Articles | Volume 21, issue 2
https://doi.org/10.5194/acp-21-755-2021
https://doi.org/10.5194/acp-21-755-2021
Research article
 | 
19 Jan 2021
Research article |  | 19 Jan 2021

Secondary ice production in summer clouds over the Antarctic coast: an underappreciated process in atmospheric models

Georgia Sotiropoulou, Étienne Vignon, Gillian Young, Hugh Morrison, Sebastian J. O'Shea, Thomas Lachlan-Cope, Alexis Berne, and Athanasios Nenes

Related authors

Secondary ice production processes in wintertime alpine mixed-phase clouds
Paraskevi Georgakaki, Georgia Sotiropoulou, Étienne Vignon, Anne-Claire Billault-Roux, Alexis Berne, and Athanasios Nenes
Atmos. Chem. Phys., 22, 1965–1988, https://doi.org/10.5194/acp-22-1965-2022,https://doi.org/10.5194/acp-22-1965-2022, 2022
Short summary
Ice multiplication from ice–ice collisions in the high Arctic: sensitivity to ice habit, rimed fraction, ice type and uncertainties in the numerical description of the process
Georgia Sotiropoulou, Luisa Ickes, Athanasios Nenes, and Annica M. L. Ekman
Atmos. Chem. Phys., 21, 9741–9760, https://doi.org/10.5194/acp-21-9741-2021,https://doi.org/10.5194/acp-21-9741-2021, 2021
Short summary
Properties of Arctic liquid and mixed-phase clouds from shipborne Cloudnet observations during ACSE 2014
Peggy Achtert, Ewan J. O'Connor, Ian M. Brooks, Georgia Sotiropoulou, Matthew D. Shupe, Bernhard Pospichal, Barbara J. Brooks, and Michael Tjernström
Atmos. Chem. Phys., 20, 14983–15002, https://doi.org/10.5194/acp-20-14983-2020,https://doi.org/10.5194/acp-20-14983-2020, 2020
Short summary
The impact of secondary ice production on Arctic stratocumulus
Georgia Sotiropoulou, Sylvia Sullivan, Julien Savre, Gary Lloyd, Thomas Lachlan-Cope, Annica M. L. Ekman, and Athanasios Nenes
Atmos. Chem. Phys., 20, 1301–1316, https://doi.org/10.5194/acp-20-1301-2020,https://doi.org/10.5194/acp-20-1301-2020, 2020
Short summary
The thermodynamic structure of summer Arctic stratocumulus and the dynamic coupling to the surface
G. Sotiropoulou, J. Sedlar, M. Tjernström, M. D. Shupe, I. M. Brooks, and P. O. G. Persson
Atmos. Chem. Phys., 14, 12573–12592, https://doi.org/10.5194/acp-14-12573-2014,https://doi.org/10.5194/acp-14-12573-2014, 2014
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Impact of secondary ice production on thunderstorm electrification under different aerosol conditions
Shiye Huang, Jing Yang, Jiaojiao Li, Qian Chen, Qilin Zhang, and Fengxia Guo
Atmos. Chem. Phys., 25, 1831–1850, https://doi.org/10.5194/acp-25-1831-2025,https://doi.org/10.5194/acp-25-1831-2025, 2025
Short summary
Model analysis of biases in the satellite-diagnosed aerosol effect on the cloud liquid water path
Harri Kokkola, Juha Tonttila, Silvia M. Calderón, Sami Romakkaniemi, Antti Lipponen, Aapo Peräkorpi, Tero Mielonen, Edward Gryspeerdt, Timo Henrik Virtanen, Pekka Kolmonen, and Antti Arola
Atmos. Chem. Phys., 25, 1533–1543, https://doi.org/10.5194/acp-25-1533-2025,https://doi.org/10.5194/acp-25-1533-2025, 2025
Short summary
Evaluation of biases in mid-to-high-latitude surface snowfall and cloud phase in ERA5 and CMIP6 using satellite observations
Franziska Hellmuth, Tim Carlsen, Anne Sophie Daloz, Robert Oscar David, Haochi Che, and Trude Storelvmo
Atmos. Chem. Phys., 25, 1353–1383, https://doi.org/10.5194/acp-25-1353-2025,https://doi.org/10.5194/acp-25-1353-2025, 2025
Short summary
Dynamical imprints on precipitation cluster statistics across a hierarchy of high-resolution simulations
Claudia Christine Stephan and Bjorn Stevens
Atmos. Chem. Phys., 25, 1209–1226, https://doi.org/10.5194/acp-25-1209-2025,https://doi.org/10.5194/acp-25-1209-2025, 2025
Short summary
Role of a key microphysical factor in mixed-phase stratocumulus clouds and their interactions with aerosols
Seoung Soo Lee, Chang Hoon Jung, Jinho Choi, Young Jun Yoon, Junshik Um, Youtong Zheng, Jianping Guo, Manguttathil G. Manoj, and Sang-Keun Song
Atmos. Chem. Phys., 25, 705–726, https://doi.org/10.5194/acp-25-705-2025,https://doi.org/10.5194/acp-25-705-2025, 2025
Short summary

Cited articles

Atlas, R. L., Bretherton, C. S., Blossey, P. N., Gettelman, A., Bardeen, C., Lin, P., and Ming, Y.: How well do large-eddy simulations and global climate models represent observed boundary layer structures and low clouds over the summertime Southern Ocean?, J. Adv. Model. Earth Sy., 12, e2020MS002205, https://doi.org/10.1029/2020MS002205, 2020. 
Baumgardner, D., Jonsson, H., Dawson, W., O'Connor, D., and Newton, R.: The cloud, aerosol and precipitation spectrometer: A new instrument for cloud investigations, Atmos. Res., 59, 251–264, https://doi.org/10.1016/S0169-8095(01)00119-3, 2001. 
Bodas-Salcedo, A., Williams, K. D., Ringer, M. A., Beau, I., Cole, J. N., Dufresne, J.-L., Koshiro, T., Stevens, B., Wang, Z., and Yokohata, T.: Origins of the solar radiation biases over the Southern Ocean in CFMIP2 Models, J. Climate, 27, 41–56, https://doi.org/10.1175/JCLI-D-13-00169.1, 2014. 
Bigg, E. K.: The formation of atmospheric ice crystals by the freezing of droplets, Q. J. Roy. Meteorol. Soc., 79, 510–519, https://doi.org/10.1002/qj.49707934207, 1953. 
Bromwich, D. H., Otieno, F. O., Hines, K. M., Manning, K. W., and Shilo, E.: Comprehensive evaluation of polar weather research and forecasting model performance in the Antarctic, J. Geophys. Res.-Atmos., 118, 274–292, https://doi.org/10.1029/2012jd018139, 2013. 
Download
Short summary
Summer clouds have a significant impact on the radiation budget of the Antarctic surface and thus on ice-shelf melting. However, these are poorly represented in climate models due to errors in their microphysical structure, including the number of ice crystals that they contain. We show that breakup from ice particle collisions can substantially magnify the ice crystal number concentration with significant implications for surface radiation. This process is currently missing in climate models.
Share
Altmetrics
Final-revised paper
Preprint