origins, which will deepen our understanding of the monoterpene oxidation chemistry and its contribution to atmospheric particle formation.
Aaron Lieberman, Julietta Picco, Murat Onder, and Cort Anastasio
Atmos. Chem. Phys., 24, 4411–4419, https://doi.org/10.5194/acp-24-4411-2024, https://doi.org/10.5194/acp-24-4411-2024, 2024
Short summary
Short summary
We developed a method that uses aqueous S(IV) to quantitatively convert NO2 to NO2−, which allows both species to be quantified using the Griess method. As an example of the utility of the method, we quantified both photolysis channels of nitrate, with and without a scavenger for hydroxyl radical (·OH). The results show that without a scavenger, ·OH reacts with nitrite to form nitrogen dioxide, suppressing the apparent quantum yield of NO2− and enhancing that of NO2.
Xiaoli Shen, David M. Bell, Hugh Coe, Naruki Hiranuma, Fabian Mahrt, Nicholas A. Marsden, Claudia Mohr, Daniel M. Murphy, Harald Saathoff, Johannes Schneider, Jacqueline Wilson, Maria A. Zawadowicz, Alla Zelenyuk, Paul J. DeMott, Ottmar Möhler, and Daniel J. Cziczo
EGUsphere, https://doi.org/10.5194/egusphere-2024-928, https://doi.org/10.5194/egusphere-2024-928, 2024
Short summary
Short summary
Single particle mass spectrometer (SPMS) is commonly used to measure chemical composition and mixing state of aerosol particles. Intercomparison of SPMSs was conducted. All instruments reported similar size ranges and common spectral features. The instrument-specific detection efficiency was found to be more dependent on particle size than type. All instruments differentiated secondary organic aerosol, soot, and soil dust, but had difficulties differentiating among specific minerals and dusts.
Xingjun Fan, Ao Cheng, Xufang Yu, Tao Cao, Dan Chen, Wenchao Ji, Yongbing Cai, Fande Meng, Jianzhong Song, and Ping'an Peng
Atmos. Chem. Phys., 24, 3769–3783, https://doi.org/10.5194/acp-24-3769-2024, https://doi.org/10.5194/acp-24-3769-2024, 2024
Short summary
Short summary
Molecular-level characteristics of high molecular weight (HMW) and low MW (LMW) humic-like substances (HULIS) were comprehensively investigated, where HMW HULIS had larger chromophores and larger molecular size than LMW HULIS and exhibited higher aromaticity and humification. Electrospray ionization high-resolution mass spectrometry revealed more aromatic molecules in HMW HULIS. HMW HULIS had more CHON compounds, while LMW HULIS had more CHO compounds.
Daniel A. Knopf, Markus Ammann, Thomas Berkemeier, Ulrich Pöschl, and Manabu Shiraiwa
Atmos. Chem. Phys., 24, 3445–3528, https://doi.org/10.5194/acp-24-3445-2024, https://doi.org/10.5194/acp-24-3445-2024, 2024
Short summary
Short summary
The initial step of interfacial and multiphase chemical processes involves adsorption and desorption of gas species. This study demonstrates the role of desorption energy governing the residence time of the gas species at the environmental interface. A parameterization is formulated that enables the prediction of desorption energy based on the molecular weight, polarizability, and oxygen-to-carbon ratio of the desorbing chemical species. Its application to gas–particle interactions is discussed.
Feng Jiang, Kyla Siemens, Claudia Linke, Yanxia Li, Yiwei Gong, Thomas Leisner, Alexander Laskin, and Harald Saathoff
Atmos. Chem. Phys., 24, 2639–2649, https://doi.org/10.5194/acp-24-2639-2024, https://doi.org/10.5194/acp-24-2639-2024, 2024
Short summary
Short summary
We investigated the optical properties, chemical composition, and formation mechanisms of secondary organic aerosol (SOA) and brown carbon (BrC) from the oxidation of indole with and without NO2 in the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) simulation chamber. This work is one of the very few to link the optical properties and chemical composition of indole SOA with and without NO2 by simulation chamber experiments.
Evangelia Kostenidou, Baptiste Marques, Brice Temime-Roussel, Yao Liu, Boris Vansevenant, Karine Sartelet, and Barbara D'Anna
Atmos. Chem. Phys., 24, 2705–2729, https://doi.org/10.5194/acp-24-2705-2024, https://doi.org/10.5194/acp-24-2705-2024, 2024
Short summary
Short summary
Secondary organic aerosol (SOA) from gasoline vehicles can be a significant source of particulate matter in urban areas. Here the chemical composition of secondary volatile organic compounds and SOA produced by photo-oxidation of Euro 5 gasoline vehicle emissions was studied. The volatility of the SOA formed was calculated. Except for the temperature and the concentration of the aerosol, additional parameters may play a role in the gas-to-particle partitioning.
András Hoffer, Aida Meiramova, Ádám Tóth, Beatrix Jancsek-Turóczi, Gyula Kiss, Ágnes Rostási, Erika Andrea Levei, Luminita Marmureanu, Attila Machon, and András Gelencsér
Atmos. Chem. Phys., 24, 1659–1671, https://doi.org/10.5194/acp-24-1659-2024, https://doi.org/10.5194/acp-24-1659-2024, 2024
Short summary
Short summary
Specific tracer compounds identified previously in controlled test burnings of different waste types in the laboratory were detected and quantified in ambient PM10 samples collected in five Hungarian and four Romanian settlements. Back-of-the-envelope calculations based on the relative emission factors of individual tracers suggested that the contribution of solid waste burning particulate emissions to ambient PM10 mass concentrations may be as high as a few percent.
Xiao-San Luo, Weijie Huang, Guofeng Shen, Yuting Pang, Mingwei Tang, Weijun Li, Zhen Zhao, Hanhan Li, Yaqian Wei, Longjiao Xie, and Tariq Mehmood
Atmos. Chem. Phys., 24, 1345–1360, https://doi.org/10.5194/acp-24-1345-2024, https://doi.org/10.5194/acp-24-1345-2024, 2024
Short summary
Short summary
PM2.5 are air pollutants threatening health globally, but they are a mixture of chemical compositions from many sources and result in unequal toxicity. Which composition from which source of PM2.5 as the most hazardous object is a question hindering effective pollution control policy-making. With chemical and toxicity experiments, we found automobile exhaust and coal combustion to be priority emissions with higher toxic compositions for precise air pollution control, ensuring public health.
Matthew B. Goss and Jesse H. Kroll
Atmos. Chem. Phys., 24, 1299–1314, https://doi.org/10.5194/acp-24-1299-2024, https://doi.org/10.5194/acp-24-1299-2024, 2024
Short summary
Short summary
The chemistry driving dimethyl sulfide (DMS) oxidation and subsequent sulfate particle formation in the atmosphere is poorly constrained. We oxidized two related compounds (dimethyl sulfoxide and dimethyl disulfide) in the laboratory under varied NOx conditions and measured the gas- and particle-phase products. These results demonstrate that both the OH addition and OH abstraction pathways for DMS oxidation contribute to particle formation via mechanisms that do not involve the SO2 intermediate.
Ryan J. Patnaude, Kathryn A. Moore, Russell J. Perkins, Thomas C. J. Hill, Paul J. DeMott, and Sonia M. Kreidenweis
Atmos. Chem. Phys., 24, 911–928, https://doi.org/10.5194/acp-24-911-2024, https://doi.org/10.5194/acp-24-911-2024, 2024
Short summary
Short summary
In this study we examined the effect of atmospheric aging on sea spray aerosols (SSAs) to form ice and how newly formed secondary marine aerosols (SMAs) may freeze at cirrus temperatures (< −38 °C). Results show that SSAs freeze at different relative humidities (RHs) depending on the temperature and that the ice-nucleating ability of SSA was not hindered by atmospheric aging. SMAs are shown to freeze at high RHs and are likely inefficient at forming ice at cirrus temperatures.
Bartłomiej Witkowski, Priyanka Jain, Beata Wileńska, and Tomasz Gierczak
Atmos. Chem. Phys., 24, 663–688, https://doi.org/10.5194/acp-24-663-2024, https://doi.org/10.5194/acp-24-663-2024, 2024
Short summary
Short summary
This article reports the results of the kinetic measurements for the aqueous oxidation of the 29 aliphatic alcohols by hydroxyl radical (OH) at different temperatures. The data acquired and the literature data were used to optimize a model for predicting the aqueous OH reactivity of alcohols and carboxylic acids and to estimate the atmospheric lifetimes of five terpenoic alcohols. The kinetic data provided new insights into the mechanism of aqueous oxidation of aliphatic molecules by the OH.
Junting Qiu, Xinlin Shen, Jiangyao Chen, Guiying Li, and Taicheng An
Atmos. Chem. Phys., 24, 155–166, https://doi.org/10.5194/acp-24-155-2024, https://doi.org/10.5194/acp-24-155-2024, 2024
Short summary
Short summary
We studied reactions of secondary ozonides (SOZs) with amines. SOZs formed from ozonolysis of β-caryophyllene and α-humulene are found to be reactive to ethylamine and methylamine. Products from SOZs with various conformations reacting with the same amine had different functional groups. Our findings indicate that interaction of SOZs with amines in the atmosphere is very complicated, which is potentially a hitherto unrecognized source of N-containing compound formation.
Lan Ma, Reed Worland, Laura Heinlein, Chrystal Guzman, Wenqing Jiang, Christopher Niedek, Keith J. Bein, Qi Zhang, and Cort Anastasio
Atmos. Chem. Phys., 24, 1–21, https://doi.org/10.5194/acp-24-1-2024, https://doi.org/10.5194/acp-24-1-2024, 2024
Short summary
Short summary
We measured concentrations of three photooxidants – the hydroxyl radical, triplet excited states of organic carbon, and singlet molecular oxygen – in fine particles collected over a year. Concentrations are highest in extracts of fresh biomass burning particles, largely because they have the highest particle concentrations and highest light absorption. When normalized by light absorption, rates of formation for each oxidant are generally similar for the four particle types we observed.
Adolfo González-Romero, Cristina González-Flórez, Agnesh Panta, Jesús Yus-Díez, Cristina Reche, Patricia Córdoba, Natalia Moreno, Andres Alastuey, Konrad Kandler, Martina Klose, Clarissa Baldo, Roger N. Clark, Zongbo Shi, Xavier Querol, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 23, 15815–15834, https://doi.org/10.5194/acp-23-15815-2023, https://doi.org/10.5194/acp-23-15815-2023, 2023
Short summary
Short summary
The effect of dust emitted from desertic surfaces upon climate and ecosystems depends on size and mineralogy, but data from soil mineral atlases of desert soils are scarce. We performed particle-size distribution, mineralogy, and Fe speciation in southern Morocco. Results show coarser particles with high quartz proportion are near the elevated areas, while in depressed areas, sizes are finer, and proportions of clays and nano-Fe oxides are higher. This difference is important for dust modelling.
Victor Lannuque, Barbara D'Anna, Evangelia Kostenidou, Florian Couvidat, Alvaro Martinez-Valiente, Philipp Eichler, Armin Wisthaler, Markus Müller, Brice Temime-Roussel, Richard Valorso, and Karine Sartelet
Atmos. Chem. Phys., 23, 15537–15560, https://doi.org/10.5194/acp-23-15537-2023, https://doi.org/10.5194/acp-23-15537-2023, 2023
Short summary
Short summary
Large uncertainties remain in understanding secondary organic aerosol (SOA) formation from toluene oxidation. In this study, speciation measurements in gaseous and particulate phases were carried out, providing partitioning and volatility data on individual toluene SOA components at different temperatures. A new detailed oxidation mechanism was developed to improve modeled speciation, and effects of different processes involved in gas–particle partitioning at the molecular scale are explored.
Xiaoliang Wang, Hatef Firouzkouhi, Judith C. Chow, John G. Watson, Steven Sai Hang Ho, Warren Carter, and Alexandra S. M. De Vos
Atmos. Chem. Phys., 23, 15375–15393, https://doi.org/10.5194/acp-23-15375-2023, https://doi.org/10.5194/acp-23-15375-2023, 2023
Short summary
Short summary
Open burning of municipal solid waste emits chemicals that are harmful to the environment. This paper reports source profiles and emission factors for PM2.5 species and acidic/alkali gases from laboratory combustion of 10 waste categories (including plastics and biomass) that represent open burning in South Africa. Results will be useful for health and climate impact assessments, speciated emission inventories, source-oriented dispersion models, and receptor-based source apportionment.
Jun Zhang, Kun Li, Tiantian Wang, Erlend Gammelsæter, Rico K. Y. Cheung, Mihnea Surdu, Sophie Bogler, Deepika Bhattu, Dongyu S. Wang, Tianqu Cui, Lu Qi, Houssni Lamkaddam, Imad El Haddad, Jay G. Slowik, Andre S. H. Prevot, and David M. Bell
Atmos. Chem. Phys., 23, 14561–14576, https://doi.org/10.5194/acp-23-14561-2023, https://doi.org/10.5194/acp-23-14561-2023, 2023
Short summary
Short summary
We conducted burning experiments to simulate various types of solid fuel combustion, including residential burning, wildfires, agricultural burning, cow dung, and plastic bag burning. The chemical composition of the particles was characterized using mass spectrometers, and new potential markers for different fuels were identified using statistical analysis. This work improves our understanding of emissions from solid fuel burning and offers support for refined source apportionment.
Hyun Gu Kang, Yanfang Chen, Yoojin Park, Thomas Berkemeier, and Hwajin Kim
Atmos. Chem. Phys., 23, 14307–14323, https://doi.org/10.5194/acp-23-14307-2023, https://doi.org/10.5194/acp-23-14307-2023, 2023
Short summary
Short summary
D5 is an emerging anthropogenic pollutant that is ubiquitous in indoor and urban environments, and the OH oxidation of D5 forms secondary organosiloxane aerosol (SOSiA). Application of a kinetic box model that uses a volatility basis set (VBS) showed that consideration of oxidative aging (aging-VBS) predicts SOSiA formation much better than using a standard-VBS model. Ageing-dependent parameterization is needed to accurately model SOSiA to assess the implications of siloxanes for air quality.
Kai Song, Rongzhi Tang, Jingshun Zhang, Zichao Wan, Yuan Zhang, Kun Hu, Yuanzheng Gong, Daqi Lv, Sihua Lu, Yu Tan, Ruifeng Zhang, Ang Li, Shuyuan Yan, Shichao Yan, Baoming Fan, Wenfei Zhu, Chak K. Chan, Maosheng Yao, and Song Guo
Atmos. Chem. Phys., 23, 13585–13595, https://doi.org/10.5194/acp-23-13585-2023, https://doi.org/10.5194/acp-23-13585-2023, 2023
Short summary
Short summary
Incense burning is common in Asia, posing threats to human health and air quality. However, less is known about its emissions and health risks. Full-volatility organic species from incense-burning smoke are detected and quantified. Intermediate-volatility volatile organic compounds (IVOCs) are crucial organics accounting for 19.2 % of the total emission factors (EFs) and 40.0 % of the secondary organic aerosol (SOA) estimation, highlighting the importance of incorporating IVOCs into SOA models.
Qianqian Gao, Shengqiang Zhu, Kaili Zhou, Jinghao Zhai, Shaodong Chen, Qihuang Wang, Shurong Wang, Jin Han, Xiaohui Lu, Hong Chen, Liwu Zhang, Lin Wang, Zimeng Wang, Xin Yang, Qi Ying, Hongliang Zhang, Jianmin Chen, and Xiaofei Wang
Atmos. Chem. Phys., 23, 13049–13060, https://doi.org/10.5194/acp-23-13049-2023, https://doi.org/10.5194/acp-23-13049-2023, 2023
Short summary
Short summary
Dust is a major source of atmospheric aerosols. Its chemical composition is often assumed to be similar to the parent soil. However, this assumption has not been rigorously verified. Dust aerosols are mainly generated by wind erosion, which may have some chemical selectivity. Mn, Cd and Pb were found to be highly enriched in fine-dust (PM2.5) aerosols. In addition, estimation of heavy metal emissions from dust generation by air quality models may have errors without using proper dust profiles.
Daniel C. O. Thornton, Sarah D. Brooks, Elise K. Wilbourn, Jessica Mirrielees, Alyssa N. Alsante, Gerardo Gold-Bouchot, Andrew Whitesell, and Kiana McFadden
Atmos. Chem. Phys., 23, 12707–12729, https://doi.org/10.5194/acp-23-12707-2023, https://doi.org/10.5194/acp-23-12707-2023, 2023
Short summary
Short summary
A major uncertainty in our understanding of clouds and climate is the sources and properties of the aerosol on which clouds grow. We found that aerosol containing organic matter from fast-growing marine phytoplankton was a source of ice-nucleating particles (INPs). INPs facilitate freezing of ice crystals at warmer temperatures than otherwise possible and therefore change cloud formation and properties. Our results show that ecosystem processes and the properties of sea spray aerosol are linked.
Adam Milsom, Shaojun Qi, Ashmi Mishra, Thomas Berkemeier, Zhenyu Zhang, and Christian Pfrang
Atmos. Chem. Phys., 23, 10835–10843, https://doi.org/10.5194/acp-23-10835-2023, https://doi.org/10.5194/acp-23-10835-2023, 2023
Short summary
Short summary
Aerosols and films are found indoors and outdoors. Our study measures and models reactions of a cooking aerosol proxy with the atmospheric oxidant ozone relying on a low-cost but sensitive technique based on mass changes and film rigidity. We found that film morphology changed and film rigidity increased with evidence of surface crust formation during ozone exposure. Our modelling results demonstrate clear potential to take this robust method to the field for reaction monitoring.
Julia Pikmann, Frank Drewnick, Friederike Fachinger, and Stephan Borrmann
EGUsphere, https://doi.org/10.5194/egusphere-2023-2172, https://doi.org/10.5194/egusphere-2023-2172, 2023
Short summary
Short summary
Cooking activities can contribute substantially to indoor and ambient aerosol. We performed a comprehensive study with laboratory measurements cooking 19 different dishes and ambient measurements at two Christmas markets measuring various particle properties and trace gases of the emissions in real time. Similar emission characteristics were observed for dishes with the same preparation method, mainly due to similar cooking temperature and use of oil, with barbecues as especially strong source.
Shan Zhang, Lin Du, Zhaomin Yang, Narcisse Tsona Tchinda, Jianlong Li, and Kun Li
Atmos. Chem. Phys., 23, 10809–10822, https://doi.org/10.5194/acp-23-10809-2023, https://doi.org/10.5194/acp-23-10809-2023, 2023
Short summary
Short summary
In this study, we have investigated the distinct impacts of humidity on the ozonolysis of two structurally different monoterpenes (limonene and Δ3-carene). We found that the molecular structure of precursors can largely influence the SOA formation under high RH by impacting the multi-generation reactions. Our results could advance knowledge on the roles of water content in aerosol formation and inform ongoing research on particle environmental effects and applications in models.
Yangzhihao Zhan, Min Xie, Wei Zhao, Tijian Wang, Da Gao, Pulong Chen, Jun Tian, Kuanguang Zhu, Shu Li, Bingliang Zhuang, Mengmeng Li, Yi Luo, and Runqi Zhao
Atmos. Chem. Phys., 23, 9837–9852, https://doi.org/10.5194/acp-23-9837-2023, https://doi.org/10.5194/acp-23-9837-2023, 2023
Short summary
Short summary
Although the main source contribution of pollution is secondary inorganic aerosols in Nanjing, health risks mainly come from industry sources and vehicle emissions. Therefore, the development of megacities should pay more attention to the health burden of vehicle emissions, coal combustion, and industrial processes. This study provides new insight into assessing the relationship between source apportionment and health risks and can provide valuable insight into air pollution strategies.
Jonathan P. D. Abbatt and A. R. Ravishankara
Atmos. Chem. Phys., 23, 9765–9785, https://doi.org/10.5194/acp-23-9765-2023, https://doi.org/10.5194/acp-23-9765-2023, 2023
Short summary
Short summary
With important climate and air quality impacts, atmospheric multiphase chemistry involves gas interactions with aerosol particles and cloud droplets. We summarize the status of the field and discuss potential directions for future growth. We highlight the importance of a molecular-level understanding of the chemistry, along with atmospheric field studies and modeling, and emphasize the necessity for atmospheric multiphase chemists to interact widely with scientists from neighboring disciplines.
Zhancong Liang, Zhihao Cheng, Ruifeng Zhang, Yiming Qin, and Chak K. Chan
Atmos. Chem. Phys., 23, 9585–9595, https://doi.org/10.5194/acp-23-9585-2023, https://doi.org/10.5194/acp-23-9585-2023, 2023
Short summary
Short summary
In this study, we found that the photolysis of sodium nitrate leads to a much quicker decay of free amino acids (FAAs, with glycine as an example) in the particle phase than ammonium nitrate photolysis, which is likely due to the molecular interactions between FAAs and different nitrate salts. Since sodium nitrate likely co-exists with FAAs in the coarse-mode particles, particulate nitrate photolysis can possibly contribute to a rapid decay of FAAs and affect atmospheric nitrogen cycling.
Julian Resch, Kate Wolfer, Alexandre Barth, and Markus Kalberer
Atmos. Chem. Phys., 23, 9161–9171, https://doi.org/10.5194/acp-23-9161-2023, https://doi.org/10.5194/acp-23-9161-2023, 2023
Short summary
Short summary
Detailed chemical analysis of organic aerosols is necessary to better understand their effects on climate and health. Aerosol samples are often stored for days to months before analysis. We examined the effects of storage conditions (i.e., time, temperature, and aerosol storage on filters or as solvent extracts) on composition and found significant changes in the concentration of individual compounds, indicating that sample storage can strongly affect the detailed chemical particle composition.
Xiaoliang Wang, Hatef Firouzkouhi, Judith C. Chow, John G. Watson, Warren Carter, and Alexandra S. M. De Vos
Atmos. Chem. Phys., 23, 8921–8937, https://doi.org/10.5194/acp-23-8921-2023, https://doi.org/10.5194/acp-23-8921-2023, 2023
Short summary
Short summary
Open burning of household and municipal solid waste is a common practice in developing countries and is a significant source of air pollution. However, few studies have measured emissions from open burning of waste. This study determined gas and particulate emissions from open burning of 10 types of household solid-waste materials. These results can improve emission inventories, air quality management, and assessment of the health and climate effects of open burning of household waste.
Anita M. Avery, Mariam Fawaz, Leah R. Williams, Tami Bond, and Timothy B. Onasch
Atmos. Chem. Phys., 23, 8837–8854, https://doi.org/10.5194/acp-23-8837-2023, https://doi.org/10.5194/acp-23-8837-2023, 2023
Short summary
Short summary
Pyrolysis is the thermal decomposition of fuels like wood which occurs during combustion or as an isolated process. During combustion, some pyrolysis products are emitted directly, while others are oxidized in the combustion process. This work describes the chemical composition of particle-phase pyrolysis products in order to investigate both the uncombusted emissions from wildfires and the fuel that participates in combustion.
Lan Ma, Reed Worland, Wenqing Jiang, Christopher Niedek, Chrystal Guzman, Keith J. Bein, Qi Zhang, and Cort Anastasio
Atmos. Chem. Phys., 23, 8805–8821, https://doi.org/10.5194/acp-23-8805-2023, https://doi.org/10.5194/acp-23-8805-2023, 2023
Short summary
Short summary
Although photooxidants are important in airborne particles, little is known of their concentrations. By measuring oxidants in a series of particle dilutions, we predict their concentrations in aerosol liquid water (ALW). We find •OH concentrations in ALW are on the order of 10−15 M, similar to their cloud/fog values, while oxidizing triplet excited states and singlet molecular oxygen have ALW values of ca. 10−13 M and 10−12 M, respectively, roughly 10–100 times higher than in cloud/fog drops.
Daniel A. Knopf, Peiwen Wang, Benny Wong, Jay M. Tomlin, Daniel P. Veghte, Nurun N. Lata, Swarup China, Alexander Laskin, Ryan C. Moffet, Josephine Y. Aller, Matthew A. Marcus, and Jian Wang
Atmos. Chem. Phys., 23, 8659–8681, https://doi.org/10.5194/acp-23-8659-2023, https://doi.org/10.5194/acp-23-8659-2023, 2023
Short summary
Short summary
Ambient particle populations and associated ice-nucleating particles (INPs)
were examined from particle samples collected on board aircraft in the marine
boundary layer and free troposphere in the eastern North Atlantic during
summer and winter. Chemical imaging shows distinct differences in the
particle populations seasonally and with sampling altitudes, which are
reflected in the INP types. Freezing parameterizations are derived for
implementation in cloud-resolving and climate models.
Dandan Liu, Yun Zhang, Shujun Zhong, Shuang Chen, Qiaorong Xie, Donghuan Zhang, Qiang Zhang, Wei Hu, Junjun Deng, Libin Wu, Chao Ma, Haijie Tong, and Pingqing Fu
Atmos. Chem. Phys., 23, 8383–8402, https://doi.org/10.5194/acp-23-8383-2023, https://doi.org/10.5194/acp-23-8383-2023, 2023
Short summary
Short summary
Based on ultra-high-resolution mass spectrometry analysis, we found that β-pinene oxidation-derived highly oxygenated organic molecules (HOMs) exhibit higher yield at high ozone concentration, while limonene oxidation-derived HOMs exhibit higher yield at moderate ozone concentration. The distinct molecular response of HOMs and low-volatile species in different biogenic secondary organic aerosols to ozone concentrations provides a new clue for more accurate air quality prediction and management.
Mengying Bao, Yan-Lin Zhang, Fang Cao, Yihang Hong, Yu-Chi Lin, Mingyuan Yu, Hongxing Jiang, Zhineng Cheng, Rongshuang Xu, and Xiaoying Yang
Atmos. Chem. Phys., 23, 8305–8324, https://doi.org/10.5194/acp-23-8305-2023, https://doi.org/10.5194/acp-23-8305-2023, 2023
Short summary
Short summary
The interaction between the sources and molecular compositions of humic-like substances (HULIS) at Nanjing, China, was explored. Significant fossil fuel source contributions to HULIS were found in the 14C results from biomass burnng and traffic emissions. Increasing biogenic secondary organic aerosol (SOA) products and anthropogenic aromatic compounds were detected in summer and winter, respectively.
Molly Frauenheim, Jason D. Surratt, Zhenfa Zhang, and Avram Gold
Atmos. Chem. Phys., 23, 7859–7866, https://doi.org/10.5194/acp-23-7859-2023, https://doi.org/10.5194/acp-23-7859-2023, 2023
Short summary
Short summary
We report synthesis of the isoprene-derived photochemical oxidation products trans- and cis-β-epoxydiols in high overall yields from inexpensive, readily available starting compounds. Protection/deprotection steps or time-consuming purification is not required, and the reactions can be scaled up to gram quantities. The procedures provide accessibility of these important compounds to atmospheric chemistry laboratories with only basic capabilities in organic synthesis.
Xiangyun Zhang, Jun Li, Sanyuan Zhu, Junwen Liu, Ping Ding, Shutao Gao, Chongguo Tian, Yingjun Chen, Ping'an Peng, and Gan Zhang
Atmos. Chem. Phys., 23, 7495–7502, https://doi.org/10.5194/acp-23-7495-2023, https://doi.org/10.5194/acp-23-7495-2023, 2023
Short summary
Short summary
The results show that 14C elemental carbon (EC) was not only related to the isolation method but also to the types and proportions of the biomass sources in the sample. The hydropyrolysis (Hypy) method, which can be used to isolate a highly stable portion of ECHypy and avoid charring, is a more effective and stable approach for the matrix-independent 14C quantification of EC in aerosols, and the 13C–ECHypy and non-fossil ECHypy values of SRM1649b were –24.9 ‰ and 11 %, respectively.
Amir Yazdani, Satoshi Takahama, John K. Kodros, Marco Paglione, Mauro Masiol, Stefania Squizzato, Kalliopi Florou, Christos Kaltsonoudis, Spiro D. Jorga, Spyros N. Pandis, and Athanasios Nenes
Atmos. Chem. Phys., 23, 7461–7477, https://doi.org/10.5194/acp-23-7461-2023, https://doi.org/10.5194/acp-23-7461-2023, 2023
Short summary
Short summary
Organic aerosols directly emitted from wood and pellet stove combustion are found to chemically transform (approximately 15 %–35 % by mass) under daytime aging conditions simulated in an environmental chamber. A new marker for lignin-like compounds is found to degrade at a different rate than previously identified biomass burning markers and can potentially provide indication of aging time in ambient samples.
Hao Luo, Luc Vereecken, Hongru Shen, Sungah Kang, Iida Pullinen, Mattias Hallquist, Hendrik Fuchs, Andreas Wahner, Astrid Kiendler-Scharr, Thomas F. Mentel, and Defeng Zhao
Atmos. Chem. Phys., 23, 7297–7319, https://doi.org/10.5194/acp-23-7297-2023, https://doi.org/10.5194/acp-23-7297-2023, 2023
Short summary
Short summary
Oxidation of limonene, an element emitted by trees and chemical products, by OH, a daytime oxidant, forms many highly oxygenated organic molecules (HOMs), including C10-20 compounds. HOMs play an important role in new particle formation and growth. HOM formation can be explained by the chemistry of peroxy radicals. We found that a minor branching ratio initial pathway plays an unexpected, significant role. Considering this pathway enables accurate simulations of HOMs and other concentrations.
Heather L. Runberg and Brian J. Majestic
Atmos. Chem. Phys., 23, 7213–7223, https://doi.org/10.5194/acp-23-7213-2023, https://doi.org/10.5194/acp-23-7213-2023, 2023
Short summary
Short summary
Environmentally persistent free radicals (EPFRs) are an emerging pollutant found in soot particles. Understanding how these change as they move through the atmosphere is important to human health. Here, soot was generated in the laboratory and exposed to simulated sunlight. The concentrations and characteristics of EPFRs in the soot were measured and found to be unchanged. However, it was also found that the ability of soot to form hydroxyl radicals was stronger for fresh soot.
Wenqing Jiang, Christopher Niedek, Cort Anastasio, and Qi Zhang
Atmos. Chem. Phys., 23, 7103–7120, https://doi.org/10.5194/acp-23-7103-2023, https://doi.org/10.5194/acp-23-7103-2023, 2023
Short summary
Short summary
We studied how aqueous-phase secondary organic aerosol (aqSOA) form and evolve from a phenolic carbonyl commonly present in biomass burning smoke. The composition and optical properties of the aqSOA are significantly affected by photochemical reactions and are dependent on the oxidants' concentration and identity in water. During photoaging, the aqSOA initially becomes darker, but prolonged aging leads to the formation of volatile products, resulting in significant mass loss and photobleaching.
Cited articles
Ahmad, W., Coeur, C., Cuisset, A., Coddeville, P., and Tomas, A.: Effects of
scavengers of Criegee intermediates and OH radicals on the formation of
secondary organic aerosol in the ozonolysis of limonene, J. Aerosol Sci.,
110, 70–83, https://doi.org/10.1016/j.jaerosci.2017.05.010, 2017.
Andersson-Sköld, Y. and Simpson, D.: Secondary organic aerosol formation
in northern Europe: A model study, J. Geophys. Res., 106, 7357–7374, https://doi.org/10.1029/2000JD900656, 2001.
Anglada, J. M., Aplincourt, P., Bofill, J. M., and Cremer, D.: Atmospheric
formation of OH radicals and H2O2 from alkene ozonolysis under
humid conditions, Chem. Phys. Chem., 3, 215–221, https://doi.org/10.1002/1439-7641(20020215)3:2<215::AID-CPHC215>3.0.CO;2-3, 2002.
Aplincourt, P. and Ruiz-Loìpez, M. F.: Theoretical study of formic acid
anhydride formation from carbonyl oxide in the atmosphere, J. Phys. Chem. A,
104, 380–388, https://doi.org/10.1021/jp9928208, 2000.
Aroeira, G. J. R., Abbott, A. S., Elliott, S. N., Turney, J. M., and
Schaefer, H. F.: The addition of methanol to Criegee intermediates, Phys.
Chem. Chem. Phys., 21, 17760–17771, https://doi.org/10.1039/C9CP03480C, 2019.
Atkinson, R.: Gas-phase tropospheric chemistry of organic compounds: A
review, Atmos. Environ. Part A, 24, 1–41, https://doi.org/10.1016/j.atmosenv.2007.10.068, 1990.
Atkinson, R. and Arey, J.: Atmospheric degradation of volatile organic
compounds, Chem. Rev., 103, 4605–4638, https://doi.org/10.1021/cr0206420, 2003.
Bateman, A. P., Bertram, A. K., and Martin, S. T.: Hygroscopic influence on
the semisolid-to-liquid transition of secondary organic materials, J. Phys.
Chem. A, 119, 4386–4395, https://doi.org/10.1021/jp508521c, 2015.
Bateman, A. P., Gong, Z. H., Liu, P. F., Sato, B., Cirino, G., Zhang, Y.,
Artaxo, P., Bertram, A. K., Manzi, A. O., Rizzo, L. V., Souza, R. A. F.,
Zaveri, R. A., and Martin, S. T.: Sub-micrometre particulate matter is
primarily in liquid form over Amazon rainforest, Nat. Geosci,. 6, 34–37,
https://doi.org/10.1038/ngeo2599, 2016.
Berndt, T., Böge, O., and Stratmann, F.: Gas-phase ozonolysis of
α-pinene: gaseous products and particle formation, Atmos. Environ.,
37, 3933–3945, https://doi.org/10.1016/S1352-2310(03)00501-6, 2003.
Berndt, T., Kaethner, R., Voigtländer, J., Stratmann, F., Pfeifle,
M., Reichle, P., Sipilä, M., Kulmala, M., and Olzmann, M.: Kinetics of
the unimolecular reaction of CH2OO and the bimolecular reactions with
the water monomer, acetaldehyde and acetone under atmospheric conditions,
Phys. Chem. Chem. Phys., 17, 19862–19873, https://doi.org/10.1039/C5CP02224J, 2015.
Bonn, B., Schuster, G., and Moortgat, G. K.: Influence of water vapor on the
process of new particle formation during monoterpene ozonolysis, J. Phys.
Chem. A, 106, 2869–2881, https://doi.org/10.1021/jp012713p, 2002.
Bracco, L. L. B., Tucceri, M. E., Escalona, A., Diaz-de-Mera, Y.,
Aranda, A., Rodriguez, A. M., and Rodriguez, D.: New
particle formation from the reactions of ozone with indene and styrene,
Phys. Chem. Chem. Phys., 21, 11214–11225, https://doi.org/10.1039/C9CP00912D, 2019.
Brown, S. K. and Sim, M. R.: Concentrations of volatile organic compounds in
indoor air – a review, Indoor Air, 4, 123–134, https://doi.org/10.1111/j.1600-0668.1994.t01-2-00007.x, 1994.
Brune, W. H.: The chamber wall index for gas-wall interactions in
atmospheric environmental enclosures, Environ. Sci. Technol., 53,
3645–3652, https://doi.org/10.1021/acs.est.8b06260, 2019.
Cabezas, C. and Endo, Y.: Observation of hydroperoxyethyl formate from the
reaction between the methyl Criegee intermediate and formic acid, Phys.
Chem. Chem. Phys., 22, 446, https://doi.org/10.1039/C9CP05030B, 2020.
Carslaw, N.: A new detailed chemical model for indoor air pollution, Atmos.
Environ., 41, 1164–1179, https://doi.org/10.1016/j.atmosenv.2006.09.038, 2007.
Chang, Y. P., Chang, H. H., and Lin, J. J. M.: Kinetics of the simplest
Criegee intermediate reaction with ozone studied using a mid-infrared
quantum cascade laser spectrometer, Phys. Chem. Chem. Phys., 20, 97–102,
https://doi.org/10.1039/C7CP06653H, 2018.
Chen, H. W., Ho, K. F., Lee, S. C., and Nichol, J. E.: Biogenic volatile
organic compounds (BVOC) in ambient air over Hong Kong: analytical
methodology and field measurement, Intern. J. Environ. Anal. Chem., 90,
988–999, https://doi.org/10.1080/03067310903108360, 2010.
Chen, L., Wang, W. L., Wang, W. N., Liu, Y. L., Liu, F. Y., Liu, N., and
Wang, B. Z.: Water-catalyzed decomposition of the simplest Criegee
intermediate CH2OO, Theor. Chem. Acc., 135, 131, https://doi.org/10.1007/s00214-016-1894-9, 2016.
Chen, L., Huang, Y., Xue, Y., Shen, Z., Cao, J., and Wang, W.: Mechanistic and kinetics investigations of oligomer formation from Criegee intermediate reactions with hydroxyalkyl hydroperoxides, Atmos. Chem. Phys., 19, 4075–4091, https://doi.org/10.5194/acp-19-4075-2019, 2019.
Chen, Z. M., Wang, H. L., Zhu, L. H., Wang, C. X., Jie, C. Y., and Hua, W.: Aqueous-phase ozonolysis of methacrolein and methyl vinyl ketone: a potentially important source of atmospheric aqueous oxidants, Atmos. Chem. Phys., 8, 2255–2265, https://doi.org/10.5194/acp-8-2255-2008, 2008.
Chhantyal-Pun, R., Rotavera, B., McGillen, M, R., Khan, M. A. H., Eskola, A.
J., Caravan, R. L., Blacher, L., Tew, D. P., Osborn, D. L., Percival, C. J.,
Taatjes, C. A., Shallcross, D. E., and Orr-Ewing, A. J.: Criegee
intermediate reactions with carboxylic acids: a potential source of
secondary organic aerosol in the atmosphere, ACS Earth Space Chem., 2,
833–842, https://doi.org/10.1021/acsearthspacechem.8b00069, 2018.
Chuang, W. K. and Donahue, N. M.: Dynamic consideration of smog chamber experiments, Atmos. Chem. Phys., 17, 10019–10036, https://doi.org/10.5194/acp-17-10019-2017, 2017.
Criegee, R. and Wenner, G.: Die Ozonisierung des 9,10-Oklins, Liebigs Ann.
Chem., 564, 9–15, https://doi.org/10.1002/jlac.19495640103, 1949.
Drozd, G. T. and Donahue, N. M.: Pressure dependence of stabilized Criegee
intermediate formation from a sequence of alkenes, J. Phys. Chem., 115,
4381–4387, https://doi.org/10.1021/jp2001089, 2011.
Elsamra, R. M., Jalan, A., Buras, Z. J., Middaugh, J. E., and Green, W. H.:
Temperature- and pressure-dependent kinetics of CH2OO +
CH3COCH3 and CH2OO + CH3CHO: direct measurements and
theoretical analysis, Int. J. Chem. Kinet., 48, 474–488, https://doi.org/10.1002/kin.21007, 2016.
Emanuelsson, E. U., Watne, A. K., Lutz, A., Ljungström, E., and
Hallquist, M.: Influence of humidity, temperature, and radicals on the
formation and thermal properties of secondary organic aerosol (SOA) from
ozonolysis of βpinene, J. Phys. Chem. A, 117, 10346–10358, https://doi.org/10.1021/jp4010218, 2013.
Enami, S. and Colussi, A. J.: Criegee chemistry on aqueous organic surfaces,
J. Phys. Chem. Lett., 8, 1615–1623, https://doi.org/10.1021/acs.jpclett.7b00434,
2017a.
Enami, S. and Colussi, A. J.: Reactions of Criegee intermediates with
alcohols at air-aqueous interfaces, J. Phys. Chem. A, 121, 5175–5182,
https://doi.org/10.1021/acs.jpca.7b04272, 2017b.
Enami, S. and Colussi, A. J.: Efficient scavenging of Criegee intermediates
on water by surface-active cis-pinonic acid, Phys. Chem. Chem. Phys., 19,
17044–17051, https://doi.org/10.1039/C7CP03869K, 2017c.
Enami, S., Hoffmann, M. R., and Colussi, A. J.: Prompt formation of organic
acids in pulse ozonation of terpenes on aqueous surfaces, J. Phys. Chem.
Lett., 1, 2374–2379, https://doi.org/10.1021/jz100847a, 2010.
Ezell, M. J., Johnson, S. N., Yu, Y., Perraud, V., Bruns, E. A., Alexander,
M. L., Zelenyuk, A., Dabdub, D., and Finlayson-Pitts, B. J.: A new aerosol
flow system for photochemical and thermal studies of tropospheric aerosols,
Aerosol Sci. Technol., 44, 329–338, https://doi.org/10.1080/02786821003639700, 2010.
Faust, J. A., Wong, J. P. S., Lee, A. K. Y., and Abbatt, J. P. D.: Role of
aerosol liquid water in secondary organic aerosol formation from volatile
organic compounds, Environ. Sci. Technol., 51, 1405–1413, https://doi.org/10.1021/acs.est.6b04700, 2017.
Fick, J., Pommer, L., Nilsson, C., and Andersson, B.: Effect of OH radicals,
relative humidity, and time on the composition of the products formed in the
ozonolysis of α-pinene, Atmos. Environ., 37, 4087–4096, https://doi.org/10.1016/S1352-2310(03)00522-3, 2003.
Galloway, M. M., Loza, C. L., Chhabra, P. S., Chan, A. W. H., Yee, L. D.,
Seinfeld, J. H., and Keutsch, F. N.: Analysis of photochemical and dark
glyoxal uptake: implications for SOA formation, Geophys. Res. Lett., 38,
L17811, https://doi.org/10.1029/2011GL048514, 2011.
Gong, Y., Chen, Z., and Li, H.: The oxidation regime and SOA composition in limonene ozonolysis: roles of different double bonds, radicals, and water, Atmos. Chem. Phys., 18, 15105–15123, https://doi.org/10.5194/acp-18-15105-2018, 2018.
Hasson, A. S., Ho, A. W., Kuwata, K. T., and Paulson, S. E.: Production of
stabilized Criegee intermediates and peroxides in the gas phase ozonolysis
of alkenes: 2. Asymmetric and biogenic alkenes, J. Geophys. Res., 106,
34143–34153, https://doi.org/10.1029/2001JD000598, 2001.
Hasson, A. S., Chung, M. Y., Kuwata, K. T., Converse, A. D., Krohn, D., and
Paulson, S. E.: Reaction of Criegee intermediates with water vapors an
additional source of OH radicals in alkene ozonolysis, J. Phys. Chem. A,
107, 6176–6182, https://doi.org/10.1021/jp0346007, 2003.
Heine, N., Arata, C., Goldstein, A. H., Houle, F. A., and Wilson, K. R.:
Multiphase mechanism for the production of sulfuric acid from SO2 by
Criegee intermediates formed during the heterogeneous reaction of ozone with
squalene, J. Phys. Chem. Lett., 9, 3504–3510, https://doi.org/10.1021/acs.jpclett.8b01171, 2018.
Herrmann, H., Schaefer, T., Tilgner, A., Styler, S. A., Weller, C., Teich,
M., and Otto, T.: Tropospheric aqueous-phase chemistry: kinetics,
mechanisms, and its coupling to a changing gas phase, Chem. Rev., 115,
4259–4334, https://doi.org/10.1021/cr500447k, 2015.
Hua, W., Chen, Z. M., Jie, C. Y., Kondo, Y., Hofzumahaus, A., Takegawa, N., Chang, C. C., Lu, K. D., Miyazaki, Y., Kita, K., Wang, H. L., Zhang, Y. H., and Hu, M.: Atmospheric hydrogen peroxide and organic hydroperoxides during PRIDE-PRD'06, China: their concentration, formation mechanism and contribution to secondary aerosols, Atmos. Chem. Phys., 8, 6755–6773, https://doi.org/10.5194/acp-8-6755-2008, 2008.
Huang, D., Chen, Z. M., Zhao, Y., and Liang, H.: Newly observed peroxides and the water effect on the formation and removal of hydroxyalkyl hydroperoxides in the ozonolysis of isoprene, Atmos. Chem. Phys., 13, 5671–5683, https://doi.org/10.5194/acp-13-5671-2013, 2013.
Huang, H. L., Chao, W., and Lin, J. J. M.: Kinetics of a Criegee
intermediate that would survive high humidity and may oxidize atmospheric
SO2, P. Natl. Acad. Sci., 112, 10857–10862, https://doi.org/10.1073/pnas.1513149112, 2015.
Iinuma, Y., Böge, O., Gnauk, T., and Herrmann, H.: Aerosol-chamber
study of the α-pinene/O3 reaction: influence of particle
acidity on aerosol yields and products, Atmos. Environ., 38, 761–773, https://doi.org/10.1016/j.atmosenv.2003.10.015, 2004.
Jenkin, M. E.: Modelling the formation and composition of secondary organic aerosol from α- and β-pinene ozonolysis using MCM v3, Atmos. Chem. Phys., 4, 1741–1757, https://doi.org/10.5194/acp-4-1741-2004, 2004.
Jia, C. R., Batterman, S., and Godwin, C.: VOCs in industrial, urban and
suburban neighborhoods, Part 1: Indoor and outdoor concentrations,
variation, and risk drivers, Atmos. Environ., 42, 2083–2100, https://doi.org/10.1016/j.atmosenv.2007.11.055, 2008.
Jiang, L., Lan, R., Xu, Y. S., Zhang, W. J., and Yang, W.: Reaction of
stabilized Criegee intermediates from ozonolysis of limonene with water: Ab
Initio and DFT study, Int. J. Mol. Sci., 14, 5784–5805, https://doi.org/10.3390/ijms14035784, 2013.
Johnson, D. and Marston, G.: The gas-phase ozonolysis of unsaturated
volatile organic compounds in the troposphere, Chem. Soc. Rev., 37,
699–716, https://doi.org/10.1039/b704260b, 2008.
Jonsson, Å. M., Hallquist, M., and Ljungström, E.: The effect of temperature and water on secondary organic aerosol formation from ozonolysis of limonene, Δ3-carene and α-pinene, Atmos. Chem. Phys., 8, 6541–6549, https://doi.org/10.5194/acp-8-6541-2008, 2008.
Khan, M. A. H., Percival, C. J., Caravan, R. L., Taatjes, C. A., and
Shallcross, D. E.: Criegee intermediates and their impacts on the
troposphere, Environ. Sci., 20, 437–453, https://doi.org/10.1039/C7EM00585G, 2018.
Khan, M. A. K., Morris, W. C., Galloway, M., Shallcross, B. M. A., Percival,
C. J., and Shallcross, D. E.: An estimation of the levels of stabilized
Criegee intermediates in the UK urban and rural atmosphere using the
steady-state approximation and the potential effects of these intermediates
on tropospheric oxidation cycles, Int. J. Chem. Kinet., 49, 611–621, https://doi.org/10.1002/kin.21101, 2017.
Kim, S., Guenther, A., Lefer, B., Flynn, J., Griffin, R., Rutter, A. P.,
Gong, L. W., and Cevik, B. K.: Potential role of stabilized Criegee radicals
in sulfuric acid production in a high biogenic VOC environment, Environ.
Sci. Technol., 49, 3383–3391, https://doi.org/10.1021/es505793t, 2015.
Kjaergaard, H. G., Kurten, T., Nielsen, L. B., Jørgensen, S., and
Wennberg, P. O.: Criegee intermediates react with ozone, J. Phys. Chem.
Lett., 4, 2525–2529, https://doi.org/10.1021/jz401205m, 2013.
Knote, C., Hodzic, A., Jimenez, J. L., Volkamer, R., Orlando, J. J., Baidar, S., Brioude, J., Fast, J., Gentner, D. R., Goldstein, A. H., Hayes, P. L., Knighton, W. B., Oetjen, H., Setyan, A., Stark, H., Thalman, R., Tyndall, G., Washenfelder, R., Waxman, E., and Zhang, Q.: Simulation of semi-explicit mechanisms of SOA formation from glyoxal in aerosol in a 3-D model, Atmos. Chem. Phys., 14, 6213–6239, https://doi.org/10.5194/acp-14-6213-2014, 2014.
Kristensen, K., Cui, T., Zhang, H., Gold, A., Glasius, M., and Surratt, J. D.: Dimers in α-pinene secondary organic aerosol: effect of hydroxyl radical, ozone, relative humidity and aerosol acidity, Atmos. Chem. Phys., 14, 4201–4218, https://doi.org/10.5194/acp-14-4201-2014, 2014.
Kumar, M. and Francisco, J. S.: Elucidating the molecular mechanisms of
Criegee-amine chemistry in the gas phase and aqueous surface environments,
Chem. Sci., 10, 743–751, https://doi.org/10.1039/C8SC03514H, 2019.
Kumar, M., Busch, D. H., Subramaniam, B., and Thompson, W. H.: Barrierless
tautomerization of Criegee intermediates via acid catalysis, Phys. Chem.
Chem. Phys., 16, 22968, https://doi.org/10.1039/C4CP03065F, 2014a.
Kumar, M., Busch, D. H., Subramaniam, B., and Thompson, W. H.: Role of
tunable acid catalysis in decomposition of hydroxyalkyl hydroperoxides and
mechanistic implications for tropospheric chemistry, J. Phys. Chem. A, 118,
9701–9711, https://doi.org/10.1021/jp505100x, 2014b.
Kumar, M., Zhong, J., Francisco, J. S., and Zeng, X. C.: Criegee
intermediate-hydrogen sulfide chemistry at the air/water interface, Chem.
Sci., 8, 5385–5391, https://doi.org/10.1039/C7SC01797A, 2017.
Kumar, M., Zhong, J., Zeng, X. C., and Francisco, J. S.: Reaction of Criegee
intermediate with nitric acid at the air-water interface, J. Am. Chem.
Soc., 140, 4913–4921, https://doi.org/10.1021/jacs.8b01191, 2018.
Lazrus, A. L., Kok, G. L., Lind, J. A., Gitlin, S. N., Heikes, B. G., and
Shetter, R. E.: Automated fluorometric method for hydrogen peroxide in air,
Anal. Chem., 58, 594–597, https://doi.org/10.1021/ac00294a024, 1986.
Lee, A., Goldstein, A. H., Keywood, M. D., Gao, S., Varutbangkul, V.,
Bahreini, R., Ng, N. L., Flagan, R. C., and Seinfeld, J. H.: Gas-phase
products and secondary aerosol yields from the ozonolysis of ten different
terpenes, J. Geophys. Res., 111, D07302, https://doi.org/10.1029/2005JD006437, 2006.
Lee, S. and Kamens, R. M.: Particle nucleation from the reaction of a-pinene
and O3, Atmos. Environ., 39, 6822–6832, https://doi.org/10.1016/j.atmosenv.2005.07.062, 2005.
Lelieveld, J., Butler, T. M., Crowley, J. N., Dillon, T. J., Fischer, H.,
Ganzeveld, L., Harder, H., Lawrence, M. G., Martinez, M., Taraborrelli, D.,
and Williams, J.: Atmospheric oxidation capacity sustained by a tropical
forest, Nature, 452, 737–740, https://doi.org/10.1038/nature06870, 2008.
Leungsakul, S., Jaoui, M., and Kamens, R. M.: Kinetic mechanism for
predicting secondary organic aerosol formation from the reaction of
d-limonene with ozone, Environ. Sci. Technol., 39, 9583–9594, https://doi.org/10.1021/es0492687, 2005.
Li, H., Chen, Z., Huang, L., and Huang, D.: Organic peroxides' gas-particle partitioning and rapid heterogeneous decomposition on secondary organic aerosol, Atmos. Chem. Phys., 16, 1837–1848, https://doi.org/10.5194/acp-16-1837-2016, 2016.
Li, T. H., Turpin, B. J., Shields, H. C., and Weschler, C. J.: Indoor
hydrogen peroxide derived from ozone/d-limonene reactions, Environ. Sci.
Technol., 36, 3295–3302, https://doi.org/10.1021/es015842s, 2002.
Li, X., Chee, S., Hao, J., Abbatt, J. P. D., Jiang, J., and Smith, J. N.: Relative humidity effect on the formation of highly oxidized molecules and new particles during monoterpene oxidation, Atmos. Chem. Phys., 19, 1555–1570, https://doi.org/10.5194/acp-19-1555-2019, 2019.
Li, Y. J., Liu, P. F., Gong, Z. H., Wang, Y., Bateman, A. P., Bergoend, C.,
Bertram, A. K., and Martin, S. T.: Chemical reactivity and liquid/nonliquid
states of secondary organic material, Environ. Sci. Technol., 49,
13264–13274, https://doi.org/10.1021/acs.est.5b03392, 2015.
Lin, J. J. M. and Chao, W.: Structure-dependent reactivity of Criegee
intermediates studied with spectroscopic methods, Chem. Soc. Rev., 46,
7483–7497, https://doi.org/10.1039/C7CS00336F, 2017.
Liu, F., Fang, Y., Kumar, M., Thompson, W. H., and Lester, M. I.: Direct
observation of vinyl hydroperoxides, Phys. Chem. Chem. Phys., 17, 20490,
https://doi.org/10.1039/c5cp02917a, 2015.
Long, B., Cheng, J. R., Tan, X. F., and Zhang, W. J.: Theoretical study on
the detailed reaction mechanisms of carbonyl oxide with formic acid, J. Mol.
Struct., 916, 159–167, https://doi.org/10.1016/j.theochem.2009.09.028, 2009.
Long, B., Bao, J. L., and Truhlar, D. G.: Unimolecular reaction of acetone
oxide and its reaction with water in the atmosphere, P. Natl. Acad. Sci.,
115, 6135–6140, https://doi.org/10.1073/pnas.1804453115, 2018.
Long, B., Bao, J. L., and Truhlar, D. G.: Rapid unimolecular reaction of
stabilized Criegee intermediates and implications for atmospheric chemistry,
Nat. Commun., 10, 2003, https://doi.org/10.1038/s41467-019-09948-7, 2019.
Ma, Y., Russell, A. T., and Marston, G.: Mechanisms for the formation of
secondary organic aerosol components from the gas-phase ozonolysis of
α-pinene, Phys. Chem. Chem. Phys., 10, 4294–4312, https://doi.org/10.1039/b803283a, 2008.
Mandin, C., Trantallidi, M., Cattaneo, A., Canha, N., Mihucz, V. G.,
Szigeti, T., Mabilia, R., Perreca, E., Spinazze, A., Fossati, S.,
Kluizenaar, Y. D., Cornelissen, E., Sakellaris, I., Saraga, D.,
Hänninen, O., Fernandes, E. D. O., Ventura, G., Wolkoff, P.,
Carrer, P., and Bartzis, J.: Assessment of indoor air quality in office
buildings across Europe – The OFFICAIR study, Sci. Total Environ., 579,
169–178, https://doi.org/10.1016/j.scitotenv.2016.10.238, 2017.
Matsuoka, K., Sakamoto, Y., Hama, T., Kajii, Y., and Enami, S.: Reactive
uptake of gaseous sesquiterpenes on aqueous surfaces, J. Phys. Chem. A, 121,
810–818, https://doi.org/10.1021/acs.jpca.6b11821, 2017.
Mauldin III, R. L., Berndt, T., Sipilä, M., Paasonen, P.,
Petäjä, T., Kim, S., Kurten, T., Stratmann, F., Kerminen,
V. M., and Kulmala, M.: A new atmospherically relevant oxidant of sulphur
dioxide, Nature, 488, 193–197, https://doi.org/10.1038/nature11278, 2012.
McGillen, M. R., Curchod, B. F. E., Chhantyal-Pun, R., Beames, J. M.,
Watson, N., Khan, M. A. H., McMahon, L., Shallcross, D. E., and Oee-Ewing,
A. J.: Criegee intermediate-alcohol reactions, a potential source of
functionalized hydroperoxides in the atmosphere, ACS Earth Space Chem., 1,
664–672, https://doi.org/10.1021/acsearthspacechem.7b00108, 2017.
McVay, R. C., Cappa, C. D., and Seinfeld, J. H.: Vapor-wall deposition in
chambers: theoretical considerations, Environ. Sci. Technol., 48,
10251–10258, https://doi.org/10.1021/es502170j, 2014.
McVay, R. C., Zhang, X., Aumont, B., Valorso, R., Camredon, M., La, Y. S., Wennberg, P. O., and Seinfeld, J. H.: SOA formation from the photooxidation of α-pinene: systematic exploration of the simulation of chamber data, Atmos. Chem. Phys., 16, 2785–2802, https://doi.org/10.5194/acp-16-2785-2016, 2016.
Mutzel, A., Rodigast, M., Iinuma, Y., Böge, O., and Herrmann, H.:
Monoterpene SOA – Contribution of first-generation oxidation products to
formation and chemical composition, Atmos. Environ., 130, 136–144, https://doi.org/10.1016/j.atmosenv.2015.10.080, 2016.
Nah, T., McVay, R. C., Zhang, X., Boyd, C. M., Seinfeld, J. H., and Ng, N. L.: Influence of seed aerosol surface area and oxidation rate on vapor wall deposition and SOA mass yields: a case study with α-pinene ozonolysis, Atmos. Chem. Phys., 16, 9361–9379, https://doi.org/10.5194/acp-16-9361-2016, 2016.
Nah, T., McVay, R. C., Pierce, J. R., Seinfeld, J. H., and Ng, N. L.: Constraining uncertainties in particle-wall deposition correction during SOA formation in chamber experiments, Atmos. Chem. Phys., 17, 2297–2310, https://doi.org/10.5194/acp-17-2297-2017, 2017.
Newland, M. J., Rickard, A. R., Sherwen, T., Evans, M. J., Vereecken, L., Muñoz, A., Ródenas, M., and Bloss, W. J.: The atmospheric impacts of monoterpene ozonolysis on global stabilised Criegee intermediate budgets and SO2 oxidation: experiment, theory and modelling, Atmos. Chem. Phys., 18, 6095–6120, https://doi.org/10.5194/acp-18-6095-2018, 2018.
Ng, N. L., Kroll, J. H., Keywood, M. D., Bahreini, R., Varutbangkul, V.,
Flagan, R. C., Seinfeld, J. H., Lee, A., and Goldstein, A. H.: Contribution
of first- versus second-generation products to secondary organic aerosols
formed in the oxidation of biogenic hydrocarbons, Environ. Sci. Technol.,
40, 2283–2297, https://doi.org/10.1021/es052269u, 2006.
Osborn, D. L. and Taatjes, C. A.: The physical chemistry of Criegee
intermediates in the gas phase, Int. Rev. Phys. Chem., 34, 309–360, https://doi.org/10.1080/0144235X.2015.1055676, 2015.
Palm, B. B., de Sá, S. S., Day, D. A., Campuzano-Jost, P., Hu, W., Seco, R., Sjostedt, S. J., Park, J.-H., Guenther, A. B., Kim, S., Brito, J., Wurm, F., Artaxo, P., Thalman, R., Wang, J., Yee, L. D., Wernis, R., Isaacman-VanWertz, G., Goldstein, A. H., Liu, Y., Springston, S. R., Souza, R., Newburn, M. K., Alexander, M. L., Martin, S. T., and Jimenez, J. L.: Secondary organic aerosol formation from ambient air in an oxidation flow reactor in central Amazonia, Atmos. Chem. Phys., 18, 467–493, https://doi.org/10.5194/acp-18-467-2018, 2018.
Pathak, R. K., Salo, K., Emanuelsson, E. U., Cai, C., Lutz, A., Hallquist,
A. M., and Hallquist, M.: Influence of ozone and radical chemistry on
limonene organic aerosol production and thermal characteristics, Environ.
Sci. Technol., 46, 11660–11669, https://doi.org/10.1021/es301750r, 2012.
Percival, C. J., Welz, O., Eskola, A. J., Savee, J. D., Osborn, D. L.,
Topping, D. O., Lowe, D., Utemne, S. R., Bacak, A., Figgans, G. M., Cooke,
M. C., Xiao, P., Archibald, A. T., Jenkin, M. E., Derwent, R. G., Piipinen,
I., Mok, D. W. K., Lee, E. P. F., Dyke, J. M., Taatjes, C. A., and
Shallcross, D. E.: Regional and global impacts of Criegee intermediates on
atmospheric sulphuric acid concentrations and first steps of aerosol
formation, Faraday Discuss., 165, 45–73, https://doi.org/10.1039/c3fd00048f, 2013.
Qiu, J. T., Ishizuka, S., Tonokura, K., Colussi, A. J., and Enami, S.:
Reactivity of monoterpene Criegee intermediates at gas-liquid interfaces,
J. Phys. Chem. A, 122, 7910–7917, https://doi.org/10.1021/acs.jpca.8b06914, 2018a.
Qiu, J. T., Ishizuka, S., Tonokura, K., and Enami, S.: Reactions of Criegee
intermediates with benzoic acid at the gas/liquid interface, J. Phys. Chem.
A, 122, 6303–6310, https://doi.org/10.1021/acs.jpca.8b04995, 2018b.
Qiu, J. T., Ishizuka, S., Tonokura, K., Colussi, A., and Enami, S.: Water
dramatically accelerates the decomposition of α-hydroxyalkyl-hydroperoxides in aerosol particles, J. Phys. Chem. Lett.,
10, 5748–5755, https://doi.org/10.1021/acs.jpclett.9b01953, 2019.
Qiu, J. T., Tonokura, K., and Enami, S.: Proton-catalyzed decomposition of
α-hydroxyalkyl-hydroperoxides in water, Environ. Sci. Technol., 54,
10561–10569, https://doi.org/10.1021/acs.est.0c03438, 2020a.
Qiu, J. T., Liang, Z. C., Tonokura, K., Colussi, A. J., and Enami, S.:
Stability of monoterpene-derived α-hydroxyalkyl-hydroperoxides in
aqueous organic media: relevance to the fate of hydroperoxides in aerosol
particle phases, Environ. Sci. Technol., 54, 3890–3899, https://doi.org/10.1021/acs.est.9b07497, 2020b.
Renbaum-Wolff, L., Grayson, J. W., Bateman,
A. P., Kuwata, M., Sellier, M., Murray, B. J., Shilling, J. E., Martin, S.
T., and Bertram, A. K.: Viscosity of α-pinene secondary organic
material and implications for particle growth and reactivity, P. Natl.
Acad. Sci., 110, 8014–8019, https://doi.org/10.1073/pnas.1219548110, 2013.
Riipinen, I., Pierce, J. R., Yli-Juuti, T., Nieminen, T., Häkkinen, S., Ehn, M., Junninen, H., Lehtipalo, K., Petäjä, T., Slowik, J., Chang, R., Shantz, N. C., Abbatt, J., Leaitch, W. R., Kerminen, V.-M., Worsnop, D. R., Pandis, S. N., Donahue, N. M., and Kulmala, M.: Organic condensation: a vital link connecting aerosol formation to cloud condensation nuclei (CCN) concentrations, Atmos. Chem. Phys., 11, 3865–3878, https://doi.org/10.5194/acp-11-3865-2011, 2011.
Saathoff, H., Naumann, K.-H., Möhler, O., Jonsson, Å. M., Hallquist, M., Kiendler-Scharr, A., Mentel, Th. F., Tillmann, R., and Schurath, U.: Temperature dependence of yields of secondary organic aerosols from the ozonolysis of α-pinene and limonene, Atmos. Chem. Phys., 9, 1551–1577, https://doi.org/10.5194/acp-9-1551-2009, 2009.
Sakamoto, Y., Inomata, S., and Hirokawa, J.: Oligomerization reaction of the
Criegee intermediate leads to secondary organic aerosol formation in
ethylene ozonolysis, J. Phys. Chem. A, 117, 12912–12921, https://doi.org/10.1021/jp408672m, 2013.
Sakamoto, Y., Yajima, R., Inomata, S., and Hirokawa, J.: Water vapour
effects on secondary organic aerosol formation in isoprene ozonolysis, Phys.
Chem. Chem. Phys., 19, 3165–3175, https://doi.org/10.1039/C6CP04521A, 2017.
Sander, W.: Carbonyl oxides – rising stars in tropospheric chemistry, Angew.
Chem. Int. Ed., 53, 362–364, https://doi.org/10.1002/anie.201305736, 2014.
Sheps, L., Scully, A. M., and Au, K.: UV absorption probing of the
conformer-dependent reactivity of a Criegee intermediate CH3CHOO, Phys.
Chem. Chem. Phys., 16, 26701–26706, https://doi.org/10.1039/C4CP04408H, 2014.
Shiraiwa, M. and Seinfeld, J. H.: Equilibration timescale of atmospheric
secondary organic aerosol partitioning, Geophys. Res. Lett., 39, L24801,
https://doi.org/10.1029/2012GL054008, 2012.
Shu, Y. H. and Atkinson, R.: Rate constants for the gas phase reactions of
O3 with a series of terpenes and OH radical formation from the O3
reactions with sesquiterpenes at 296± 2 K, Int. J. Chem. Kinet., 26,
1193–1205, https://doi.org/10.1002/kin.550261207, 1994.
Sipilä, M., Jokinen, T., Berndt, T., Richters, S., Makkonen, R., Donahue, N. M., Mauldin III, R. L., Kurtén, T., Paasonen, P., Sarnela, N., Ehn, M., Junninen, H., Rissanen, M. P., Thornton, J., Stratmann, F., Herrmann, H., Worsnop, D. R., Kulmala, M., Kerminen, V.-M., and Petäjä, T.: Reactivity of stabilized Criegee intermediates (sCIs) from isoprene and monoterpene ozonolysis toward SO2 and organic acids, Atmos. Chem. Phys., 14, 12143–12153, https://doi.org/10.5194/acp-14-12143-2014, 2014.
Sui, X., Zhou, Y. F., Zhang, F., Chen, J. M., Zhu, Z. H., and Yu, X. Y.:
Deciphering the aqueous chemistry of glyoxal oxidation with hydrogen
peroxide using molecular imaging, Phys. Chem. Chem. Phys., 19, 20357–20366,
https://doi.org/10.1039/C7CP02071F, 2017.
Taatjes, C. A., Meloni, G., Selby, T. M., Trevitt, A. J., Osborn, D. L.,
Percival, C. J., and Shallcross, D. E. J.: Direct observation of the
gas-phase Criegee intermediate (CH2OO), Am. Chem. Soc., 130,
11883–11885, https://doi.org/10.1021/ja804165q, 2008.
Taatjes, C. A., Welz, O., Eskola, A. J., Savee, J. D., Scheer, A. M.,
Shallcross, D. E., Rotavera, B., Lee, E. P. F., Dyke, J. M., Mok, D. K. W.,
Osborn, D. L., and Percival, C. J.: Direct measurements of
conformer-dependent reactivity of the Criegee intermediate CH3CHOO,
Science, 340, 177–180, https://doi.org/10.1126/science.1234689, 2013.
Taatjes, C. A., Shallcross, D. E., and Percival, C. J.: Research frontiers
in the chemistry of Criegee intermediates and tropospheric ozonolysis, Phys.
Chem. Chem. Phys., 16, 1704–1718, https://doi.org/10.1039/c3cp52842a, 2014.
Taatjes, C. A.: Criegee Intermediates: What direct production and detection
can teach us about reactions of carbonyl oxides, Annu. Rev. Phys. Chem., 68,
183–207, https://doi.org/10.1146/annurev-physchem-052516-050739, 2017.
Tadayon, S. V., Foreman, E. S., and Murray, C.: Kinetics of the reactions
between the Criegee intermediate CH2OO and alcohols, J. Phys. Chem. A,
122, 258–268, https://doi.org/10.1021/acs.jpca.7b09773, 2018.
Tillmann, R., Hallquist, M., Jonsson, Å. M., Kiendler-Scharr, A., Saathoff, H., Iinuma, Y., and Mentel, Th. F.: Influence of relative humidity and temperature on the production of pinonaldehyde and OH radicals from the ozonolysis of α-pinene, Atmos. Chem. Phys., 10, 7057–7072, https://doi.org/10.5194/acp-10-7057-2010, 2010.
Tu, P. and Johnston, M. V.: Particle size dependence of biogenic secondary organic aerosol molecular composition, Atmos. Chem. Phys., 17, 7593–7603, https://doi.org/10.5194/acp-17-7593-2017, 2017.
Veghte, D. P., Altaf, M. B., and Freedman, M. A.: Size dependence of the
structure of organic aerosol, J. Am. Chem. Soc., 135, 16046–16049, https://doi.org/10.1021/ja408903g, 2013.
Vereecken, L., Harder, H., and Novelli, A.: The reaction of Criegee
intermediates with NO, RO2, and SO2, and their fate in the
atmosphere, Phys. Chem. Chem. Phys., 14, 14682–14695, https://doi.org/10.1039/c2cp42300f, 2012.
Vereecken, L., Richard, A. R., Newland, M. J., and Bloss, W. J.: Theoretical
study of the reactions of Criegee intermediates with ozone,
alkylhydroperoxides, and carbon monoxide, Phys. Chem. Chem. Phys., 17,
23847–23858, https://doi.org/10.1039/c5cp03862f, 2015.
von Hessberg, C., von Hessberg, P., Pöschl, U., Bilde, M., Nielsen, O. J., and Moortgat, G. K.: Temperature and humidity dependence of secondary organic aerosol yield from the ozonolysis of β-pinene, Atmos. Chem. Phys., 9, 3583–3599, https://doi.org/10.5194/acp-9-3583-2009, 2009.
Warren, B., Malloy, Q. G. J., Yee, L. D., and Cocker III, D. R.: Secondary
organic aerosol formation from cyclohexene ozonolysis in the presence of
water vapor and dissolved salts, Atmos. Environ., 43, 1789–1795, https://doi.org/10.1016/j.atmosenv.2008.12.026, 2009.
Watson, N. A. I., Black, J. A., Stonelake, T. M., Knowles, P. J., and
Beames, J. M.: An extended computational study of Criegee
intermediate-alcohol reactions, J. Phys. Chem. A, 123, 218–229, https://doi.org/10.1021/acs.jpca.8b09349, 2019.
Welz, O., Savee, J. D., Osborn, D. L., Vasu, S. S., Percival, C. J.,
Shallcross, D. E., and Taatjes, C. A.: Direct kinetic measurements of
Criegee intermediate (CH2OO) formed by reaction of CH2I with
O2, Science, 335, 204–207, https://doi.org/10.1126/science.1213229, 2012.
Weschler, C. J.: Ozone in indoor environments: concentration and chemistry,
Indoor Air, 10, 269–288, https://doi.org/10.1034/j.1600-0668.2000.010004269.x, 2000.
Weschler, C. J. and Carslaw, N.: Indoor chemistry, Environ. Sci. Technol.,
52, 2419–2428, https://doi.org/10.1021/acs.est.7b06387, 2018.
Williams, J., Keßel, S. U., Nölscher, A. C., Yang, Y. D.,
Lee, Y., Yanez-Serrano, A. M., Wolff, S., Kesselemeier,
J., Klüpfel, T., Lelieveld, J., and Shao, M.: Opposite OH
reactivity and ozone cycles in the Amazon rainforest and megacity Beijing:
Subversion of biospheric oxidant control by anthropogenic emissions, Atmos.
Environ., 125, 112–118, https://doi.org/10.1016/j.atmosenv.2015.11.007, 2016.
Wilson, J., Imre, D., Beranek, J., Shrivastava, M., and Zelenyuk, A.:
Evaporation kinetics of laboratory-generated secondary organic aerosols at
elevated relative humidity, Environ. Sci. Technol., 49, 243–249, https://doi.org/10.1021/es505331d, 2015.
Winterhalter, R., Neeb, P., Grossmann, D., Kolloff, A., Horie, O., and
Moortgat, G.: Products and mechanism of the gas phase reaction of ozone with
β-pinene, J. Atmos. Chem, 35, 165–197, https://doi.org/10.1023/A:1006257800929,
2000.
Woo, J. L., Kim, D. D., Schwier, A. N., Li, R. Z., and McNeill, V. F.:
Aqueous aerosol SOA formation: impact on aerosol physical properties,
Faraday Discuss., 165, 357–367, https://doi.org/10.1039/C3FD00032J, 2013.
Xiao, P., Yang, J. J., Fang, W. H., and Cui, G. L.: QM/MM studies on
ozonolysis of α-humulene and Criegee reactions with acids and water
at air-water/acetonitrile interfaces, Phys. Chem. Chem. Phys., 20,
16138–16150, https://doi.org/10.1039/C8CP01750F, 2018.
Yáñez-Serrano, A. M., Nölscher, A. C., Bourtsoukidis, E., Gomes Alves, E., Ganzeveld, L., Bonn, B., Wolff, S., Sa, M., Yamasoe, M., Williams, J., Andreae, M. O., and Kesselmeier, J.: Monoterpene chemical speciation in a tropical rainforest:variation with season, height, and time of dayat the Amazon Tall Tower Observatory (ATTO), Atmos. Chem. Phys., 18, 3403–3418, https://doi.org/10.5194/acp-18-3403-2018, 2018.
Yao, L., Ma, Y., Wang, L., Zheng, J., Khalizov, A., Chen, M. D., Zhou, Y.
Y., Qi, L., and Cui, F. P.: Role of stabilized Criegee Intermediate in
secondary organic aerosol formation from the ozonolysis of α-cedrene, Atmos. Environ., 94, 448–457, https://doi.org/10.1016/j.atmosenv.2014.05.063, 2014.
Ye, J., Abbatt, J. P. D., and Chan, A. W. H.: Novel pathway of SO2 oxidation in the atmosphere: reactions with monoterpene ozonolysis intermediates and secondary organic aerosol, Atmos. Chem. Phys., 18, 5549–5565, https://doi.org/10.5194/acp-18-5549-2018, 2018.
Ye, Q., Robinson, E. S., Ding, X., Ye, P. L., Sullivan, R. C., and Donahue,
N. M.: Mixing of secondary organic aerosols versus relative humidity, P.
Natl. Acad. Sci., 113, 12649–12654, https://doi.org/10.1073/pnas.1604536113, 2016.
Yu, K. P., Lin, C. C., Yang, S. C., and Zhao, P.: Enhancement effect of
relative humidity on the formation and regional respiratory deposition of
secondary organic aerosol, J. Hazard. Mater., 191, 94–102, https://doi.org/10.1016/j.jhazmat.2011.04.042, 2011.
Zhang, F., Yu, X. F., Chen, J. M., Zhu, Z. H., and Yu, X. Y.: Dark
air-liquid interfacial chemistry of glyoxal and hydrogen peroxide, NPJ
Clim. Atmos. Sci., 2, 28, https://doi.org/10.1038/s41612-019-0085-5, 2019.
Zhang, J. Y., Hartz, K. E. H., Pandis, S. N., and Donahue, N. M.: Secondary
organic aerosol formation from limonene ozonolysis: homogeneous and
heterogeneous influences as a function of NOx, J. Phys. Chem. A, 110,
11053–11063, https://doi.org/10.1021/jp062836f, 2006.
Zhang, X., Chen, Z. M., Wang, H. L., He, S. Z., and Huang, D. M.: An
important pathway for ozonolysis of alpha-pinene and beta-pinene in aqueous
phase and its atmospheric implications, Atmos. Environ., 43, 4456–4471, https://doi.org/10.1016/j.atmosenv.2009.06.028, 2009.
Zhang, X., Cappa, C. D., Jathar, S. H., McVay, R. C., Ensberg, J. J.,
Kleeman, M. J., and Seinfeld, J. H.: Influence of vapor wall loss in
laboratory chambers on yields of secondary organic aerosol, P. Natl. Acad.
Sci. USA, 111, 5802–5807, https://doi.org/10.1073/pnas.1404727111, 2014.
Zhang, X., Schwantes, R. H., McVay, R. C., Lignell, H., Coggon, M. M., Flagan, R. C., and Seinfeld, J. H.: Vapor wall deposition in Teflon chambers, Atmos. Chem. Phys., 15, 4197–4214, https://doi.org/10.5194/acp-15-4197-2015, 2015.
Zhao, R., Lee, A. K. Y., and Abbatt, J. P. D.: Investigation of
aqueous-phase photooxidation of glyoxal and methylglyoxal by aerosol
chemical ionization mass spectrometry: observation of hydroxyhydroperoxide
formation, J. Phys. Chem. A, 116, 6253–6263, https://doi.org/10.1021/jp211528d, 2012.
Zhao, R., Lee, A. K. Y., Soong, R., Simpson, A. J., and Abbatt, J. P. D.: Formation of aqueous-phase α-hydroxyhydroperoxides (α-HHP): potential atmospheric impacts, Atmos. Chem. Phys., 13, 5857–5872, https://doi.org/10.5194/acp-13-5857-2013, 2013.
Zhao, R., Kenseth, C. M., Huang, Y. L., Dalleska, N. F., Kuang, X. M., Chen,
J. R., Paulson, S. E., and Seinfeld, J. H.: Rapid aqueous-phase hydrolysis
of ester hydroperoxides arising from Criegee intermediates and organic
acids, J. Phys. Chem. A, 122, 5190–5201, https://doi.org/10.1021/acs.jpca.8b02195,
2018.
Zhao, Y., Wingen, L. M., Perraud, V., Greaves, J., and Finlayson-Pitts, B.
J.: Role of the reaction of stabilized Criegee intermediates with peroxy
radicals in particle formation and growth in air, Phys. Chem. Chem. Phys.,
17, 12500–12514, https://doi.org/10.1039/c5cp01171j, 2015.
Zhong, J., Kumar, M., Zhu, C. Q., Francisco, J. S., and Zeng, X. C.:
Surprising stability of larger Criegee intermediates on aqueous interfaces,
Angew. Chem. Int. Ed., 56, 7740–7744, https://doi.org/10.1002/anie.201702722, 2017.
Zhong, J., Kumar, M., Francisco, J. S., and Zeng, X. C.: Insight into
chemistry on cloud/aerosol water surfaces, Acc. Chem. Res., 51, 1229–1237,
https://doi.org/10.1021/acs.accounts.8b00051, 2018.
Ziemann, P. J. and Atkinson, R.: Kinetics, products, and mechanisms of
secondary organic aerosol formation, Chem. Soc. Rev., 41, 6582–6605, https://doi.org/10.1039/C2CS35122F, 2012.
Short summary
Stabilized Criegee intermediates (SCIs) are important factors in estimating aerosol formation in the atmosphere. Here the results show that SCIs account for more than 60 % of aerosol formation in limonene ozonolysis and water is an uncertainty in SCI performances. The aerosol formation potential of SCIs under high-humidity conditions is double that under dry and low-humidity conditions, suggesting SCI reactions are still important in contributing to aerosols at high relative humidity.
Stabilized Criegee intermediates (SCIs) are important factors in estimating aerosol formation in...
Altmetrics
Final-revised paper
Preprint