Articles | Volume 21, issue 4
https://doi.org/10.5194/acp-21-3035-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-3035-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Elemental and water-insoluble organic carbon in Svalbard snow: a synthesis of observations during 2007–2018
Christian Zdanowicz
CORRESPONDING AUTHOR
Department of Earth Sciences, Uppsala University, 752 36 Uppsala,
Sweden
Jean-Charles Gallet
Norwegian Polar Institute, 9296 Tromsø, Norway
Mats P. Björkman
Department of Earth Sciences, University of Gothenburg, 405 30
Gothenburg, Sweden
Catherine Larose
Environmental Microbial Genomics, École Centrale de Lyon,
Université de Lyon, 69134 Ecully, France
Thomas Schuler
Department of Geosciences, University of Oslo, 0316 Oslo, Norway
Bartłomiej Luks
Institute of Geophysics, Polish Academy of Sciences, 01-452 Warsaw, Poland
Krystyna Koziol
Department of Analytical Chemistry, Gdańsk University of
Technology, 80-233 Gdańsk, Poland
Andrea Spolaor
Institute of Polar Sciences, ISP-CNR, 30170 Venice Mestre, Italy
Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, 30172 Mestre, Italy
Elena Barbaro
Institute of Polar Sciences, ISP-CNR, 30170 Venice Mestre, Italy
Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, 30172 Mestre, Italy
Tõnu Martma
Department of Geology, Tallinn University of Technology, 19086
Tallinn, Estonia
Ward van Pelt
Department of Earth Sciences, Uppsala University, 752 36 Uppsala,
Sweden
Ulla Wideqvist
Department of Environmental Science, Stockholm University, 106 91
Stockholm, Sweden
Johan Ström
Department of Environmental Science, Stockholm University, 106 91
Stockholm, Sweden
Related authors
Anja Løkkegaard, Kenneth D. Mankoff, Christian Zdanowicz, Gary D. Clow, Martin P. Lüthi, Samuel H. Doyle, Henrik H. Thomsen, David Fisher, Joel Harper, Andy Aschwanden, Bo M. Vinther, Dorthe Dahl-Jensen, Harry Zekollari, Toby Meierbachtol, Ian McDowell, Neil Humphrey, Anne Solgaard, Nanna B. Karlsson, Shfaqat A. Khan, Benjamin Hills, Robert Law, Bryn Hubbard, Poul Christoffersen, Mylène Jacquemart, Julien Seguinot, Robert S. Fausto, and William T. Colgan
The Cryosphere, 17, 3829–3845, https://doi.org/10.5194/tc-17-3829-2023, https://doi.org/10.5194/tc-17-3829-2023, 2023
Short summary
Short summary
This study presents a database compiling 95 ice temperature profiles from the Greenland ice sheet and peripheral ice caps. Ice viscosity and hence ice flow are highly sensitive to ice temperature. To highlight the value of the database in evaluating ice flow simulations, profiles from the Greenland ice sheet are compared to a modeled temperature field. Reoccurring discrepancies between modeled and observed temperatures provide insight on the difficulties faced when simulating ice temperatures.
Elena Barbaro, Krystyna Koziol, Mats P. Björkman, Carmen P. Vega, Christian Zdanowicz, Tonu Martma, Jean-Charles Gallet, Daniel Kępski, Catherine Larose, Bartłomiej Luks, Florian Tolle, Thomas V. Schuler, Aleksander Uszczyk, and Andrea Spolaor
Atmos. Chem. Phys., 21, 3163–3180, https://doi.org/10.5194/acp-21-3163-2021, https://doi.org/10.5194/acp-21-3163-2021, 2021
Short summary
Short summary
This paper shows the most comprehensive seasonal snow chemistry survey to date, carried out in April 2016 across 22 sites on 7 glaciers across Svalbard. The dataset consists of the concentration, mass loading, spatial and altitudinal distribution of major ion species (Ca2+, K+,
Na2+, Mg2+,
NH4+, SO42−,
Br−, Cl− and
NO3−), together with its stable oxygen and hydrogen isotope composition (δ18O and
δ2H) in the snowpack. This study was part of the larger Community Coordinated Snow Study in Svalbard.
Agnese Petteni, Mathieu Casado, Christophe Leroy-Dos Santos, Amaelle Landais, Niels Dutrievoz, Cécile Agosta, Pete D. Akers, Joel Savarino, Andrea Spolaor, Massimo Frezzotti, and Barbara Stenni
EGUsphere, https://doi.org/10.5194/egusphere-2025-3188, https://doi.org/10.5194/egusphere-2025-3188, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
We investigated the isotopic composition of surface snow in a previously unexplored region of East Antarctica to understand how differences in air mass origin influence its variability. By comparing observations with model data, we validated the model and quantified the impact of post-depositional processes at the snow–atmosphere interface. Our results offer valuable insights for reconstructing past temperatures from ice cores.
Adrien Ooms, Mathieu Casado, Ghislain Picard, Laurent Arnaud, Maria Hörhold, Andrea Spolaor, Rita Traversi, Joel Savarino, Patrick Ginot, Pete Akers, Birthe Twarloh, and Valérie Masson-Delmotte
EGUsphere, https://doi.org/10.5194/egusphere-2025-3259, https://doi.org/10.5194/egusphere-2025-3259, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
This work presents a new approach to the estimation of accumulation rates at Concordia Station, East-Antarctica, for the last 20 years, from a new data set of chemical tracers and snow micro-scale properties measured in a snow trench. Multi-annual and meter to decameter scale variability of accumulation rates are compared again in-situ measurements of surface laser scanner and stake farm, with very good agreement. This further constrains SMB estimation for Antarctica at high temporal resolution.
Anisbel Leon-Marcos, Moritz Zeising, Manuela van Pinxteren, Sebastian Zeppenfeld, Astrid Bracher, Elena Barbaro, Anja Engel, Matteo Feltracco, Ina Tegen, and Bernd Heinold
Geosci. Model Dev., 18, 4183–4213, https://doi.org/10.5194/gmd-18-4183-2025, https://doi.org/10.5194/gmd-18-4183-2025, 2025
Short summary
Short summary
This study represents the primary marine organic aerosol (PMOA) emissions, focusing on their sea–atmosphere transfer. Using the FESOM2.1–REcoM3 model, concentrations of key organic biomolecules were estimated and integrated into the ECHAM6.3–HAM2.3 aerosol–climate model. Results highlight the influence of marine biological activity and surface winds on PMOA emissions, with reasonably good agreement with observations improving aerosol representation in the southern oceans.
Tim van den Akker, Ward van Pelt, Rickard Petterson, and Veijo A. Pohjola
The Cryosphere, 19, 1513–1525, https://doi.org/10.5194/tc-19-1513-2025, https://doi.org/10.5194/tc-19-1513-2025, 2025
Short summary
Short summary
Liquid water can persist within old snow on glaciers and ice caps if it can percolate into the snow before it refreezes. Snow is a good insulator, and it is porous where the percolated water can be stored. If this happens, the water piles up and forms a groundwater-like system. Here, we show observations of such a groundwater-like system found in Svalbard. We demonstrate that it behaves like a groundwater system and use that to model the development of the water table from 1957 until the present day.
Marco Paglione, Yufang Hao, Stefano Decesari, Mara Russo, Karam Mansour, Mauro Mazzola, Diego Fellin, Andrea Mazzanti, Emilio Tagliavini, Manousos Ioannis Manousakas, Evangelia Diapouli, Elena Barbaro, Matteo Feltracco, Kaspar Rudolf Daellenbach, and Matteo Rinaldi
EGUsphere, https://doi.org/10.5194/egusphere-2025-760, https://doi.org/10.5194/egusphere-2025-760, 2025
Short summary
Short summary
A year-long set of PM1 samples from Ny-Ålesund, Svalbard, was analyzed by H-NMR and HR-TOF-AMS for the chemical characterization of the organic fraction. Positive Matrix Factorization allowed to identify five organic aerosol sources with specific seasonality. Winter-spring aerosol is dominated by Eurasian pollution, while summer is characterized by biogenic aerosols from marine sources; occasional summertime high OA loadings are associated with wildfire aerosols.
Thomas James Barnes, Thomas Vikhamar Schuler, Karianne Staalesen Lilleøren, and Louise Steffensen Schmidt
EGUsphere, https://doi.org/10.5194/egusphere-2025-108, https://doi.org/10.5194/egusphere-2025-108, 2025
Preprint archived
Short summary
Short summary
Ribbed moraines are a common, but poorly understood landform within formerly glaciated regions. There are many competing theories for their formation. As such, this paper addresses some of these theories by taking modelled ice conditions and physical characteristics of the landscapes in which they form and, then comparing them to the location of ribbed moraines. Using this we can identify conditions where ribbed moraines are more often present, and therefore we identify the most likely theories.
Henning Åkesson, Kamilla Hauknes Sjursen, Thomas Vikhamar Schuler, Thorben Dunse, Liss Marie Andreassen, Mette Kusk Gillespie, Benjamin Aubrey Robson, Thomas Schellenberger, and Jacob Clement Yde
EGUsphere, https://doi.org/10.5194/egusphere-2025-467, https://doi.org/10.5194/egusphere-2025-467, 2025
Short summary
Short summary
We model the historical and future evolution of the Jostedalsbreen ice cap in Norway, projecting substantial and largely irreversible mass loss for the 21st century, and that the ice cap will split into three parts. Further mass loss is in the pipeline, with a disappearance during the 22nd century under high emissions. Our study demonstrates an approach to model complex ice masses, highlights uncertainties due to precipitation, and calls for further research on long-term future glacier change.
Ward van Pelt and Thomas Frank
The Cryosphere, 19, 1–17, https://doi.org/10.5194/tc-19-1-2025, https://doi.org/10.5194/tc-19-1-2025, 2025
Short summary
Short summary
Accurate information on the ice thickness of Svalbard's glaciers is important for assessing the contribution to sea level rise in a present and a future climate. However, direct observations of the glacier bed are scarce. Here, we use an inverse approach and high-resolution surface observations to infer basal conditions. We present and analyse the new bed and thickness maps, quantify the ice volume (6800 km3), and compare these against radar data and previous studies.
Luca Teruzzi, Andrea Spolaor, David Cappelletti, Claudio Artoni, and Marco A. C. Potenza
EGUsphere, https://doi.org/10.5194/egusphere-2024-2057, https://doi.org/10.5194/egusphere-2024-2057, 2024
Preprint archived
Short summary
Short summary
We present a novel probe to measure visible light penetration into the uppermost snow layers with high spatial resolution. The probe is designed to be lightweight and robust to be exploited in extreme environments, extrapolating to the UV region. Such experimental approach will allow to fill the gap in the current understanding of sunlight propagation through the snowpack, often based on numerical approaches, improving the understanding of those processes occurring in snow even in the UV region.
Coline Bouchayer, Ugo Nanni, Pierre-Marie Lefeuvre, John Hult, Louise Steffensen Schmidt, Jack Kohler, François Renard, and Thomas V. Schuler
The Cryosphere, 18, 2939–2968, https://doi.org/10.5194/tc-18-2939-2024, https://doi.org/10.5194/tc-18-2939-2024, 2024
Short summary
Short summary
We explore the interplay between surface runoff and subglacial conditions. We focus on Kongsvegen glacier in Svalbard. We drilled 350 m down to the glacier base to measure water pressure, till strength, seismic noise, and glacier surface velocity. In the low-melt season, the drainage system adapted gradually, while the high-melt season led to a transient response, exceeding drainage capacity and enhancing sliding. Our findings contribute to discussions on subglacial hydro-mechanical processes.
Azzurra Spagnesi, Elena Barbaro, Matteo Feltracco, Federico Scoto, Marco Vecchiato, Massimiliano Vardè, Mauro Mazzola, François Yves Burgay, Federica Bruschi, Clara Jule Marie Hoppe, Allison Bailey, Andrea Gambaro, Carlo Barbante, and Andrea Spolaor
EGUsphere, https://doi.org/10.5194/egusphere-2024-1393, https://doi.org/10.5194/egusphere-2024-1393, 2024
Short summary
Short summary
Svalbard is a relevant area to evaluate changes in local environmental processes induced by Arctic Amplification (AA). By comparing the snow chemical composition of the 2019–20 season with 2018–19 and 2020–21, we provide an overview of the potential impacts of AA on the Svalbard snowpack, and associated changes in aerosol production process, influenced by a complex interplay between atmospheric patterns, local and oceanic conditions that jointly drive snowpack impurity amounts and composition.
Thomas J. Barnes, Thomas V. Schuler, Simon Filhol, and Karianne S. Lilleøren
Earth Surf. Dynam., 12, 801–818, https://doi.org/10.5194/esurf-12-801-2024, https://doi.org/10.5194/esurf-12-801-2024, 2024
Short summary
Short summary
In this paper, we use machine learning to automatically outline landforms based on their characteristics. We test several methods to identify the most accurate and then proceed to develop the most accurate to improve its accuracy further. We manage to outline landforms with 65 %–75 % accuracy, at a resolution of 10 m, thanks to high-quality/high-resolution elevation data. We find that it is possible to run this method at a country scale to quickly produce landform inventories for future studies.
Tessa R. Vance, Nerilie J. Abram, Alison S. Criscitiello, Camilla K. Crockart, Aylin DeCampo, Vincent Favier, Vasileios Gkinis, Margaret Harlan, Sarah L. Jackson, Helle A. Kjær, Chelsea A. Long, Meredith K. Nation, Christopher T. Plummer, Delia Segato, Andrea Spolaor, and Paul T. Vallelonga
Clim. Past, 20, 969–990, https://doi.org/10.5194/cp-20-969-2024, https://doi.org/10.5194/cp-20-969-2024, 2024
Short summary
Short summary
This study presents the chronologies from the new Mount Brown South ice cores from East Antarctica, which were developed by counting annual layers in the ice core data and aligning these to volcanic sulfate signatures. The uncertainty in the dating is quantified, and we discuss initial results from seasonal cycle analysis and mean annual concentrations. The chronologies will underpin the development of new proxy records for East Antarctica spanning the past millennium.
Małgorzata Błaszczyk, Bartłomiej Luks, Michał Pętlicki, Dariusz Puczko, Dariusz Ignatiuk, Michał Laska, Jacek Jania, and Piotr Głowacki
Earth Syst. Sci. Data, 16, 1847–1860, https://doi.org/10.5194/essd-16-1847-2024, https://doi.org/10.5194/essd-16-1847-2024, 2024
Short summary
Short summary
Understanding the glacier response to accelerated climate warming in the Arctic requires data obtained in the field. Here, we present a dataset of velocity measurements of Hansbreen, a tidewater glacier in Svalbard. The glacier's velocity was measured with GPS at 16 stakes mounted on the glacier's surface. The measurements were conducted from about 1 week to about 1 month. The dataset offers unique material for validating numerical models of glacier dynamics and satellite-derived products.
Fredrik Lagergren, Robert G. Björk, Camilla Andersson, Danijel Belušić, Mats P. Björkman, Erik Kjellström, Petter Lind, David Lindstedt, Tinja Olenius, Håkan Pleijel, Gunhild Rosqvist, and Paul A. Miller
Biogeosciences, 21, 1093–1116, https://doi.org/10.5194/bg-21-1093-2024, https://doi.org/10.5194/bg-21-1093-2024, 2024
Short summary
Short summary
The Fennoscandian boreal and mountain regions harbour a wide range of ecosystems sensitive to climate change. A new, highly resolved high-emission climate scenario enabled modelling of the vegetation development in this region at high resolution for the 21st century. The results show dramatic south to north and low- to high-altitude shifts of vegetation zones, especially for the open tundra environments, which will have large implications for nature conservation, reindeer husbandry and forestry.
Elena Barbaro, Matteo Feltracco, Fabrizio De Blasi, Clara Turetta, Marta Radaelli, Warren Cairns, Giulio Cozzi, Giovanna Mazzi, Marco Casula, Jacopo Gabrieli, Carlo Barbante, and Andrea Gambaro
Atmos. Chem. Phys., 24, 2821–2835, https://doi.org/10.5194/acp-24-2821-2024, https://doi.org/10.5194/acp-24-2821-2024, 2024
Short summary
Short summary
The study analyzed a year of atmospheric aerosol composition at Col Margherita in the Italian Alps. Over 100 chemical markers were identified, including major ions, organic compounds, and trace elements. It revealed sources of aerosol, highlighted impacts of Saharan dust events, and showed anthropogenic pollution's influence despite the site's remoteness. Enrichment factors emphasized non-natural sources of trace elements. Source apportionment identified four key factors affecting the area.
Dominic Heslin-Rees, Peter Tunved, Johan Ström, Roxana Cremer, Paul Zieger, Ilona Riipinen, Annica M. L. Ekman, Konstantinos Eleftheriadis, and Radovan Krejci
Atmos. Chem. Phys., 24, 2059–2075, https://doi.org/10.5194/acp-24-2059-2024, https://doi.org/10.5194/acp-24-2059-2024, 2024
Short summary
Short summary
Light-absorbing atmospheric particles (e.g. black carbon – BC) exert a warming effect on the Arctic climate. We show that the amount of particle light absorption decreased from 2002 to 2023. We conclude that in addition to reductions in emissions of BC, wet removal plays a role in the long-term reduction of BC in the Arctic, given the increase in surface precipitation experienced by air masses arriving at the site. The potential impact of biomass burning events is shown to have increased.
Andrea Spolaor, Federico Scoto, Catherine Larose, Elena Barbaro, Francois Burgay, Mats P. Bjorkman, David Cappelletti, Federico Dallo, Fabrizio de Blasi, Dmitry Divine, Giuliano Dreossi, Jacopo Gabrieli, Elisabeth Isaksson, Jack Kohler, Tonu Martma, Louise S. Schmidt, Thomas V. Schuler, Barbara Stenni, Clara Turetta, Bartłomiej Luks, Mathieu Casado, and Jean-Charles Gallet
The Cryosphere, 18, 307–320, https://doi.org/10.5194/tc-18-307-2024, https://doi.org/10.5194/tc-18-307-2024, 2024
Short summary
Short summary
We evaluate the impact of the increased snowmelt on the preservation of the oxygen isotope (δ18O) signal in firn records recovered from the top of the Holtedahlfonna ice field located in the Svalbard archipelago. Thanks to a multidisciplinary approach we demonstrate a progressive deterioration of the isotope signal in the firn core. We link the degradation of the δ18O signal to the increased occurrence and intensity of melt events associated with the rapid warming occurring in the archipelago.
Emma Nilsson, Carmen Paulina Vega, Dmitry Divine, Anja Eichler, Tonu Martma, Robert Mulvaney, Elisabeth Schlosser, Margit Schwikowski, and Elisabeth Isaksson
EGUsphere, https://doi.org/10.5194/egusphere-2023-3156, https://doi.org/10.5194/egusphere-2023-3156, 2024
Preprint withdrawn
Short summary
Short summary
To project future climate change it is necessary to understand paleoclimate including past sea ice conditions. We have investigated methane sulphonic acid (MSA) in Antarctic firn and ice cores to reconstruct sea ice extent (SIE) and found that the MSA – SIE as well as the MSA – phytoplankton biomass relationship varies across the different firn and ice cores. These inconsistencies in correlations across records suggest that MSA in Fimbul Ice Shelf cores does not reliably indicate regional SIE.
Cole G. Brachmann, Tage Vowles, Riikka Rinnan, Mats P. Björkman, Anna Ekberg, and Robert G. Björk
Biogeosciences, 20, 4069–4086, https://doi.org/10.5194/bg-20-4069-2023, https://doi.org/10.5194/bg-20-4069-2023, 2023
Short summary
Short summary
Herbivores change plant communities through grazing, altering the amount of CO2 and plant-specific chemicals (termed VOCs) emitted. We tested this effect by excluding herbivores and studying the CO2 and VOC emissions. Herbivores reduced CO2 emissions from a meadow community and altered VOC composition; however, community type had the strongest effect on the amount of CO2 and VOCs released. Herbivores can mediate greenhouse gas emissions, but the effect is marginal and community dependent.
Thomas Frank, Ward J. J. van Pelt, and Jack Kohler
The Cryosphere, 17, 4021–4045, https://doi.org/10.5194/tc-17-4021-2023, https://doi.org/10.5194/tc-17-4021-2023, 2023
Short summary
Short summary
Since the ice thickness of most glaciers worldwide is unknown, and since it is not feasible to visit every glacier and observe their thickness directly, inverse modelling techniques are needed that can calculate ice thickness from abundant surface observations. Here, we present a new method for doing that. Our methodology relies on modelling the rate of surface elevation change for a given glacier, compare this with observations of the same quantity and change the bed until the two are in line.
Anja Løkkegaard, Kenneth D. Mankoff, Christian Zdanowicz, Gary D. Clow, Martin P. Lüthi, Samuel H. Doyle, Henrik H. Thomsen, David Fisher, Joel Harper, Andy Aschwanden, Bo M. Vinther, Dorthe Dahl-Jensen, Harry Zekollari, Toby Meierbachtol, Ian McDowell, Neil Humphrey, Anne Solgaard, Nanna B. Karlsson, Shfaqat A. Khan, Benjamin Hills, Robert Law, Bryn Hubbard, Poul Christoffersen, Mylène Jacquemart, Julien Seguinot, Robert S. Fausto, and William T. Colgan
The Cryosphere, 17, 3829–3845, https://doi.org/10.5194/tc-17-3829-2023, https://doi.org/10.5194/tc-17-3829-2023, 2023
Short summary
Short summary
This study presents a database compiling 95 ice temperature profiles from the Greenland ice sheet and peripheral ice caps. Ice viscosity and hence ice flow are highly sensitive to ice temperature. To highlight the value of the database in evaluating ice flow simulations, profiles from the Greenland ice sheet are compared to a modeled temperature field. Reoccurring discrepancies between modeled and observed temperatures provide insight on the difficulties faced when simulating ice temperatures.
Azzurra Spagnesi, Pascal Bohleber, Elena Barbaro, Matteo Feltracco, Fabrizio De Blasi, Giuliano Dreossi, Martin Stocker-Waldhuber, Daniela Festi, Jacopo Gabrieli, Andrea Gambaro, Andrea Fischer, and Carlo Barbante
EGUsphere, https://doi.org/10.5194/egusphere-2023-1625, https://doi.org/10.5194/egusphere-2023-1625, 2023
Preprint archived
Short summary
Short summary
We present new data from a 10 m ice core drilled in 2019 and a 8.4 m parallel ice core drilled in 2021 at the summit of Weißseespitze glacier. In a new combination of proxies, we discuss profiles of stable water isotopes, major ion chemistry as well as a full profile of microcharcoal and levoglucosan. We find that the chemical and isotopic signals are preserved, despite the ongoing surface mass loss. This is not be to expected considering what has been found at other glaciers at similar locations.
Louise Steffensen Schmidt, Thomas Vikhamar Schuler, Erin Emily Thomas, and Sebastian Westermann
The Cryosphere, 17, 2941–2963, https://doi.org/10.5194/tc-17-2941-2023, https://doi.org/10.5194/tc-17-2941-2023, 2023
Short summary
Short summary
Here, we present high-resolution simulations of glacier mass balance (the gain and loss of ice over a year) and runoff on Svalbard from 1991–2022, one of the fastest warming regions in the Arctic. The simulations are created using the CryoGrid community model. We find a small overall loss of mass over the simulation period of −0.08 m yr−1 but with no statistically significant trend. The average runoff was found to be 41 Gt yr−1, with a significant increasing trend of 6.3 Gt per decade.
Sebastian Westermann, Thomas Ingeman-Nielsen, Johanna Scheer, Kristoffer Aalstad, Juditha Aga, Nitin Chaudhary, Bernd Etzelmüller, Simon Filhol, Andreas Kääb, Cas Renette, Louise Steffensen Schmidt, Thomas Vikhamar Schuler, Robin B. Zweigel, Léo Martin, Sarah Morard, Matan Ben-Asher, Michael Angelopoulos, Julia Boike, Brian Groenke, Frederieke Miesner, Jan Nitzbon, Paul Overduin, Simone M. Stuenzi, and Moritz Langer
Geosci. Model Dev., 16, 2607–2647, https://doi.org/10.5194/gmd-16-2607-2023, https://doi.org/10.5194/gmd-16-2607-2023, 2023
Short summary
Short summary
The CryoGrid community model is a new tool for simulating ground temperatures and the water and ice balance in cold regions. It is a modular design, which makes it possible to test different schemes to simulate, for example, permafrost ground in an efficient way. The model contains tools to simulate frozen and unfrozen ground, snow, glaciers, and other massive ice bodies, as well as water bodies.
Simone Ventisette, Samuele Baldini, Claudio Artoni, Silvia Becagli, Laura Caiazzo, Barbara Delmonte, Massimo Frezzotti, Raffaello Nardin, Joel Savarino, Mirko Severi, Andrea Spolaor, Barbara Stenni, and Rita Traversi
EGUsphere, https://doi.org/10.5194/egusphere-2023-393, https://doi.org/10.5194/egusphere-2023-393, 2023
Preprint archived
Short summary
Short summary
The paper reports the spatial variability of concentration and fluxes of chemical impurities in superficial snow over unexplored area of the East Antarctic ice sheet. Pinatubo and Puyehue-Cordón Caulle volcanic eruptions in non-sea salt sulfate and dust snow pits record were used to achieve the accumulation rates. Deposition (wet, dry and uptake from snow surface) and post deposition processes are constrained. These knowledges are fundamental in Antarctic ice cores stratigraphies interpretation.
James Brean, David C. S. Beddows, Roy M. Harrison, Congbo Song, Peter Tunved, Johan Ström, Radovan Krejci, Eyal Freud, Andreas Massling, Henrik Skov, Eija Asmi, Angelo Lupi, and Manuel Dall'Osto
Atmos. Chem. Phys., 23, 2183–2198, https://doi.org/10.5194/acp-23-2183-2023, https://doi.org/10.5194/acp-23-2183-2023, 2023
Short summary
Short summary
Our results emphasize how understanding the geographical variation in surface types across the Arctic is key to understanding secondary aerosol sources. We provide a harmonised analysis of new particle formation across the Arctic.
Niccolò Maffezzoli, Eliza Cook, Willem G. M. van der Bilt, Eivind N. Støren, Daniela Festi, Florian Muthreich, Alistair W. R. Seddon, François Burgay, Giovanni Baccolo, Amalie R. F. Mygind, Troels Petersen, Andrea Spolaor, Sebastiano Vascon, Marcello Pelillo, Patrizia Ferretti, Rafael S. dos Reis, Jefferson C. Simões, Yuval Ronen, Barbara Delmonte, Marco Viccaro, Jørgen Peder Steffensen, Dorthe Dahl-Jensen, Kerim H. Nisancioglu, and Carlo Barbante
The Cryosphere, 17, 539–565, https://doi.org/10.5194/tc-17-539-2023, https://doi.org/10.5194/tc-17-539-2023, 2023
Short summary
Short summary
Multiple lines of research in ice core science are limited by manually intensive and time-consuming optical microscopy investigations for the detection of insoluble particles, from pollen grains to volcanic shards. To help overcome these limitations and support researchers, we present a novel methodology for the identification and autonomous classification of ice core insoluble particles based on flow image microscopy and neural networks.
François Burgay, Rafael Pedro Fernández, Delia Segato, Clara Turetta, Christopher S. Blaszczak-Boxe, Rachael H. Rhodes, Claudio Scarchilli, Virginia Ciardini, Carlo Barbante, Alfonso Saiz-Lopez, and Andrea Spolaor
The Cryosphere, 17, 391–405, https://doi.org/10.5194/tc-17-391-2023, https://doi.org/10.5194/tc-17-391-2023, 2023
Short summary
Short summary
The paper presents the first ice-core record of bromine (Br) in the Antarctic plateau. By the observation of the ice core and the application of atmospheric chemical models, we investigate the behaviour of bromine after its deposition into the snowpack, with interest in the effect of UV radiation change connected to the formation of the ozone hole, the role of volcanic deposition, and the possible use of Br to reconstruct past sea ice changes from ice core collect in the inner Antarctic plateau.
Anirudha Mahagaonkar, Geir Moholdt, and Thomas V. Schuler
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-4, https://doi.org/10.5194/tc-2023-4, 2023
Revised manuscript not accepted
Short summary
Short summary
Surface meltwater lakes along the margins of the Antarctic Ice Sheet can be important for ice shelf dynamics and stability. We used optical satellite imagery to study seasonal evolution of meltwater lakes in Dronning Maud Land. We found large interannual variability in lake extents, but with consistent seasonal patterns. Although correlation with summer air temperature was strong locally, other climatic and environmental factors need to be considered to explain the large regional variability.
Marlene Kronenberg, Ward van Pelt, Horst Machguth, Joel Fiddes, Martin Hoelzle, and Felix Pertziger
The Cryosphere, 16, 5001–5022, https://doi.org/10.5194/tc-16-5001-2022, https://doi.org/10.5194/tc-16-5001-2022, 2022
Short summary
Short summary
The Pamir Alay is located at the edge of regions with anomalous glacier mass changes. Unique long-term in situ data are available for Abramov Glacier, located in the Pamir Alay. In this study, we use this extraordinary data set in combination with reanalysis data and a coupled surface energy balance–multilayer subsurface model to compute and analyse the distributed climatic mass balance and firn evolution from 1968 to 2020.
Outi Meinander, Pavla Dagsson-Waldhauserova, Pavel Amosov, Elena Aseyeva, Cliff Atkins, Alexander Baklanov, Clarissa Baldo, Sarah L. Barr, Barbara Barzycka, Liane G. Benning, Bojan Cvetkovic, Polina Enchilik, Denis Frolov, Santiago Gassó, Konrad Kandler, Nikolay Kasimov, Jan Kavan, James King, Tatyana Koroleva, Viktoria Krupskaya, Markku Kulmala, Monika Kusiak, Hanna K. Lappalainen, Michał Laska, Jerome Lasne, Marek Lewandowski, Bartłomiej Luks, James B. McQuaid, Beatrice Moroni, Benjamin Murray, Ottmar Möhler, Adam Nawrot, Slobodan Nickovic, Norman T. O’Neill, Goran Pejanovic, Olga Popovicheva, Keyvan Ranjbar, Manolis Romanias, Olga Samonova, Alberto Sanchez-Marroquin, Kerstin Schepanski, Ivan Semenkov, Anna Sharapova, Elena Shevnina, Zongbo Shi, Mikhail Sofiev, Frédéric Thevenet, Throstur Thorsteinsson, Mikhail Timofeev, Nsikanabasi Silas Umo, Andreas Uppstu, Darya Urupina, György Varga, Tomasz Werner, Olafur Arnalds, and Ana Vukovic Vimic
Atmos. Chem. Phys., 22, 11889–11930, https://doi.org/10.5194/acp-22-11889-2022, https://doi.org/10.5194/acp-22-11889-2022, 2022
Short summary
Short summary
High-latitude dust (HLD) is a short-lived climate forcer, air pollutant, and nutrient source. Our results suggest a northern HLD belt at 50–58° N in Eurasia and 50–55° N in Canada and at >60° N in Eurasia and >58° N in Canada. Our addition to the previously identified global dust belt (GDB) provides crucially needed information on the extent of active HLD sources with both direct and indirect impacts on climate and environment in remote regions, which are often poorly understood and predicted.
Silvia Becagli, Elena Barbaro, Simone Bonamano, Laura Caiazzo, Alcide di Sarra, Matteo Feltracco, Paolo Grigioni, Jost Heintzenberg, Luigi Lazzara, Michel Legrand, Alice Madonia, Marco Marcelli, Chiara Melillo, Daniela Meloni, Caterina Nuccio, Giandomenico Pace, Ki-Tae Park, Suzanne Preunkert, Mirko Severi, Marco Vecchiato, Roberta Zangrando, and Rita Traversi
Atmos. Chem. Phys., 22, 9245–9263, https://doi.org/10.5194/acp-22-9245-2022, https://doi.org/10.5194/acp-22-9245-2022, 2022
Short summary
Short summary
Measurements of phytoplanktonic dimethylsulfide and its oxidation products in the Antarctic atmosphere allow us to understand the role of the oceanic (sea ice melting, Chl α and dimethylsulfoniopropionate) and atmospheric (wind direction and speed, humidity, solar radiation and transport processes) factors in the biogenic aerosol formation, concentration and characteristic ratio between components in an Antarctic coastal site facing the polynya of the Ross Sea.
Stephen M. Platt, Øystein Hov, Torunn Berg, Knut Breivik, Sabine Eckhardt, Konstantinos Eleftheriadis, Nikolaos Evangeliou, Markus Fiebig, Rebecca Fisher, Georg Hansen, Hans-Christen Hansson, Jost Heintzenberg, Ove Hermansen, Dominic Heslin-Rees, Kim Holmén, Stephen Hudson, Roland Kallenborn, Radovan Krejci, Terje Krognes, Steinar Larssen, David Lowry, Cathrine Lund Myhre, Chris Lunder, Euan Nisbet, Pernilla B. Nizzetto, Ki-Tae Park, Christina A. Pedersen, Katrine Aspmo Pfaffhuber, Thomas Röckmann, Norbert Schmidbauer, Sverre Solberg, Andreas Stohl, Johan Ström, Tove Svendby, Peter Tunved, Kjersti Tørnkvist, Carina van der Veen, Stergios Vratolis, Young Jun Yoon, Karl Espen Yttri, Paul Zieger, Wenche Aas, and Kjetil Tørseth
Atmos. Chem. Phys., 22, 3321–3369, https://doi.org/10.5194/acp-22-3321-2022, https://doi.org/10.5194/acp-22-3321-2022, 2022
Short summary
Short summary
Here we detail the history of the Zeppelin Observatory, a unique global background site and one of only a few in the high Arctic. We present long-term time series of up to 30 years of atmospheric components and atmospheric transport phenomena. Many of these time series are important to our understanding of Arctic and global atmospheric composition change. Finally, we discuss the future of the Zeppelin Observatory and emerging areas of future research on the Arctic atmosphere.
Raffaello Nardin, Mirko Severi, Alessandra Amore, Silvia Becagli, Francois Burgay, Laura Caiazzo, Virginia Ciardini, Giuliano Dreossi, Massimo Frezzotti, Sang-Bum Hong, Ishaq Khan, Bianca Maria Narcisi, Marco Proposito, Claudio Scarchilli, Enricomaria Selmo, Andrea Spolaor, Barbara Stenni, and Rita Traversi
Clim. Past, 17, 2073–2089, https://doi.org/10.5194/cp-17-2073-2021, https://doi.org/10.5194/cp-17-2073-2021, 2021
Short summary
Short summary
The first step to exploit all the potential information buried in ice cores is to produce a reliable age scale. Based on chemical and isotopic records from the 197 m Antarctic GV7(B) ice core, accurate dating was achieved and showed that the archive spans roughly the last 830 years. The relatively high accumulation rate allowed us to use the non-sea-salt sulfate seasonal pattern to count annual layers. The accumulation rate reconstruction exhibited a slight increase since the 18th century.
Federico Dallo, Daniele Zannoni, Jacopo Gabrieli, Paolo Cristofanelli, Francescopiero Calzolari, Fabrizio de Blasi, Andrea Spolaor, Dario Battistel, Rachele Lodi, Warren Raymond Lee Cairns, Ann Mari Fjæraa, Paolo Bonasoni, and Carlo Barbante
Atmos. Meas. Tech., 14, 6005–6021, https://doi.org/10.5194/amt-14-6005-2021, https://doi.org/10.5194/amt-14-6005-2021, 2021
Short summary
Short summary
Our work showed how the adoption of low-cost technology could be useful in environmental research and monitoring. We focused our work on tropospheric ozone, but we also showed how to make a general purpose low-cost sensing system which may be adapted and optimised to be used in many other case studies. Given the importance of providing quality data, we put a lot of effort in the sensor's calibration, and we believe that our results show how to exploit the potential of the low-cost technology.
Michele Bertò, David Cappelletti, Elena Barbaro, Cristiano Varin, Jean-Charles Gallet, Krzysztof Markowicz, Anna Rozwadowska, Mauro Mazzola, Stefano Crocchianti, Luisa Poto, Paolo Laj, Carlo Barbante, and Andrea Spolaor
Atmos. Chem. Phys., 21, 12479–12493, https://doi.org/10.5194/acp-21-12479-2021, https://doi.org/10.5194/acp-21-12479-2021, 2021
Short summary
Short summary
We present the daily and seasonal variability in black carbon (BC) in surface snow inferred from two specific experiments based on the hourly and daily time resolution sampling during the Arctic spring in Svalbard. These unique data sets give us, for the first time, the opportunity to evaluate the associations between the observed surface snow BC mass concentration and a set of predictors corresponding to the considered meteorological and snow physico-chemical parameters.
Delia Segato, Maria Del Carmen Villoslada Hidalgo, Ross Edwards, Elena Barbaro, Paul Vallelonga, Helle Astrid Kjær, Marius Simonsen, Bo Vinther, Niccolò Maffezzoli, Roberta Zangrando, Clara Turetta, Dario Battistel, Orri Vésteinsson, Carlo Barbante, and Andrea Spolaor
Clim. Past, 17, 1533–1545, https://doi.org/10.5194/cp-17-1533-2021, https://doi.org/10.5194/cp-17-1533-2021, 2021
Short summary
Short summary
Human influence on fire regimes in the past is poorly understood, especially at high latitudes. We present 5 kyr of fire proxies levoglucosan, black carbon, and ammonium in the RECAP ice core in Greenland and reconstruct for the first time the fire regime in the high North Atlantic region, comprising coastal east Greenland and Iceland. Climate is the main driver of the fire regime, but at 1.1 kyr BP a contribution may be made by the deforestation resulting from Viking colonization of Iceland.
Enrico Mattea, Horst Machguth, Marlene Kronenberg, Ward van Pelt, Manuela Bassi, and Martin Hoelzle
The Cryosphere, 15, 3181–3205, https://doi.org/10.5194/tc-15-3181-2021, https://doi.org/10.5194/tc-15-3181-2021, 2021
Short summary
Short summary
In our study we find that climate change is affecting the high-alpine Colle Gnifetti glacier (Swiss–Italian Alps) with an increase in melt amounts and ice temperatures.
In the near future this trend could threaten the viability of the oldest ice core record in the Alps.
To reach our conclusions, for the first time we used the meteorological data of the highest permanent weather station in Europe (Capanna Margherita, 4560 m), together with an advanced numeric simulation of the glacier.
Anja Rösel, Sinead Louise Farrell, Vishnu Nandan, Jaqueline Richter-Menge, Gunnar Spreen, Dmitry V. Divine, Adam Steer, Jean-Charles Gallet, and Sebastian Gerland
The Cryosphere, 15, 2819–2833, https://doi.org/10.5194/tc-15-2819-2021, https://doi.org/10.5194/tc-15-2819-2021, 2021
Short summary
Short summary
Recent observations in the Arctic suggest a significant shift towards a snow–ice regime caused by deep snow on thin sea ice which may result in a flooding of the snowpack. These conditions cause the brine wicking and saturation of the basal snow layers which lead to a subsequent underestimation of snow depth from snow radar mesurements. As a consequence the calculated sea ice thickness will be biased towards higher values.
Chloé Scholzen, Thomas V. Schuler, and Adrien Gilbert
The Cryosphere, 15, 2719–2738, https://doi.org/10.5194/tc-15-2719-2021, https://doi.org/10.5194/tc-15-2719-2021, 2021
Short summary
Short summary
We use a two-dimensional model of water flow below the glaciers in Kongsfjord, Svalbard, to investigate how different processes of surface-to-bed meltwater transfer affect subglacial hydraulic conditions. The latter are important for the sliding motion of glaciers, which in some cases exhibit huge variations. Our findings indicate that the glaciers in our study area undergo substantial sliding because water is poorly evacuated from their base, with limited influence from the surface hydrology.
Juditha Undine Schmidt, Bernd Etzelmüller, Thomas Vikhamar Schuler, Florence Magnin, Julia Boike, Moritz Langer, and Sebastian Westermann
The Cryosphere, 15, 2491–2509, https://doi.org/10.5194/tc-15-2491-2021, https://doi.org/10.5194/tc-15-2491-2021, 2021
Short summary
Short summary
This study presents rock surface temperatures (RSTs) of steep high-Arctic rock walls on Svalbard from 2016 to 2020. The field data show that coastal cliffs are characterized by warmer RSTs than inland locations during winter seasons. By running model simulations, we analyze factors leading to that effect, calculate the surface energy balance and simulate different future scenarios. Both field data and model results can contribute to a further understanding of RST in high-Arctic rock walls.
Johan Ström, Jonas Svensson, Henri Honkanen, Eija Asmi, Nathaniel B. Dkhar, Shresth Tayal, Ved P. Sharma, Rakesh Hooda, Outi Meinander, Matti Leppäranta, Hans-Werner Jacobi, Heikki Lihavainen, and Antti Hyvärinen
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-158, https://doi.org/10.5194/acp-2021-158, 2021
Revised manuscript not accepted
Short summary
Short summary
Snow darkening in the Himalaya results from the deposition of different particles. Here we assess the change in the seasonal snow cover duration due to the presence of mineral dust and black carbon particles in the snow of Sunderdhunga valley, Central Himalaya, India. With the use of in situ weather station data, the snow melt-out date is estimated to be shifted ~13 days earlier due to the presence of the particles in the snow.
Elena Barbaro, Krystyna Koziol, Mats P. Björkman, Carmen P. Vega, Christian Zdanowicz, Tonu Martma, Jean-Charles Gallet, Daniel Kępski, Catherine Larose, Bartłomiej Luks, Florian Tolle, Thomas V. Schuler, Aleksander Uszczyk, and Andrea Spolaor
Atmos. Chem. Phys., 21, 3163–3180, https://doi.org/10.5194/acp-21-3163-2021, https://doi.org/10.5194/acp-21-3163-2021, 2021
Short summary
Short summary
This paper shows the most comprehensive seasonal snow chemistry survey to date, carried out in April 2016 across 22 sites on 7 glaciers across Svalbard. The dataset consists of the concentration, mass loading, spatial and altitudinal distribution of major ion species (Ca2+, K+,
Na2+, Mg2+,
NH4+, SO42−,
Br−, Cl− and
NO3−), together with its stable oxygen and hydrogen isotope composition (δ18O and
δ2H) in the snowpack. This study was part of the larger Community Coordinated Snow Study in Svalbard.
Jonas Svensson, Johan Ström, Henri Honkanen, Eija Asmi, Nathaniel B. Dkhar, Shresth Tayal, Ved P. Sharma, Rakesh Hooda, Matti Leppäranta, Hans-Werner Jacobi, Heikki Lihavainen, and Antti Hyvärinen
Atmos. Chem. Phys., 21, 2931–2943, https://doi.org/10.5194/acp-21-2931-2021, https://doi.org/10.5194/acp-21-2931-2021, 2021
Short summary
Short summary
Light-absorbing particles specifically affect snowmelt in the Himalayas. Through measurements of the constituents in glacier snow pits from the Indian Himalayas our investigations show that different snow layers display striking similarities. These similarities can be characterized by a deposition constant. Our results further indicate that mineral dust can be responsible for the majority of light absorption in the snow in this part of the Himalayas.
François Burgay, Andrea Spolaor, Jacopo Gabrieli, Giulio Cozzi, Clara Turetta, Paul Vallelonga, and Carlo Barbante
Clim. Past, 17, 491–505, https://doi.org/10.5194/cp-17-491-2021, https://doi.org/10.5194/cp-17-491-2021, 2021
Short summary
Short summary
We present the first Fe record from the NEEM ice core, which provides insight into past atmospheric Fe deposition in the Arctic. Considering the biological relevance of Fe, we questioned if the increased eolian Fe supply during glacial periods could explain the marine productivity variability in the Fe-limited subarctic Pacific Ocean. We found no overwhelming evidence that eolian Fe fertilization triggered any phytoplankton blooms, likely because other factors play a more relevant role.
Romie Tignat-Perrier, Aurélien Dommergue, Alban Thollot, Olivier Magand, Timothy M. Vogel, and Catherine Larose
Biogeosciences, 17, 6081–6095, https://doi.org/10.5194/bg-17-6081-2020, https://doi.org/10.5194/bg-17-6081-2020, 2020
Short summary
Short summary
The adverse atmospheric environmental conditions do not appear suited for microbial life. We conducted the first global comparative metagenomic analysis to find out if airborne microbial communities might be selected by their ability to resist these adverse conditions. The relatively higher concentration of fungi led to the observation of higher proportions of stress-related functions in air. Fungi might likely resist and survive atmospheric physical stress better than bacteria.
Andreas Alexander, Jaroslav Obu, Thomas V. Schuler, Andreas Kääb, and Hanne H. Christiansen
The Cryosphere, 14, 4217–4231, https://doi.org/10.5194/tc-14-4217-2020, https://doi.org/10.5194/tc-14-4217-2020, 2020
Short summary
Short summary
In this study we present subglacial air, ice and sediment temperatures from within the basal drainage systems of two cold-based glaciers on Svalbard during late spring and the summer melt season. We put the data into the context of air temperature and rainfall at the glacier surface and show the importance of surface events on the subglacial thermal regime and erosion around basal drainage channels. Observed vertical erosion rates thereby reachup to 0.9 m d−1.
Dominic Heslin-Rees, Maria Burgos, Hans-Christen Hansson, Radovan Krejci, Johan Ström, Peter Tunved, and Paul Zieger
Atmos. Chem. Phys., 20, 13671–13686, https://doi.org/10.5194/acp-20-13671-2020, https://doi.org/10.5194/acp-20-13671-2020, 2020
Short summary
Short summary
Aerosol particles are one important key player in the Arctic climate. Using long-term measurements of particle light scattering from an observatory on Svalbard, this study investigates the reasons behind an observed shift towards larger particles seen in the last 2 decades. We find that increases in sea spray are the most likely cause. Air masses from the south-west have increased significantly, suggestive of a potential mechanism, whilst the retreat in sea ice has a marginal influence.
Baptiste Vandecrux, Ruth Mottram, Peter L. Langen, Robert S. Fausto, Martin Olesen, C. Max Stevens, Vincent Verjans, Amber Leeson, Stefan Ligtenberg, Peter Kuipers Munneke, Sergey Marchenko, Ward van Pelt, Colin R. Meyer, Sebastian B. Simonsen, Achim Heilig, Samira Samimi, Shawn Marshall, Horst Machguth, Michael MacFerrin, Masashi Niwano, Olivia Miller, Clifford I. Voss, and Jason E. Box
The Cryosphere, 14, 3785–3810, https://doi.org/10.5194/tc-14-3785-2020, https://doi.org/10.5194/tc-14-3785-2020, 2020
Short summary
Short summary
In the vast interior of the Greenland ice sheet, snow accumulates into a thick and porous layer called firn. Each summer, the firn retains part of the meltwater generated at the surface and buffers sea-level rise. In this study, we compare nine firn models traditionally used to quantify this retention at four sites and evaluate their performance against a set of in situ observations. We highlight limitations of certain model designs and give perspectives for future model development.
Aynom T. Teweldebrhan, Thomas V. Schuler, John F. Burkhart, and Morten Hjorth-Jensen
Hydrol. Earth Syst. Sci., 24, 4641–4658, https://doi.org/10.5194/hess-24-4641-2020, https://doi.org/10.5194/hess-24-4641-2020, 2020
Ankit Pramanik, Jack Kohler, Katrin Lindbäck, Penelope How, Ward Van Pelt, Glen Liston, and Thomas V. Schuler
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-197, https://doi.org/10.5194/tc-2020-197, 2020
Revised manuscript not accepted
Short summary
Short summary
Freshwater discharge from tidewater glaciers influences fjord circulation and fjord ecosystem. Glacier hydrology plays crucial role in transporting water underneath glacier ice. We investigated hydrology beneath the tidewater glaciers of Kongsfjord basin in Northwest Svalbard and found that subglacial water flow differs substantially from surface flow of glacier ice. Furthermore, we derived freshwater discharge time-series from all the glaciers to the fjord.
Cited articles
Aamaas, B., Bøggild, C. E., Stordal, F., Berntsen, T., Holmén, K., and
Ström, J.: Elemental carbon deposition to Svalbard snow from Norwegian
settlements and long-range transport, Tellus B, 63, 340–351,
https://doi.org/10.1111/j.1600-0889.2011.00531.x, 2011.
AMAP: AMAP Assessment 2015: Black carbon and ozone as Arctic climate forcers, AMAP – Arctic Monitoring and Assessment Programme, Oslo, Norway,
vii + 116 pp., 2015.
Bautista VII, A. T., Pabroa, P. C. B., Santos, F. L., Quirit, L. L., Asis, J. L. B., Dy, M. A. K., and Martinez, J. P. G.: Intercomparison between NIOSH,
IMPROVE_A, and EUSAAR_2 protocols: Finding an optimal thermal–optical protocol for Philippines OC/EC samples, Atmos. Poll. Res., 6, 334–342, https://doi.org/10.5094/APR.2015.037, 2015.
Binder, H., Boettcher, M., Grams, C. M., Joos, H., Pfahl, S., and Wernli, H.: Exceptional air mass transport and dynamical drivers of an extreme wintertime Arctic warm event, Geophys. Res. Lett., 44, 12028–12036,
https://doi.org/10.1002/2017GL075841, 2017.
Birch, M. E.: Diesel particulate matter (as elemental carbon): Method 5040, NIOSH Man. Occup. Saf. Health, 3, 1–5, 2003.
Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T.,
DeAngelo, B. J., Flanner, M. G., Ghan, S., Kärcher, B., Koch, D., Kinne,
S., Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M. G., Schulz, M.,
Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S. K., Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U.,
Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G., and Zender, C.
S.: Bounding the role of black carbon in the climate system: A scientific
assessment, J. Geophys. Res.-Atmos., 118, 5380–5552, https://doi.org/10.1002/jgrd.50171, 2013.
Bourgeois, Q. and Bey, I.: Pollution transport efficiency toward the Arctic:
Sensitivity to aerosol scavenging and source regions, J. Geophys. Res., 116,
D08213, https://doi.org/10.1029/2010JD015096, 2011.
Bowman, D. S. and Deming, J. W.: Elevated bacterial abundance and exopolymers
in saline frost flowers and implications for atmospheric chemistry and
microbial dispersal, Geophys. Res. Lett., 37, L13501, https://doi.org/10.1029/2010GL043020, 2010.
Braathen, G. O., Hov Ø., and Stordal, F: Arctic atmospheric research station on the Zeppelin mountain (474 m a.s.l.) near Ny-Ålesund on Svalbard (78∘54′29′′ N, 11∘52′53′′ E), Norwegian Institute for Air Research, Lillestrøm, 1990.
Browse, J., Carslaw, K. S., Arnold, S. R., Pringle, K., and Boucher, O.: The
scavenging processes controlling the seasonal cycle in Arctic sulphate and
black carbon aerosol, Atmos. Chem. Phys., 12, 6775–6798,
https://doi.org/10.5194/acp-12-6775-2012, 2012.
Campbell, K., Muncy, C. J., Belzile, C., Delaforge, A., and Rysgaard, S.:
Seasonal dynamics of algal and bacterial communities in Arctic sea ice under
variable snow cover, Polar Biol., 41, 41–58, https://doi.org/10.1007/s00300-017-2168-2, 2018.
Casey, K. A.: Geochemical composition of surface snow, ice and debris from
glaciers in Norway, Nepal and New Zealand, PANGAEA, https://doi.org/10.1594/PANGAEA.773951, 2012.
Cavalli, F., Viana, M., Yttri, K. E., Genberg, J., and Putaud, J.-P.: Toward a standardised thermal-optical protocol for measuring atmospheric organic and elemental carbon: the EUSAAR protocol, Atmos. Meas. Tech., 3, 79–89,
https://doi.org/10.5194/amt-3-79-2010, 2010.
Cheng, Y., Hea, K.-B., Duana, F.-K., Du, Z.-L., Zheng, M., and Ma, Y.-L.:
Ambient organic carbon to elemental carbon ratios: Influence of the thermal–optical temperature protocol and implications, Sci. Total Environ.,
468–469, 1103–1111, https://doi.org/10.1016/j.scitotenv.2013.08.084, 2014.
Conger, S. M. and McClung, D. M.: Comparison of density cutters for snow
profile observations, J. Glaciol., 55, 163–169, https://doi.org/10.3189/002214309788609038, 2009.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and
Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the
data assimilation system, Q. J. Roy. Meteorol. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Dekhtyareva, A., Edvardsen, K., Holmén, K., Hermansen, O., and Hansson, H.-C.: Influence of local and regional air pollution on atmospheric measurements In Ny-Ålesund, Int. J. Sustain. Dev. Plan., 11, 578–587,
https://doi.org/10.2495/SDP-V11-N4-578-587, 2016.
Dekhtyareva, A., Holmén, K., Maturilli, M., Hermansend, O., and Graversen, R.: Effect of seasonal mesoscale and microscale meteorological
conditions in Ny-Ålesund on results of monitoring of long-range
transported pollution, Polar Res., 37, 1508196, https://doi.org/10.1080/17518369.2018.1508196, 2018.
Doherty, S. J., Warren, S. G., Grenfell, T. C., Clarke, A. D., and Brandt,
R. E.: Light-absorbing impurities in Arctic snow, Atmos. Chem. Phys., 10,
11647–11680, https://doi.org/10.5194/acp-10-11647-2010, 2010.
Dou, T.-F. and Xiao, C.-D.: An overview of black carbon deposition and its
radiative forcing over the Arctic, Adv. Clim. Change Res., 7, 115–122,
https://doi.org/10.1016/j.accre.2016.10.003, 2016.
Eleftheriadis, K., Vratolis, S., and Nyeki, S.: Aerosol black carbon in the
European Arctic: Measurements at Zeppelin station, Ny-Ålesund, Svalbard
from 1998–2007, Geophys. Res. Lett., 36, L02809, https://doi.org/10.1029/2008GL035741,
2009.
Esau, I. and Repina, I.: Wind climate in Kongsfjorden, Svalbard, and attribution of leading wind driving mechanisms through turbulence-resolving
simulations, Adv. Meteorol., 2012, 568454, https://doi.org/10.1155/2012/568454, 2012.
Esau, I. and Sorokina, S.: Climatology of the Arctic planetary boundary layer, in: Atmospheric Turbulence, Meteorological Modeling and Aerodynamics, edited by: Lang, P. R. and Lombargo, F. S., Nova Science Publishers, New York, 3–58, 2009.
Evangeliou, N., Shevchenko, V. P., Yttri, K. E., Eckhardt, S., Sollum, E.,
Pokrovsky, O. S., Kobelev, V. O., Korobov, V. B., Lobanov, A. A., Starodymova, D. P., Vorobiev, S. N., Thompson, R. L., and Stohl, A.: Origin
of elemental carbon in snow from western Siberia and northwestern European
Russia during winter–spring 2014, 2015 and 2016, Atmos. Chem. Phys., 18,
963–977, https://doi.org/10.5194/acp-18-963-2018, 2018.
Forsström, S., Ström, J., Pedersen, J. C. A., Isaksson, E., and Gerland, S.: Elemental carbon distribution in Svalbard snow, J. Geophys.
Res.-Atmos. 114, D19112, https://doi.org/10.1029/2008JD011480, 2009.
Forsström, S., Isaksson, E., Skeie, R. B., Ström, J., Pedersen, C. A., Hudson, S. R., Berntsen, T. K., Lihavainen, H., Godtliebsen, F., and Gerland, S.: Elemental carbon measurements in European Arctic snow packs,
J. Geophys. Res.-Atmos., 118, 13614–13627, https://doi.org/10.1002/2013JD019886, 2013.
Gallet, J. C., Björkman, M. P., Larose, C., Luks, B., Martma, T., and
Zdanowicz, C.: Protocols and recommendations for the measurement of snow physical properties, and sampling of snow for black carbon, water isotopes, major ions and microorganisms, Short Report 46, Norwegian Polar Institute, Tromsø, p. 29, 2018.
Gallet, J.-C., Zdanowicz, C., Björkman, M. P, Larose, C., Schuler, T. V.. Luks, B., Koziol, K., Spolaor, A., Barbaro, E., Martma, T., Wideqvist, U., and Ström, J.: Particulate organic and elemental carbon in Svalbard snow, 2007–18, PANGAEA, https://doi.org/10.1594/PANGAEA.918134, 2020.
Ganser, G. H. and Hewett, P.: An accurate substitution method for analyzing
censored data, J. Occup. Environ. Hyg., 7, 233–244, https://doi.org/10.1080/15459621003609713, 2010.
Grenfell, T. C., Doherty, S. J., Clarke, A. D., and Warren, S. G.: Light
absorption from particulate impurities in snow and ice determined by
spectrophotometric analysis of filters, Appl. Optics, 50, 2037–2048,
https://doi.org/10.1364/AO.50.002037, 2011.
Hagler, G. S. W., Bergin, M. H., Smith, E. A., Dibb, J. E., Anderson, C., and
Steig, E. J.: Particulate and water-soluble carbon measured in recent snow at
Summit, Greenland, Geophys. Res. Lett., 34, L16505, https://doi.org/10.1029/2007GL030110, 2007.
Hanaka, A., Plak, A., Zagórski, P., Ozimek, E., Rysiak, A., Majewska, M., and Jaroszuk-Ściseł, J.: Relationships between the properties of
Spitsbergen soil, number and biodiversity of rhizosphere microorganisms, and
heavy metal concentration in selected plant species, Plant Soil, 436, 49–69, https://doi.org/10.1007/s11104-018-3871-7, 2019.
Hodson, A., Cameron, K., Bøggild, C., Irvine-Fynn, T., Langford, H., Pearce, D., and Banwart, S.: The structure, biological activity and biogeochemistry of cryoconite aggregates upon an Arctic valley glacier:
Longyearbreen, Svalbard, J. Glaciol., 56, 349–362, https://doi.org/10.3189/002214310791968403, 2010.
Hornung, R. W. and Reed, L. D.: Estimation of average concentration in the
presence of nondetectable values, Appl. Occup. Environ. Hyg., 5, 46–51, https://doi.org/10.1080/1047322X.1990.10389587, 1990.
Ingvander, S., Rosqvist, G., Svensson, J., and Dahlke, H. E.: Seasonal and
interannual variability of elemental carbon in the snowpack of Storglaciären, northern Sweden, Ann. Glaciol., 54, 50–58, https://doi.org/10.3189/2013AoG62A229, 2013.
Jacobi, H.-W., Obleitner, F., Da Costa, S., Ginot, P., Eleftheriadis, K., Aas, W., and Zanatta, M.: Deposition of ionic species and black carbon to the
Arctic snowpack: combining snow pit observations with modeling, Atmos. Chem.
Phys., 19, 10361–10377, https://doi.org/10.5194/acp-19-10361-2019, 2019.
James, T. D., Murray, T., Barrand, N. E., Sykes, H. J., Fox, A. J., and King,
M. A.: Observations of enhanced thinning in the upper reaches of Svalbard glaciers, The Cryosphere, 6, 1369–1381, https://doi.org/10.5194/tc-6-1369-2012, 2012.
Karl, M., Leck, C., Rad, F. M., Bäcklund, A., Lopez-Aparicio, S., and
Heintzenberg, J.: New insights in sources of the sub-micrometre aerosol at
Mt. Zeppelin observatory (Spitsbergen) in the year 2015, Tellus B, 71, 1613143, https://doi.org/10.1080/16000889.2019.1613143, 2019.
Khan, A. L., Dierssen, H., Schwarz, J. P., Schmitt, C., Chlus, A., Hermanson, M., Painter, T. H., and McKnight, D. M.: Impacts of coal dust from an active mine on the spectral reflectance of Arctic surface snow in Svalbard, Norway, J. Geophys. Res. Atmos., 122, 1767–1778, https://doi.org/10.1002/2016JD025757, 2017.
Kim, B., Hong, J., Jun, S. Zhang, X., Kwon, H., Kim, S., Kim, J., and Kim, H.: Major cause of unprecedented Arctic warming in January 2016: Critical role of an Atlantic windstorm, Sci. Rep., 7, 40051, https://doi.org/10.1038/srep40051,
2017.
Kirpes, R. M., Bonanno, D., May, N. W., Fraund, M., Barget, A. J., Moffet, R. C., Ault, A. P., and Pratt, K. A.: Wintertime Arctic sea spray aerosol
composition controlled by sea ice mead microbiology, ACS Cent. Sci., 5,
1760–1767, https://doi.org/10.1021/acscentsci.9b00541, 2019.
Koenig, L. S., Ivanoff, A., Alexander, P. M., MacGregor, J. A., Fettweis, X., Panzer, B., Paden, J. D., Forster, R. R., Das, I., McConnell, J. R., Tedesco, M., Leuschen, C., and Gogineni, P.: Annual Greenland accumulation rates (2009–2012) from airborne snow radar, The Cryosphere, 10, 1739–1752,
https://doi.org/10.5194/tc-10-1739-2016, 2016.
König, M., Nuth, C., Kohler, J., Moholdt, G., and Pettersson, R.: A digital glacier database for svalbard, in: Global Land Ice Measurements from Space, edited by: Kargel, J. S., Leonard, G. J., Bishop, M. P., Kääb, A., and Raup, B. H., Springer, Berlin, Heidelberg, 229–239, 2014.
Kozioł, K. A., Moggridge, H. L., Cook, J. M., and Hodson, A. J.: Organic carbon fluxes of a glacier surface: A case study of Foxfonna, a small Arctic
glacier, Earth Surf. Proc. Land., 44, 405–416, https://doi.org/10.1002/esp.4501, 2019.
Kuchiki, K., Aoki, T., Niwano, M., Matoba, S., Kodama, Y., and Adachi, K.:
Elemental carbon, organic carbon, and dust concentrations in snow measured with thermal optical and gravimetric methods: Variations during the
2007–2013 winters at Sapporo, Japan, J. Geophys. Res.-Atmos., 120, 868–882, https://doi.org/10.1002/2014JD022144, 2015.
Kühnel, R., Björkman, M. P., Vega, C. P., Hodson, A., Isaksson, E., and Ström, J.: Reactive nitrogen and sulphate wet deposition at Zeppelin
Station, Ny-Ålesund, Svalbard, Polar Res., 32, 19136,
https://doi.org/10.3402/polar.v32i0.19136, 2013.
Langford, H., Hodson, A., and Banwart, S.: Using FTIR spectroscopy to
characterise the soil mineralogy and geochemistry of cryoconite from Aldegondabreen glacier, Svalbard, Appl. Geochem., 26, S206–S209,
https://doi.org/10.1016/j.apgeochem.2011.03.105, 2011.
Lim, S., Faïn, X., Zanatta, M., Cozic, J., Jaffrezo, J.-L., Ginot, P.,
and Laj, P.: Refractory black carbon mass concentrations in snow and ice:
method evaluation and inter-comparison with elemental carbon measurement, Atmos. Meas. Tech., 7, 3307–3324, https://doi.org/10.5194/amt-7-3307-2014, 2014.
Lis, G., Wassenenaar, L. I., and Hendy, M. J.: High-precision laser spectroscopy D/H and measurements of microliter natural water samples, Anal. Chem., 80, 287–293, https://doi.org/10.1021/ac701716q,
2008.
Marchenko, S., van Pelt, W. J. J., Claremar, B., Pohjola, V., Pettersson, R.,
Machguth, H., and Reijmer, C.: Parameterizing deep water percolation improves
subsurface temperature simulations by a multilayer firn model, Front. Earth Sci., 5, 16, https://doi.org/10.3389/feart.2017.00016, 2017.
Marks, A. A. and King, M. D.: The effects of additional black carbon on the
albedo of Arctic sea ice: variation with sea ice type and snow cover, The
Cryosphere, 7, 1193–1204, https://doi.org/10.5194/tc-7-1193-2013, 2013.
Maturilli, M. and Kayser, M.: Arctic warming, moisture increase and circulation changes observed in the Ny-Ålesund homogenized radiosonde
record, Theor. Appl. Climatol., 130, 1–17, https://doi.org/10.1007/s00704-016-1864-0, 2017.
Meinander, O., Kazadzis, S., Arola, A., Riihelä, A., Räisänen, P., Kivi, R., Kontu, A., Kouznetsov, R., Sofiev, M., Svensson, J., Suokanerva, H., Aaltonen, V., Manninen, T., Roujean, J.-L., and Hautecoeur,
O.: Spectral albedo of seasonal snow during intensive melt period at Sodankylä, beyond the Arctic Circle, Atmos. Chem. Phys., 13, 3793–3810,
https://doi.org/10.5194/acp-13-3793-2013, 2013.
Mori, T., Goto-Azuma, K., Kondo, Y., Ogawa-Tsukagawa, Y., Miura, K., Hirabayashi, M., Oshima, N., Koike, M., Kupiainen, K., Moteki, N., Ohata, S., Sinha, P. R., Sugiura, K., Aoki, T., Schneebeli, M., Steffen, K., Sato, A., Tsushima, A., Makarov, V., Omiya, S., Sugimoto, A., Takano, S., and Nagatsuka, N.: Black carbon and inorganic aerosols in Arctic snowpack, J.
Geophys. Res.-Atmos., 124, 13325–13356, https://doi.org/10.1029/2019JD030623, 2019.
Moroni, B., Becagli, S., Bolzacchini, E., Busetto, M., Cappelletti, D.,
Crocchianti, S., Ferrero, L., Frosini, D., Lanconelli, C., Lupi, A., Maturilli, M., Mazzola, M., Perrone, M. G., Sangiorgi, G., Traversi, R.,
Udisti, R., Viola, A., and Vitale, V.: Vertical profiles and chemical properties of aerosol particles upon Ny-Ålesund (Svalbard islands), Adv.
Meteorol., 2015, 292081, https://doi.org/10.1155/2015/292081, 2015.
Noone, K. J. and Clarke, A. D.: Soot scavenging measurement in Arctic snowfall, Atmos. Environ., 22, 2773–2778, https://doi.org/10.1016/0004-6981(88)90444-1, 1988.
Osmont, D., Wendl, I. A., Schmidely, L., Sigl, M., Vega, C. P., Isaksson, E., and Schwikowski, M.: An 800-year high-resolution black carbon ice core record from Lomonosovfonna, Svalbard, Atmos. Chem. Phys., 18, 12777–12795,
https://doi.org/10.5194/acp-18-12777-2018, 2018.
Panteliadis, P., Hafkenscheid, T., Cary, B., Diapouli, E., Fischer, A., Favez, O., Quincey, P., Viana, M., Hitzenberger, R., Vecchi, R., Saraga, D.,
Sciare, J., Jaffrezo, J. L., John, A., Schwarz, J., Giannoni, M., Novak, J.,
Karanasiou, A., Fermo, P., and Maenhaut, W.: ECOC comparison exercise with
identical thermal protocols after temperature offset correction – instrument diagnostics by in-depth evaluation of operational parameters, Atmos. Meas. Tech., 8, 779–792, https://doi.org/10.5194/amt-8-779-2015, 2015.
Petzold, A., Ogren, J. A., Fiebig, M., Laj, P., Li, S.-M., Baltensperger, U., Holzer-Popp, T., Kinne, S., Pappalardo, G., Sugimoto, N., Wehrli, C., Wiedensohler, A., and Zhang, X.-Y.: Recommendations for reporting “black
carbon” measurements, Atmos. Chem. Phys., 13, 8365–8379,
https://doi.org/10.5194/acp-13-8365-2013, 2013.
Pramanik, A., Kohler, J., Schuler, T. V., Van Pelt, W., and Cohen, L.:
Comparison of snow accumulation events on two High-Arctic glaciers to
model-derived and observed precipitation, Polar Res., 38, 3364,
https://doi.org/10.33265/polar.v38.3364, 2019.
Proksch, M., Rutter, N., Fierz, C., and Schneebeli, M.: Intercomparison of
snow density measurements: bias, precision, and vertical resolution, The
Cryosphere, 10, 371–384, https://doi.org/10.5194/tc-10-371-2016, 2016.
Reistad, M., Breivik, Ø., Haakenstad, H., Aarnes, O. J., and Furevik, B.
R.: A high-resolution hindcast of wind and waves for the North Sea, the Norwegian Sea and the Barents Sea, Tech. Rep. Met. Rep. No. 2009/14, Norwegian Meteorological Institute, Oslo, 2009.
Robinson, A. L., Donahue, N. M., Shrivastava, M. K., Weitkamp, E. A., Sage, A. M., Grieshop, A. P., Lane, T. E., Pierce, J. R., and Pandis, S. N.: Rethinking organic aerosols: semivolatile emissions and photochemical aging. Science, 315, 1259–1262, https://doi.org/10.1126/science.1133061, 2007.
Ruppel, M. M., Isaksson, E., Ström, J., Beaudon, E., Svensson, J., Pedersen, C. A., and Korhola, A.: Increase in elemental carbon values
between 1970 and 2004 observed in a 300-year ice core from Holtedahlfonna
(Svalbard), Atmos. Chem. Phys., 14, 11447–11460, https://doi.org/10.5194/acp-14-11447-2014, 2014.
Ruppel, M. M., Soares, J., Gallet, J.-C., Isaksson, E., Martma, T., Svensson, J., Kohler, J., Pedersen, C. A., Manninen, S., Korhola, A., and Ström, J.: Do contemporary (1980–2015) emissions determine the elemental carbon deposition trend at Holtedahlfonna glacier, Svalbard?, Atmos. Chem. Phys., 17, 12779–12795, https://doi.org/10.5194/acp-17-12779-2017, 2017.
Schwarz, J. P., Gao, R. S., Perring, A. E., Spackman, J. R., and Fahey, D. W.: Black carbon aerosol size in snow, Sci. Rep., 3, 1356, https://doi.org/10.1038/srep01356, 2012.
Shears, J., Theisen, F., Bjørdal, A., and Norris, S.: Environmental impact
assessment, Ny-Ålesund international scientific research and monitoring station, Svalbard, Meddelelser no. 157, Norwegian Polar Institute, Tromsø, 1998.
Singh, S. M., Gawas-Sakhalkar, P., Naik, S., Ravindra, R., Sharma, J., Upadhyay, A. K., Mulik, R. U., and Bohare, P.: Elemental composition and
bacterial incidence in firn-cores at Midre Lovénbreen glacier, Svalbard,
Polar Record, 51, 39–48, https://doi.org/10.1017/S0032247413000533, 2015.
Sinha, P. R., Kondo, Y., Goto-Azuma, K., Tsukagawa, Y., Fukuda, K., Koike, M., Oshima, N., Førland, E. J., Irwin, M., Gallet, J.-C., and Pedersen, C.
A.: Seasonal progression of the deposition of black carbon by snowfall at
Ny-Ålesund, Spitsbergen, J. Geophys. Res.-Atmos., 123, 997–1016,
https://doi.org/10.1002/2017JD028027, 2018.
Stephens, M., Turner, N., and Sandberg, J.: Particle identification by laser-induced incandescence in a solid-state laser cavity, Appl. Optics, 42,
3726–3736, https://doi.org/10.1364/AO.42.003726, 2003.
Stohl, A., Aamaas, B., Amann, M., Baker, L. H., Bellouin, N., Berntsen, T. K., Boucher, O., Cherian, R., Collins, W., Daskalakis, N., Dusinska, M.,
Eckhardt, S., Fuglestvedt, J. S., Harju, M., Heyes, C., Hodnebrog, Ø., Hao, J., Im, U., Kanakidou, M., Klimont, Z., Kupiainen, K., Law, K. S., Lund, M. T., Maas, R., MacIntosh, C. R., Myhre, G., Myriokefalitakis, S., Olivié, D., Quaas, J., Quennehen, B., Raut, J.-C., Rumbold, S. T., Samset, B. H., Schulz, M., Seland, Ø., Shine, K. P., Skeie, R. B., Wang,
S., Yttri, K. E., and Zhu, T.: Evaluating the climate and air quality impacts of short-lived pollutants, Atmos. Chem. Phys., 15, 10529–10566,
https://doi.org/10.5194/acp-15-10529-2015, 2015.
Svensson, J. Ström, J., Hansson, M., Lihavainen, H., and Kerminen, V.-M.: Observed metre scale horizontal variability of elemental carbon in surface snow, Environ. Res. Lett., 8, 034012, https://doi.org/10.1088/1748-9326/8/3/034012, 2013.
Svensson, J., Ström, J., Kivekäs, N., Dkhar, N. B., Tayal, S., Sharma, V. P., Jutila, A., Backman, J., Virkkula, A., Ruppel, M., Hyvärinen, A., Kontu, A., Hannula, H.-R., Leppäranta, M., Hooda, R.
K., Korhola, A., Asmi, E., and Lihavainen, H.: Light-absorption of dust and
elemental carbon in snow in the Indian Himalayas and the Finnish Arctic,
Atmos. Meas. Tech., 11, 1403–1416, https://doi.org/10.5194/amt-11-1403-2018, 2018.
Szymański, W., Skiba, M., Wojtuń, B., and Drewnik, M.: Soil properties, micromorphology, and mineralogy of cryosols from sorted and
unsorted patterned grounds in the Hornsund area, SW Spitsbergen, Geoderma,
253–254, 1–11, https://doi.org/10.1016/j.geoderma.2015.03.029, 2015.
Thomas, F. A., Sinha, R. K., and Krishnan, K. P.: Bacterial community structure of a glacio-marine system in the Arctic (Ny-Ålesund, Svalbard), Sci. Total Environ., 718, 135264, https://doi.org/10.1016/j.scitotenv.2019.135264, 2020.
Torres, A., Bond, T. C., Lehmann, C. M. B., Subramanian, R., and Hadley, O. L.: Measuring organic carbon and black carbon in rainwater: Evaluation of
methods, Aerosol Sci. Tech., 48, 239–250, https://doi.org/10.1080/02786826.2013.868596, 2014.
Tørseth, K., Andrews, E., Asmi, E., Eleftheriadis, K., Fiebig, M., Herber, A., Huang, L., Kylling, A., Lupi, A., Massling, A., Mazzola, M., Nøjgaard, J. K., Popovicheva, O., Schichtel, B., Schmale, J., Sharma, S., Skov, H., Stebel, K., Vasel, B., Vitale, V., Whaley, C., Yttri, K. E., and Zanatta, M.: Review of Observation Capacities and Data Availability for Black Carbon in the Arctic Region, EU Action on Black Carbon in the Arctic – Technical Report 1, AMAP – Arctic Monitoring and Assessment Programme, Oslo, p. 35, 2019.
Van Kampenhout, L., Lenaerts, J. T. M., Lipscomb, W. H., Sacks, W. J., Lawrence, D. M., Slater, A. G., and van den Broeke, M. R.: Improving the
representation of polar snow and firn in the Community Earth System Model, J.
Adv. Model. Earth Syst., 9, 2583–2600, https://doi.org/10.1002/2017MS000988, 2017.
Van Pelt, W., Pohjola, V., Pettersson, R., Marchenko, S., Kohler, J., Luks,
B., Ove Hagen, J. O., Schuler, T. V., Dunse, T., Noël, B., and Reijmer, C.: A long-term dataset of climatic mass balance, snow conditions, and runoff in Svalbard (1957–2018), The Cryosphere, 13, 2259–2280, https://doi.org/10.5194/tc-13-2259-2019, 2019.
Van Pelt, W. J. J. and Kohler, J.: Modelling the long-term mass balance and
firn evolution of glaciers around Kongsfjorden, Svalbard, J. Glaciol., 61,
731–744, https://doi.org/10.3189/2015JoG14J223, 2015.
Van Pelt, W. J. J., Oerlemans, J., Reijmer, C. H., Pohjola, V. A., Pettersson, R., and van Angelen, J. H.: Simulating melt, runoff and refreezing on Nordenskiöldbreen, Svalbard, using a coupled snow and energy balance model, The Cryosphere, 6, 641–659, https://doi.org/10.5194/tc-6-641-2012, 2012.
Vionnet, V., Brun, E., Morin, S., Boone, A., Faroux, S., Le Moigne, P., Martin, E., and Willemet, J.-M.: The detailed snowpack scheme Crocus and its
implementation in SURFEX v7.2, Geosci. Model Dev., 5, 773–791,
https://doi.org/10.5194/gmd-5-773-2012, 2012.
Wang, M., Xu, B., Zhao, H., Cao, J., Joswiak, D., Wu, G., and Lin, S.: The influence of dust on quantitative measurements of black carbon in ice and
snow when using a thermal optical method, Aerosol Sci. Tech., 46, 60–69,
https://doi.org/10.1080/02786826.2011.605815, 2012.
Weinbruch, S., Wiesemann, D., Ebert, M., Schütze, K., Kallenborn, R., and
Ström, J.: Chemical composition and sources of aerosol particles at Zeppelin Mountain (Ny-Ålesund, Svalbard): An electron microscopy study,
Atmos. Environ., 49, 142–150, https://doi.org/10.1016/j.atmosenv.2011.12.008, 2012.
Winiger, P., Andersson, A., Yttri, K. E., Tunved, P., and Gutsfasson, Ö.:
Isotope-based source apportionment of EC aerosol particles during winter
high-pollution events at the Zeppelin Observatory, Svalbard, Environ. Sci.
Technol., 49, 11959–11966, https://doi.org/10.1021/acs.est.5b02644, 2015.
Winiger, P., Barrett, T. E., Sheesley, R. J., Huang, L., Sharma, S., Barrie,
L. A., Yttri, K. E., Evangeliou, N., Eckhardt, S., Stohl, A., Klimont, Z.,
Heyes, C., Semiletov, I. P., Dudarev, O. V., Charkin, A., Shakhova, N.,
Holmstrand, H., Andersson, A., and Gustafsson, Ö.: Source apportionment
of circum-Arctic atmospheric black carbon from isotopes and modeling, Sci.
Adv., 5, eaau8052, https://doi.org/10.1126/sciadv.aau8052, 2019.
Xu, B., Cao, J., Joswiak, D. R., Liu, X., Zhao, H., and He, J.:
Postdepositional enrichment of black soot in snow-pack and accelerated
melting of Tibetan glaciers, Environ. Res. Lett., 7, 014022,
https://doi.org/10.1088/1748-9326/7/1/014022, 2012.
Short summary
Black carbon (BC) aerosols are soot-like particles which, when transported to the Arctic, darken snow surfaces, thus indirectly affecting climate. Information on BC in Arctic snow is needed to measure their impact and monitor the efficacy of pollution-reduction policies. This paper presents a large new set of BC measurements in snow in Svalbard collected between 2007 and 2018. It describes how BC in snow varies across the archipelago and explores some factors controlling these variations.
Black carbon (BC) aerosols are soot-like particles which, when transported to the Arctic, darken...
Altmetrics
Final-revised paper
Preprint