Articles | Volume 21, issue 24
https://doi.org/10.5194/acp-21-18147-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-18147-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
First insights into northern Africa high-altitude background aerosol chemical composition and source influences
Nabil Deabji
Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric
Chemistry Department (ACD), Permoserstraße 15, 04318 Leipzig, Germany
LS3MN3E-CERNE2D, Faculty of Science, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, B.P. 1040, 10100 Rabat, Morocco
Khanneh Wadinga Fomba
Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric
Chemistry Department (ACD), Permoserstraße 15, 04318 Leipzig, Germany
Souad El Hajjaji
LS3MN3E-CERNE2D, Faculty of Science, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, B.P. 1040, 10100 Rabat, Morocco
Abdelwahid Mellouki
Institut de Combustion Aérothermique Réactivité et
Environnement/OSUC-CNRS, 1C Avenue de la Recherche Scientifique, 45071
Orléans Cedex 2, France
Laurent Poulain
Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric
Chemistry Department (ACD), Permoserstraße 15, 04318 Leipzig, Germany
Sebastian Zeppenfeld
Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric
Chemistry Department (ACD), Permoserstraße 15, 04318 Leipzig, Germany
Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric
Chemistry Department (ACD), Permoserstraße 15, 04318 Leipzig, Germany
Related authors
Khanneh Wadinga Fomba, Nabil Deabji, Sayf El Islam Barcha, Ibrahim Ouchen, El Mehdi Elbaramoussi, Rajaa Cherkaoui El Moursli, Mimoun Harnafi, Souad El Hajjaji, Abdelwahid Mellouki, and Hartmut Herrmann
Atmos. Meas. Tech., 13, 4773–4790, https://doi.org/10.5194/amt-13-4773-2020, https://doi.org/10.5194/amt-13-4773-2020, 2020
Short summary
Short summary
As air quality monitoring networks often sample aerosol particles on quartz filters, the development and applicability of analytical methods with quartz filters are becoming important. In this study different filter preparation methods (e.g., baking, acid digestion) were investigated for quantifying trace metals on quartz and polycarbonate filters, and cloud water using the total reflection X-Ray fluorescence (TXRF) technique, with low detection limits of about 0.3 ng cm−3 for some elements.
Shravan Deshmukh, Laurent Poulain, Birgit Wehner, Silvia Henning, Jean-Eudes Petit, Pauline Fombelle, Olivier Favez, Hartmut Herrmann, and Mira Pöhlker
EGUsphere, https://doi.org/10.5194/egusphere-2024-3027, https://doi.org/10.5194/egusphere-2024-3027, 2024
Short summary
Short summary
Aerosol hygroscopicity has been investigated at the sub-urban site in Paris; analysis shows the sub-saturated regime's measured hygroscopicity and the chemically derived hygroscopic growth, shedding light on the large effect of external particle mixing and its influence on predicting hygroscopicity.
Anisbel Leon-Marcos, Moritz Zeising, Manuela van Pinxteren, Sebastian Zeppenfeld, Astrid Bracher, Elena Barbaro, Anja Engel, Matteo Feltracco, Ina Tegen, and Bernd Heinold
EGUsphere, https://doi.org/10.5194/egusphere-2024-2917, https://doi.org/10.5194/egusphere-2024-2917, 2024
Short summary
Short summary
This study represents the Primary marine organic aerosols (PMOA) emission, focusing on their sea-atmosphere transfer. Using the FESOM2.1-REcoM3 model, concentrations of key organic biomolecules were estimated and integrated into the ECHAM6.3–HAM2.3 aerosol-climate model. Results highlight the influence of marine biological activity and surface winds on PMOA emissions, with reasonably good agreement with observations improving aerosol representation in the Southern Oceans.
Shengqian Zhou, Ying Chen, Shan Huang, Xianda Gong, Guipeng Yang, Honghai Zhang, Hartmut Herrmann, Alfred Wiedensohler, Laurent Poulain, Yan Zhang, Fanghui Wang, Zongjun Xu, and Ke Yan
Earth Syst. Sci. Data, 16, 4267–4290, https://doi.org/10.5194/essd-16-4267-2024, https://doi.org/10.5194/essd-16-4267-2024, 2024
Short summary
Short summary
Dimethyl sulfide (DMS) is a crucial natural reactive gas in the global climate system due to its great contribution to aerosols and subsequent impact on clouds over remote oceans. Leveraging machine learning techniques, we constructed a long-term global sea surface DMS gridded dataset with daily resolution. Compared to previous datasets, our new dataset holds promise for improving atmospheric chemistry modeling and advancing our comprehension of the climate effects associated with oceanic DMS.
Ludovico Di Antonio, Claudia Di Biagio, Paola Formenti, Aline Gratien, Vincent Michoud, Christopher Cantrell, Astrid Bauville, Antonin Bergé, Mathieu Cazaunau, Servanne Chevaillier, Manuela Cirtog, Patrice Coll, Barbara D'Anna, Joel F. de Brito, David O. De Haan, Juliette R. Dignum, Shravan Deshmukh, Olivier Favez, Pierre-Marie Flaud, Cecile Gaimoz, Lelia N. Hawkins, Julien Kammer, Brigitte Language, Franck Maisonneuve, Griša Močnik, Emilie Perraudin, Jean-Eudes Petit, Prodip Acharja, Laurent Poulain, Pauline Pouyes, Eva Drew Pronovost, Véronique Riffault, Kanuri I. Roundtree, Marwa Shahin, Guillaume Siour, Eric Villenave, Pascal Zapf, Gilles Foret, Jean-François Doussin, and Matthias Beekmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-2299, https://doi.org/10.5194/egusphere-2024-2299, 2024
Short summary
Short summary
The spectral complex refractive index (CRI) and single scattering albedo were retrieved from submicron aerosol measurements at three sites within the greater Paris area during the ACROSS field campaign (June–July 2022). Measurements revealed the urban emission impact on the surrounding areas. The CRI full period averages at 520 nm were 1.41–0.037i (urban), 1.52–0.038i (peri-urban), 1.50−0.025i (rural). Organic aerosols dominated the aerosol mass and contributed up to 22% of absorption at 370 nm.
Pamela A. Dominutti, Jean-Luc Jaffrezo, Anouk Marsal, Takoua Mhadhbi, Rhabira Elazzouzi, Camille Rak, Fabrizia Cavalli, Jean-Philippe Putaud, Aikaterini Bougiatioti, Nikolaos Mihalopoulos, Despina Paraskevopoulou, Ian S. Mudway, Athanasios Nenes, Kaspar R. Daellenbach, Catherine Banach, Steven J. Campbell, Hana Cigánková, Daniele Contini, Greg Evans, Maria Georgopoulou, Manuella Ghanem, Drew A. Glencross, Maria Rachele Guascito, Hartmut Herrmann, Saima Iram, Maja Jovanović, Milena Jovašević-Stojanović, Markus Kalberer, Ingeborg M. Kooter, Suzanne E. Paulson, Anil Patel, Esperanza Perdrix, Maria Chiara Pietrogrande, Pavel Mikuška, Jean-Jacques Sauvain, Aikaterina Seitanidi, Pourya Shahpoury, Eduardo J. S. Souza, Sarah Steimer, Svetlana Stevanovic, Guillaume Suarez, P. S. Ganesh Subramanian, Battist Utinger, Marloes F. van Os, Vishal Verma, Xing Wang, Rodney J. Weber, Yuhan Yang, Xavier Querol, Gerard Hoek, Roy M. Harrison, and Gaëlle Uzu
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-107, https://doi.org/10.5194/amt-2024-107, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
In this work, 20 labs worldwide collaborated to evaluate the measurement of air pollution's oxidative potential (OP), a key indicator of its harmful effects. The study aimed to identify disparities in the widely used OP DTT assay and assess the consistency of OP among labs using the same protocol. The results showed that half of the labs achieved acceptable results. However, variability was also found, highlighting the need for standardization in OP procedures.
Karam Mansour, Stefano Decesari, Darius Ceburnis, Jurgita Ovadnevaite, Lynn M. Russell, Marco Paglione, Laurent Poulain, Shan Huang, Colin O'Dowd, and Matteo Rinaldi
Earth Syst. Sci. Data, 16, 2717–2740, https://doi.org/10.5194/essd-16-2717-2024, https://doi.org/10.5194/essd-16-2717-2024, 2024
Short summary
Short summary
We propose and evaluate machine learning predictive algorithms to model freshly formed biogenic methanesulfonic acid and sulfate concentrations. The long-term constructed dataset covers the North Atlantic at an unprecedented resolution. The improved parameterization of biogenic sulfur aerosols at regional scales is essential for determining their radiative forcing, which could help further understand marine-aerosol–cloud interactions and reduce uncertainties in climate models
Anil Kumar Mandariya, Junteng Wu, Anne Monod, Paola Formenti, Bénédicte Picquet-Varrault, Mathieu Cazaunau, Stephan Mertes, Laurent Poulain, Antonin Berge, Edouard Pangui, Andreas Tilgner, Thomas Schaefer, Liang Wen, Hartmut Herrmann, and Jean-François Doussin
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-206, https://doi.org/10.5194/amt-2023-206, 2024
Revised manuscript has not been submitted
Short summary
Short summary
An optimized and controlled protocol for generating quasi-adiabatic expansion clouds under simulated dark and light conditions was presented. The irradiated clouds clearly showed a gradual activation of seed particles into droplets. In contrast, non-irradiated clouds faced a flash activation. This paper will lay the foundation for multiphase photochemical studies implying water-soluble volatile organic compounds and particulate matter formation during cloud formation-evaporation cycles.
Andrea Cuesta-Mosquera, Kristina Glojek, Griša Močnik, Luka Drinovec, Asta Gregorič, Martin Rigler, Matej Ogrin, Baseerat Romshoo, Kay Weinhold, Maik Merkel, Dominik van Pinxteren, Hartmut Herrmann, Alfred Wiedensohler, Mira Pöhlker, and Thomas Müller
Atmos. Chem. Phys., 24, 2583–2605, https://doi.org/10.5194/acp-24-2583-2024, https://doi.org/10.5194/acp-24-2583-2024, 2024
Short summary
Short summary
This study evaluated the air pollution and climate impacts of residential-wood-burning particle emissions from a rural European site. The authors investigate the optical and physical properties that connect the aerosol emissions with climate by evaluating atmospheric radiative impacts via simple-forcing calculations. The study contributes to reducing the lack of information on the understanding of the optical properties of air pollution from anthropogenic sources.
Sebastian Zeppenfeld, Manuela van Pinxteren, Markus Hartmann, Moritz Zeising, Astrid Bracher, and Hartmut Herrmann
Atmos. Chem. Phys., 23, 15561–15587, https://doi.org/10.5194/acp-23-15561-2023, https://doi.org/10.5194/acp-23-15561-2023, 2023
Short summary
Short summary
Marine carbohydrates are produced in the surface of the ocean, enter the atmophere as part of sea spray aerosol particles, and potentially contribute to the formation of fog and clouds. Here, we present the results of a sea–air transfer study of marine carbohydrates conducted in the high Arctic. Besides a chemo-selective transfer, we observed a quick atmospheric aging of carbohydrates, possibly as a result of both biotic and abiotic processes.
Jean-Philippe Putaud, Enrico Pisoni, Alexander Mangold, Christoph Hueglin, Jean Sciare, Michael Pikridas, Chrysanthos Savvides, Jakub Ondracek, Saliou Mbengue, Alfred Wiedensohler, Kay Weinhold, Maik Merkel, Laurent Poulain, Dominik van Pinxteren, Hartmut Herrmann, Andreas Massling, Claus Nordstroem, Andrés Alastuey, Cristina Reche, Noemí Pérez, Sonia Castillo, Mar Sorribas, Jose Antonio Adame, Tuukka Petaja, Katrianne Lehtipalo, Jarkko Niemi, Véronique Riffault, Joel F. de Brito, Augustin Colette, Olivier Favez, Jean-Eudes Petit, Valérie Gros, Maria I. Gini, Stergios Vratolis, Konstantinos Eleftheriadis, Evangelia Diapouli, Hugo Denier van der Gon, Karl Espen Yttri, and Wenche Aas
Atmos. Chem. Phys., 23, 10145–10161, https://doi.org/10.5194/acp-23-10145-2023, https://doi.org/10.5194/acp-23-10145-2023, 2023
Short summary
Short summary
Many European people are still exposed to levels of air pollution that can affect their health. COVID-19 lockdowns in 2020 were used to assess the impact of the reduction in human mobility on air pollution across Europe by comparing measurement data with values that would be expected if no lockdown had occurred. We show that lockdown measures did not lead to consistent decreases in the concentrations of fine particulate matter suspended in the air, and we investigate why.
Samira Atabakhsh, Laurent Poulain, Gang Chen, Francesco Canonaco, André S. H. Prévôt, Mira Pöhlker, Alfred Wiedensohler, and Hartmut Herrmann
Atmos. Chem. Phys., 23, 6963–6988, https://doi.org/10.5194/acp-23-6963-2023, https://doi.org/10.5194/acp-23-6963-2023, 2023
Short summary
Short summary
The study focuses on the aerosol chemical variations found in the rural-background station of Melpitz based on ACSM and MAAP measurements. Source apportionment on both organic aerosol (OA) and black carbon (eBC) was performed, and source seasonality was also linked to air mass trajectories. Overall, three anthropogenic sources were identified in OA and eBC plus two additional aged OA. Our results demonstrate the influence of transported coal-combustion-related OA even during summer time.
Manuela van Pinxteren, Sebastian Zeppenfeld, Khanneh Wadinga Fomba, Nadja Triesch, Sanja Frka, and Hartmut Herrmann
Atmos. Chem. Phys., 23, 6571–6590, https://doi.org/10.5194/acp-23-6571-2023, https://doi.org/10.5194/acp-23-6571-2023, 2023
Short summary
Short summary
Important marine organic carbon compounds were identified in the Atlantic Ocean and marine aerosol particles. These compounds were strongly enriched in the atmosphere. Their enrichment was, however, not solely explained via sea-to-air transfer but also via atmospheric in situ formation. The identified compounds constituted about 50 % of the organic carbon on the aerosol particles, and a pronounced coupling between ocean and atmosphere for this oligotrophic region could be concluded.
Yuan Wang, Silvia Henning, Laurent Poulain, Chunsong Lu, Frank Stratmann, Yuying Wang, Shengjie Niu, Mira L. Pöhlker, Hartmut Herrmann, and Alfred Wiedensohler
Atmos. Chem. Phys., 22, 15943–15962, https://doi.org/10.5194/acp-22-15943-2022, https://doi.org/10.5194/acp-22-15943-2022, 2022
Short summary
Short summary
Aerosol particle activation affects cloud, precipitation, radiation, and thus the global climate. Its long-term measurements are important but still scarce. In this study, more than 4 years of measurements at a central European station were analyzed. The overall characteristics and seasonal changes of aerosol particle activation are summarized. The power-law fit between particle hygroscopicity factor and diameter was recommended for predicting cloud
condensation nuclei number concentration.
Roland Vernooij, Patrik Winiger, Martin Wooster, Tercia Strydom, Laurent Poulain, Ulrike Dusek, Mark Grosvenor, Gareth J. Roberts, Nick Schutgens, and Guido R. van der Werf
Atmos. Meas. Tech., 15, 4271–4294, https://doi.org/10.5194/amt-15-4271-2022, https://doi.org/10.5194/amt-15-4271-2022, 2022
Short summary
Short summary
Landscape fires are a substantial emitter of greenhouse gases and aerosols. Previous studies have indicated savanna emission factors to be highly variable. Improving fire emission estimates, and understanding future climate- and human-induced changes in fire regimes, requires in situ measurements. We present a drone-based method that enables the collection of a large amount of high-quality emission factor measurements that do not have the biases of aircraft or surface measurements.
Lady Mateus-Fontecha, Angela Vargas-Burbano, Rodrigo Jimenez, Nestor Y. Rojas, German Rueda-Saa, Dominik van Pinxteren, Manuela van Pinxteren, Khanneh Wadinga Fomba, and Hartmut Herrmann
Atmos. Chem. Phys., 22, 8473–8495, https://doi.org/10.5194/acp-22-8473-2022, https://doi.org/10.5194/acp-22-8473-2022, 2022
Short summary
Short summary
This study reports the chemical composition of regionally representative PM2.5 in an area densely populated and substantially industrialized, located in the inter-Andean valley, with the highest sugarcane yield in the world and where sugarcane is burned and harvested year round. We found that sugarcane burning is not portrayed as a distinguishable sample composition component. Instead, the composition analysis revealed multiple associations among sugarcane burning components and other sources.
Manuela van Pinxteren, Tiera-Brandy Robinson, Sebastian Zeppenfeld, Xianda Gong, Enno Bahlmann, Khanneh Wadinga Fomba, Nadja Triesch, Frank Stratmann, Oliver Wurl, Anja Engel, Heike Wex, and Hartmut Herrmann
Atmos. Chem. Phys., 22, 5725–5742, https://doi.org/10.5194/acp-22-5725-2022, https://doi.org/10.5194/acp-22-5725-2022, 2022
Short summary
Short summary
A class of marine particles (transparent exopolymer particles, TEPs) that is ubiquitously found in the world oceans was measured for the first time in ambient marine aerosol particles and marine cloud waters in the tropical Atlantic Ocean. TEPs are likely to have good properties for influencing clouds. We show that TEPs are transferred from the ocean to the marine atmosphere via sea-spray formation and our results suggest that they can also form directly in aerosol particles and in cloud water.
Kristina Glojek, Griša Močnik, Honey Dawn C. Alas, Andrea Cuesta-Mosquera, Luka Drinovec, Asta Gregorič, Matej Ogrin, Kay Weinhold, Irena Ježek, Thomas Müller, Martin Rigler, Maja Remškar, Dominik van Pinxteren, Hartmut Herrmann, Martina Ristorini, Maik Merkel, Miha Markelj, and Alfred Wiedensohler
Atmos. Chem. Phys., 22, 5577–5601, https://doi.org/10.5194/acp-22-5577-2022, https://doi.org/10.5194/acp-22-5577-2022, 2022
Short summary
Short summary
A pilot study to determine the emissions of wood burning under
real-world laboratoryconditions was conducted. We found that measured black carbon (eBC) and particulate matter (PM) in rural shallow terrain depressions with residential wood burning could be much greater than predicted by models. The exceeding levels are a cause for concern since similar conditions can be expected in numerous hilly and mountainous regions across Europe, where approximately 20 % of the total population lives.
Sebastian Düsing, Albert Ansmann, Holger Baars, Joel C. Corbin, Cyrielle Denjean, Martin Gysel-Beer, Thomas Müller, Laurent Poulain, Holger Siebert, Gerald Spindler, Thomas Tuch, Birgit Wehner, and Alfred Wiedensohler
Atmos. Chem. Phys., 21, 16745–16773, https://doi.org/10.5194/acp-21-16745-2021, https://doi.org/10.5194/acp-21-16745-2021, 2021
Short summary
Short summary
The work deals with optical properties of aerosol particles in dried and atmospheric states. Based on two measurement campaigns in the rural background of central Europe, different measurement approaches were compared with each other, such as modeling based on Mie theory and direct in situ or remote sensing measurements. Among others, it was shown that the aerosol extinction-to-backscatter ratio is relative humidity dependent, and refinement with respect to the model input parameters is needed.
Andreas Tilgner, Thomas Schaefer, Becky Alexander, Mary Barth, Jeffrey L. Collett Jr., Kathleen M. Fahey, Athanasios Nenes, Havala O. T. Pye, Hartmut Herrmann, and V. Faye McNeill
Atmos. Chem. Phys., 21, 13483–13536, https://doi.org/10.5194/acp-21-13483-2021, https://doi.org/10.5194/acp-21-13483-2021, 2021
Short summary
Short summary
Feedbacks of acidity and atmospheric multiphase chemistry in deliquesced particles and clouds are crucial for the tropospheric composition, depositions, climate, and human health. This review synthesizes the current scientific knowledge on these feedbacks using both inorganic and organic aqueous-phase chemistry. Finally, this review outlines atmospheric implications and highlights the need for future investigations with respect to reducing emissions of key acid precursors in a changing world.
R. Anthony Cox, Markus Ammann, John N. Crowley, Paul T. Griffiths, Hartmut Herrmann, Erik H. Hoffmann, Michael E. Jenkin, V. Faye McNeill, Abdelwahid Mellouki, Christopher J. Penkett, Andreas Tilgner, and Timothy J. Wallington
Atmos. Chem. Phys., 21, 13011–13018, https://doi.org/10.5194/acp-21-13011-2021, https://doi.org/10.5194/acp-21-13011-2021, 2021
Short summary
Short summary
The term open-air factor was coined in the 1960s, establishing that rural air had powerful germicidal properties possibly resulting from immediate products of the reaction of ozone with alkenes, unsaturated compounds ubiquitously present in natural and polluted environments. We have re-evaluated those early experiments, applying the recently substantially improved knowledge, and put them into the context of the lifetime of aerosol-borne pathogens that are so important in the Covid-19 pandemic.
Markus Hartmann, Xianda Gong, Simonas Kecorius, Manuela van Pinxteren, Teresa Vogl, André Welti, Heike Wex, Sebastian Zeppenfeld, Hartmut Herrmann, Alfred Wiedensohler, and Frank Stratmann
Atmos. Chem. Phys., 21, 11613–11636, https://doi.org/10.5194/acp-21-11613-2021, https://doi.org/10.5194/acp-21-11613-2021, 2021
Short summary
Short summary
Ice-nucleating particles (INPs) are not well characterized in the Arctic despite their importance for the Arctic energy budget. Little is known about their nature (mineral or biological) and sources (terrestrial or marine, long-range transport or local). We find indications that, at the beginning of the melt season, a local, biogenic, probably marine source is likely, but significant enrichment of INPs has to take place from the ocean to the aerosol phase.
Anke Mutzel, Yanli Zhang, Olaf Böge, Maria Rodigast, Agata Kolodziejczyk, Xinming Wang, and Hartmut Herrmann
Atmos. Chem. Phys., 21, 8479–8498, https://doi.org/10.5194/acp-21-8479-2021, https://doi.org/10.5194/acp-21-8479-2021, 2021
Short summary
Short summary
This study investigates secondary organic aerosol (SOA) formation and particle growth from α-pinene, limonene, and m-cresol oxidation through NO3 and OH radicals and the effect of relative humidity. The formed SOA is comprehensively characterized with respect to the content of OC / EC, WSOC, SOA-bound peroxides, and SOA marker compounds. The findings present new insights and implications of nighttime chemistry, which can form SOA more efficiently than OH radical reaction during daytime.
Abdelwahid Mellouki, Markus Ammann, R. Anthony Cox, John N. Crowley, Hartmut Herrmann, Michael E. Jenkin, V. Faye McNeill, Jürgen Troe, and Timothy J. Wallington
Atmos. Chem. Phys., 21, 4797–4808, https://doi.org/10.5194/acp-21-4797-2021, https://doi.org/10.5194/acp-21-4797-2021, 2021
Short summary
Short summary
Volatile organic compounds play an important role in atmospheric chemistry. This article, the eighth in the series, presents kinetic and photochemical data sheets evaluated by the IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation. It covers the gas-phase reactions of organic species with four, or more, carbon atoms (≥ C4) including thermal reactions of closed-shell organic species with HO and NO3 radicals and their photolysis. These data are important for atmospheric models.
Nadja Triesch, Manuela van Pinxteren, Sanja Frka, Christian Stolle, Tobias Spranger, Erik Hans Hoffmann, Xianda Gong, Heike Wex, Detlef Schulz-Bull, Blaženka Gašparović, and Hartmut Herrmann
Atmos. Chem. Phys., 21, 4267–4283, https://doi.org/10.5194/acp-21-4267-2021, https://doi.org/10.5194/acp-21-4267-2021, 2021
Short summary
Short summary
To investigate the source of lipids and their representatives in the marine atmosphere, concerted measurements of seawater and submicrometer aerosol particle sampling were carried out on the Cabo Verde islands. This field study describes the biogenic sources of lipids, their selective transfer from the ocean into the atmosphere and their enrichment as part of organic matter. A strong enrichment of the studied representatives of the lipid classes on submicrometer aerosol particles was observed.
Laurent Poulain, Benjamin Fahlbusch, Gerald Spindler, Konrad Müller, Dominik van Pinxteren, Zhijun Wu, Yoshiteru Iinuma, Wolfram Birmili, Alfred Wiedensohler, and Hartmut Herrmann
Atmos. Chem. Phys., 21, 3667–3684, https://doi.org/10.5194/acp-21-3667-2021, https://doi.org/10.5194/acp-21-3667-2021, 2021
Short summary
Short summary
We present results from source apportionment analysis on the carbonaceous aerosol particles, including organic aerosol (OA) and equivalent black carbon (eBC), allowing us to distinguish local emissions from long-range transport for OA and eBC sources. By merging online chemical measurements and considering particle number size distribution, the different air masses reaching the sampling place were described and discussed, based on their respective chemical composition and size distribution.
Jinfeng Yuan, Robin Lewis Modini, Marco Zanatta, Andreas B. Herber, Thomas Müller, Birgit Wehner, Laurent Poulain, Thomas Tuch, Urs Baltensperger, and Martin Gysel-Beer
Atmos. Chem. Phys., 21, 635–655, https://doi.org/10.5194/acp-21-635-2021, https://doi.org/10.5194/acp-21-635-2021, 2021
Short summary
Short summary
Black carbon (BC) aerosols contribute substantially to climate warming due to their unique light absorption capabilities. We performed field measurements at a central European background site in winter and found that variability in the absorption efficiency of BC particles is driven mainly by their internal mixing state. Our results suggest that, at this site, knowing the BC mixing state is sufficient to describe BC light absorption enhancements due to the lensing effect in good approximation.
Jing Dou, Peter A. Alpert, Pablo Corral Arroyo, Beiping Luo, Frederic Schneider, Jacinta Xto, Thomas Huthwelker, Camelia N. Borca, Katja D. Henzler, Jörg Raabe, Benjamin Watts, Hartmut Herrmann, Thomas Peter, Markus Ammann, and Ulrich K. Krieger
Atmos. Chem. Phys., 21, 315–338, https://doi.org/10.5194/acp-21-315-2021, https://doi.org/10.5194/acp-21-315-2021, 2021
Short summary
Short summary
Photochemistry of iron(III) complexes plays an important role in aerosol aging, especially in the lower troposphere. Ensuing radical chemistry leads to decarboxylation, and the production of peroxides, and oxygenated volatile compounds, resulting in particle mass loss due to release of the volatile products to the gas phase. We investigated kinetic transport limitations due to high particle viscosity under low relative humidity conditions. For quantification a numerical model was developed.
Nadja Triesch, Manuela van Pinxteren, Anja Engel, and Hartmut Herrmann
Atmos. Chem. Phys., 21, 163–181, https://doi.org/10.5194/acp-21-163-2021, https://doi.org/10.5194/acp-21-163-2021, 2021
Short summary
Short summary
To investigate the sources of free amino acids (FAAs) in the marine atmosphere, concerted measurements (the simultaneous investigation of seawater, size-segregated aerosol particles and cloud water) were performed at the Cabo Verde islands. This study describes the transfer of FAAs as part of organic matter from the ocean into the atmosphere on a molecular level. In the investigated marine environment, a high enrichment of FAAs in submicron aerosol particles and in cloud droplets was observed.
Jiarong Li, Chao Zhu, Hui Chen, Defeng Zhao, Likun Xue, Xinfeng Wang, Hongyong Li, Pengfei Liu, Junfeng Liu, Chenglong Zhang, Yujing Mu, Wenjin Zhang, Luming Zhang, Hartmut Herrmann, Kai Li, Min Liu, and Jianmin Chen
Atmos. Chem. Phys., 20, 13735–13751, https://doi.org/10.5194/acp-20-13735-2020, https://doi.org/10.5194/acp-20-13735-2020, 2020
Short summary
Short summary
Based on a field study at Mt. Tai, China, the simultaneous variations of cloud microphysics, aerosol microphysics and their potential interactions during cloud life cycles were discussed. Results demonstrated that clouds on clean days were more susceptible to the concentrations of particle number, while clouds formed on polluted days might be more sensitive to meteorological parameters. Particles larger than 150 nm played important roles in forming cloud droplets with sizes of 5–10 μm.
R. Anthony Cox, Markus Ammann, John N. Crowley, Hartmut Herrmann, Michael E. Jenkin, V. Faye McNeill, Abdelwahid Mellouki, Jürgen Troe, and Timothy J. Wallington
Atmos. Chem. Phys., 20, 13497–13519, https://doi.org/10.5194/acp-20-13497-2020, https://doi.org/10.5194/acp-20-13497-2020, 2020
Short summary
Short summary
Criegee intermediates, formed from alkene–ozone reactions, play a potentially important role as tropospheric oxidants. Evaluated kinetic data are provided for reactions governing their formation and removal for use in atmospheric models. These include their formation from reactions of simple and complex alkenes and removal by decomposition and reaction with a number of atmospheric species (e.g. H2O, SO2). An overview of the tropospheric chemistry of Criegee intermediates is also provided.
Yangang Ren, Bastian Stieger, Gerald Spindler, Benoit Grosselin, Abdelwahid Mellouki, Thomas Tuch, Alfred Wiedensohler, and Hartmut Herrmann
Atmos. Chem. Phys., 20, 13069–13089, https://doi.org/10.5194/acp-20-13069-2020, https://doi.org/10.5194/acp-20-13069-2020, 2020
Short summary
Short summary
We present HONO measurements from the TROPOS research site in Melpitz, Germany. Investigations of HONO sources and sinks revealed the nighttime formation by heterogeneous conversion of NO2 to HONO followed by a significant surface deposition at night. The evaporation of dew was identified as the main HONO source in the morning. In the following, dew measurements with a self-made dew collector were performed to estimate the amount of evaporated HONO from dew in the atmospheric HONO distribution.
Laurent Poulain, Gerald Spindler, Achim Grüner, Thomas Tuch, Bastian Stieger, Dominik van Pinxteren, Jean-Eudes Petit, Olivier Favez, Hartmut Herrmann, and Alfred Wiedensohler
Atmos. Meas. Tech., 13, 4973–4994, https://doi.org/10.5194/amt-13-4973-2020, https://doi.org/10.5194/amt-13-4973-2020, 2020
Short summary
Short summary
The stability and the comparability between ACSM and collocated filter sampling and MPSS measurements was investigated in order to examine the instruments robustness for year-long measurements. Specific attention was paid to the influence of the upper size cutoff diameter to better understand how it might affect the data validation. Recommendations are provided for better on-site quality assurance and quality control of the ACSM, which would be useful for either long-term or intensive campaigns.
Khanneh Wadinga Fomba, Nabil Deabji, Sayf El Islam Barcha, Ibrahim Ouchen, El Mehdi Elbaramoussi, Rajaa Cherkaoui El Moursli, Mimoun Harnafi, Souad El Hajjaji, Abdelwahid Mellouki, and Hartmut Herrmann
Atmos. Meas. Tech., 13, 4773–4790, https://doi.org/10.5194/amt-13-4773-2020, https://doi.org/10.5194/amt-13-4773-2020, 2020
Short summary
Short summary
As air quality monitoring networks often sample aerosol particles on quartz filters, the development and applicability of analytical methods with quartz filters are becoming important. In this study different filter preparation methods (e.g., baking, acid digestion) were investigated for quantifying trace metals on quartz and polycarbonate filters, and cloud water using the total reflection X-Ray fluorescence (TXRF) technique, with low detection limits of about 0.3 ng cm−3 for some elements.
Patrick Dewald, Jonathan M. Liebmann, Nils Friedrich, Justin Shenolikar, Jan Schuladen, Franz Rohrer, David Reimer, Ralf Tillmann, Anna Novelli, Changmin Cho, Kangming Xu, Rupert Holzinger, François Bernard, Li Zhou, Wahid Mellouki, Steven S. Brown, Hendrik Fuchs, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 20, 10459–10475, https://doi.org/10.5194/acp-20-10459-2020, https://doi.org/10.5194/acp-20-10459-2020, 2020
Short summary
Short summary
We present direct measurements of NO3 reactivity resulting from the oxidation of isoprene by NO3 during an intensive simulation chamber study. Measurements were in excellent agreement with values calculated from measured isoprene amounts and the rate coefficient for the reaction of NO3 with isoprene. Comparison of the measurement with NO3 reactivities from non-steady-state and model calculations suggests that isoprene-derived RO2 and HO2 radicals account to ~ 50 % of overall NO3 losses.
Ahmad Jhony Rusumdar, Andreas Tilgner, Ralf Wolke, and Hartmut Herrmann
Atmos. Chem. Phys., 20, 10351–10377, https://doi.org/10.5194/acp-20-10351-2020, https://doi.org/10.5194/acp-20-10351-2020, 2020
Short summary
Short summary
In the present study, simulations with the SPACCIM-SpactMod multiphase chemistry model are performed. The investigations aim at assessing the impact of a detailed treatment of non-ideality in multiphase models dealing with aqueous aerosol chemistry. The model studies demonstrate that the inclusion of non-ideality considerably affects the multiphase chemical processing of transition metal ions, oxidants, and related chemical subsystems such as organic chemistry in aqueous aerosols.
Julian Hofer, Albert Ansmann, Dietrich Althausen, Ronny Engelmann, Holger Baars, Khanneh Wadinga Fomba, Ulla Wandinger, Sabur F. Abdullaev, and Abduvosit N. Makhmudov
Atmos. Chem. Phys., 20, 9265–9280, https://doi.org/10.5194/acp-20-9265-2020, https://doi.org/10.5194/acp-20-9265-2020, 2020
Short summary
Short summary
For the first time, a dense data set of particle extinction-to-backscatter ratios (lidar ratios), depolarization ratios, and backscatter- and extinction-related Ångström exponents for a Central Asian site are presented. The observations were performed with a continuously running multiwavelength polarization Raman lidar at Dushanbe, Tajikistan, during an 18-month campaign. The found optical properties reflect the large range of occurring aerosol mixtures.
Sebastian Zeppenfeld, Manuela van Pinxteren, Anja Engel, and Hartmut Herrmann
Ocean Sci., 16, 817–830, https://doi.org/10.5194/os-16-817-2020, https://doi.org/10.5194/os-16-817-2020, 2020
Short summary
Short summary
An analytical method combining electro-dialysis with high-performance anionic exchange chromatography coupled to pulsed amperometric detection was developed and optimized for analyzing free and combined carbohydrates in seawater and other saline environmental samples.
Manuela van Pinxteren, Khanneh Wadinga Fomba, Nadja Triesch, Christian Stolle, Oliver Wurl, Enno Bahlmann, Xianda Gong, Jens Voigtländer, Heike Wex, Tiera-Brandy Robinson, Stefan Barthel, Sebastian Zeppenfeld, Erik Hans Hoffmann, Marie Roveretto, Chunlin Li, Benoit Grosselin, Veronique Daële, Fabian Senf, Dominik van Pinxteren, Malena Manzi, Nicolás Zabalegui, Sanja Frka, Blaženka Gašparović, Ryan Pereira, Tao Li, Liang Wen, Jiarong Li, Chao Zhu, Hui Chen, Jianmin Chen, Björn Fiedler, Wolf von Tümpling, Katie Alana Read, Shalini Punjabi, Alastair Charles Lewis, James Roland Hopkins, Lucy Jane Carpenter, Ilka Peeken, Tim Rixen, Detlef Schulz-Bull, María Eugenia Monge, Abdelwahid Mellouki, Christian George, Frank Stratmann, and Hartmut Herrmann
Atmos. Chem. Phys., 20, 6921–6951, https://doi.org/10.5194/acp-20-6921-2020, https://doi.org/10.5194/acp-20-6921-2020, 2020
Short summary
Short summary
An introduction to a comprehensive field campaign performed at the Cape Verde Atmospheric Observatory regarding ocean–atmosphere interactions is given. Chemical, physical, biological and meteorological techniques were applied, and measurements of bulk water, the sea surface microlayer, cloud water and ambient aerosol particles took place. Oceanic compounds were found to be transferred to atmospheric aerosol and to the cloud level; however, sea spray contributions to CCN and INPs were limited.
Yanhong Zhu, Andreas Tilgner, Erik Hans Hoffmann, Hartmut Herrmann, Kimitaka Kawamura, Lingxiao Yang, Likun Xue, and Wenxing Wang
Atmos. Chem. Phys., 20, 6725–6747, https://doi.org/10.5194/acp-20-6725-2020, https://doi.org/10.5194/acp-20-6725-2020, 2020
Short summary
Short summary
The formation and processing of secondary inorganic and organic compounds at Mt. Tai, the highest mountain on the North China Plain, are modeled using a multiphase chemical model. The concentrations of key radical and non-radical oxidations in the formation processes are investigated. Sensitivity tests assess the impacts of emission data and glyoxal partitioning constants on modeled results. The key precursors of secondary organic compounds are also identified.
Erik H. Hoffmann, Roland Schrödner, Andreas Tilgner, Ralf Wolke, and Hartmut Herrmann
Geosci. Model Dev., 13, 2587–2609, https://doi.org/10.5194/gmd-13-2587-2020, https://doi.org/10.5194/gmd-13-2587-2020, 2020
Short summary
Short summary
A condensed multiphase halogen and DMS chemistry mechanism for application in chemical transport models has been developed and applied by 2D simulations to explore multiphase marine chemistry above the pristine open ocean. The model simulations have demonstrated the ability of the mechanism in studying aerosol cloud processing effects in the marine atmosphere. First 2D simulations have shown significant differences in the DMS processing under convective and stratiform cloud conditions.
Max R. McGillen, William P. L. Carter, Abdelwahid Mellouki, John J. Orlando, Bénédicte Picquet-Varrault, and Timothy J. Wallington
Earth Syst. Sci. Data, 12, 1203–1216, https://doi.org/10.5194/essd-12-1203-2020, https://doi.org/10.5194/essd-12-1203-2020, 2020
Short summary
Short summary
The gas-phase reactions of organic compounds in the atmosphere are a crucial step in the degradation of anthropogenic and biogenic emissions and the formation of secondary pollutants. This work is an attempt to produce a dataset that is as comprehensive as possible regarding the multitude of chemicals that react in the atmosphere. We find that we are able to make substantial improvements upon previous compendia and that this progress will help improve our understanding of atmospheric chemistry.
Nicolás Zabalegui, Malena Manzi, Antoine Depoorter, Nathalie Hayeck, Marie Roveretto, Chunlin Li, Manuela van Pinxteren, Hartmut Herrmann, Christian George, and María Eugenia Monge
Atmos. Chem. Phys., 20, 6243–6257, https://doi.org/10.5194/acp-20-6243-2020, https://doi.org/10.5194/acp-20-6243-2020, 2020
Short summary
Short summary
A new approach to bridging different fields of science by studying the air–sea interface is described. An untargeted ambient mass-spectrometry-based metabolomics method enables the study of enriched organic compounds found on the sea surface for air–water transfer processes. Results from the metabolomics experiments and a lab-to-field approach provide new opportunities for characterizing the seawater organic-matter content and discovering compounds involved in aerosol-formation processes.
Havala O. T. Pye, Athanasios Nenes, Becky Alexander, Andrew P. Ault, Mary C. Barth, Simon L. Clegg, Jeffrey L. Collett Jr., Kathleen M. Fahey, Christopher J. Hennigan, Hartmut Herrmann, Maria Kanakidou, James T. Kelly, I-Ting Ku, V. Faye McNeill, Nicole Riemer, Thomas Schaefer, Guoliang Shi, Andreas Tilgner, John T. Walker, Tao Wang, Rodney Weber, Jia Xing, Rahul A. Zaveri, and Andreas Zuend
Atmos. Chem. Phys., 20, 4809–4888, https://doi.org/10.5194/acp-20-4809-2020, https://doi.org/10.5194/acp-20-4809-2020, 2020
Short summary
Short summary
Acid rain is recognized for its impacts on human health and ecosystems, and programs to mitigate these effects have had implications for atmospheric acidity. Historical measurements indicate that cloud and fog droplet acidity has changed in recent decades in response to controls on emissions from human activity, while the limited trend data for suspended particles indicate acidity may be relatively constant. This review synthesizes knowledge on the acidity of atmospheric particles and clouds.
Xianda Gong, Heike Wex, Jens Voigtländer, Khanneh Wadinga Fomba, Kay Weinhold, Manuela van Pinxteren, Silvia Henning, Thomas Müller, Hartmut Herrmann, and Frank Stratmann
Atmos. Chem. Phys., 20, 1431–1449, https://doi.org/10.5194/acp-20-1431-2020, https://doi.org/10.5194/acp-20-1431-2020, 2020
Short summary
Short summary
We characterized the aerosol particles in Cabo Verde at sea and cloud levels. We found four well-separable types of PNSDs, with the strongest differences between air masses coming from the ocean compared to from the African continent. During the strongest observed dust periods, CCN concentrations were 2.5 higher than during clean marine periods. The hygroscopicity of the particles did not vary much between different periods. Aerosol at sea level and on the mountaintop was well in agreement.
Xianda Gong, Heike Wex, Manuela van Pinxteren, Nadja Triesch, Khanneh Wadinga Fomba, Jasmin Lubitz, Christian Stolle, Tiera-Brandy Robinson, Thomas Müller, Hartmut Herrmann, and Frank Stratmann
Atmos. Chem. Phys., 20, 1451–1468, https://doi.org/10.5194/acp-20-1451-2020, https://doi.org/10.5194/acp-20-1451-2020, 2020
Short summary
Short summary
In this study, we examined number concentrations of ice nucleating particles (INPs) at Cabo Verde in the oceanic sea surface microlayer and underlying seawater, in the air close to both sea level and cloud level, and in cloud water. The results show that most INPs are supermicron in size, that INP number concentrations in air fit well to those in cloud water and that sea spray aerosols at maximum contributed a small fraction of all INPs in the air at Cabo Verde.
Marco Paglione, Stefania Gilardoni, Matteo Rinaldi, Stefano Decesari, Nicola Zanca, Silvia Sandrini, Lara Giulianelli, Dimitri Bacco, Silvia Ferrari, Vanes Poluzzi, Fabiana Scotto, Arianna Trentini, Laurent Poulain, Hartmut Herrmann, Alfred Wiedensohler, Francesco Canonaco, André S. H. Prévôt, Paola Massoli, Claudio Carbone, Maria Cristina Facchini, and Sandro Fuzzi
Atmos. Chem. Phys., 20, 1233–1254, https://doi.org/10.5194/acp-20-1233-2020, https://doi.org/10.5194/acp-20-1233-2020, 2020
Short summary
Short summary
Our multi-year observational study regarding organic aerosol (OA) in the Po Valley indicates that more than half of OA is of secondary origin (SOA) through all the year and at both urban and rural sites. Within the SOA, the measurements show the importance of biomass burning (BB) aging products during cold seasons and indicate aqueous-phase processing of BB emissions as a fundamental driver of SOA formation in wintertime, with important consequences for air quality policy at the global level.
Tao Li, Zhe Wang, Yaru Wang, Chen Wu, Yiheng Liang, Men Xia, Chuan Yu, Hui Yun, Weihao Wang, Yan Wang, Jia Guo, Hartmut Herrmann, and Tao Wang
Atmos. Chem. Phys., 20, 391–407, https://doi.org/10.5194/acp-20-391-2020, https://doi.org/10.5194/acp-20-391-2020, 2020
Short summary
Short summary
This work presents a field study of cloud water chemistry and interactions of cloud, gas, and aerosols in the polluted coastal boundary layer in southern China. Substantial dissolved organic matter in the acidic cloud water was observed, and the gas- and aqueous-phase partitioning of carbonyl compounds was investigated. The results demonstrated the significant role of cloud processing in altering aerosol properties, especially in producing aqueous organics and droplet-mode aerosols.
Marco Pandolfi, Dennis Mooibroek, Philip Hopke, Dominik van Pinxteren, Xavier Querol, Hartmut Herrmann, Andrés Alastuey, Olivier Favez, Christoph Hüglin, Esperanza Perdrix, Véronique Riffault, Stéphane Sauvage, Eric van der Swaluw, Oksana Tarasova, and Augustin Colette
Atmos. Chem. Phys., 20, 409–429, https://doi.org/10.5194/acp-20-409-2020, https://doi.org/10.5194/acp-20-409-2020, 2020
Short summary
Short summary
In the last scientific assessment report from the LRTAP Convention, it is stated that because non-urban sources are often major contributors to urban pollution, many cities will be unable to meet WHO guideline levels for air pollutants through local action alone. Consequently, it is very important to estimate how much the local and non-local sources contribute to urban pollution in order to design global strategies to reduce the levels of pollutants in European cities.
Simonas Kecorius, Teresa Vogl, Pauli Paasonen, Janne Lampilahti, Daniel Rothenberg, Heike Wex, Sebastian Zeppenfeld, Manuela van Pinxteren, Markus Hartmann, Silvia Henning, Xianda Gong, Andre Welti, Markku Kulmala, Frank Stratmann, Hartmut Herrmann, and Alfred Wiedensohler
Atmos. Chem. Phys., 19, 14339–14364, https://doi.org/10.5194/acp-19-14339-2019, https://doi.org/10.5194/acp-19-14339-2019, 2019
Short summary
Short summary
Arctic sea-ice retreat, atmospheric new particle formation (NPF), and aerosol–cloud interaction may all be linked via a positive feedback mechanism. Understanding the sources of cloud condensation nuclei (CCN) is an important piece in the Arctic amplification puzzle. We show that Arctic newly formed particles do not have to grow beyond the Aitken mode to act as CCN. This is important, because NPF occurrence in the Arctic is expected to increase, making it a significant contributor to CCN budget.
Peter Bräuer, Camille Mouchel-Vallon, Andreas Tilgner, Anke Mutzel, Olaf Böge, Maria Rodigast, Laurent Poulain, Dominik van Pinxteren, Ralf Wolke, Bernard Aumont, and Hartmut Herrmann
Atmos. Chem. Phys., 19, 9209–9239, https://doi.org/10.5194/acp-19-9209-2019, https://doi.org/10.5194/acp-19-9209-2019, 2019
Short summary
Short summary
The article presents a new protocol for computer-assisted automated aqueous-phase chemistry mechanism generation, which has been validated against chamber experiments. Together with a large kinetics database and improved prediction methods for kinetic data, the novel protocol provides an unmatched tool for detailed studies of tropospheric aqueous-phase chemistry in complex model studies and for the design and analysis of chamber experiments.
Bastian Stieger, Gerald Spindler, Dominik van Pinxteren, Achim Grüner, Markus Wallasch, and Hartmut Herrmann
Atmos. Meas. Tech., 12, 281–298, https://doi.org/10.5194/amt-12-281-2019, https://doi.org/10.5194/amt-12-281-2019, 2019
Short summary
Short summary
A MARGA was combined with an additional IC system specialized for the 2 h interval online quantification of 12 low-molecular-weight organic acids in the gas and particle phases. Low limits of detection and good precision were achieved. The suitability for field measurements was shown. This setup reduces laboratory work and filter sampling artifacts. Diurnal profiles, sources and phase distributions of these compounds will improve the knowledge of the tropospheric multiphase chemistry.
Shan Huang, Zhijun Wu, Laurent Poulain, Manuela van Pinxteren, Maik Merkel, Denise Assmann, Hartmut Herrmann, and Alfred Wiedensohler
Atmos. Chem. Phys., 18, 18043–18062, https://doi.org/10.5194/acp-18-18043-2018, https://doi.org/10.5194/acp-18-18043-2018, 2018
Short summary
Short summary
The Atlantic aerosols are characterized based on high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) measurements during four open-ocean cruises. This unique data set provides the latitudinal distribution of source contributions of organic aerosols (OAs) over the Atlantic Ocean, showing that marine sources could control the OA formation over the South Atlantic, while strong continental influence was found near Africa and Europe.
Yanhong Zhu, Lingxiao Yang, Jianmin Chen, Kimitaka Kawamura, Mamiko Sato, Andreas Tilgner, Dominik van Pinxteren, Ying Chen, Likun Xue, Xinfeng Wang, Isobel J. Simpson, Hartmut Herrmann, Donald R. Blake, and Wenxing Wang
Atmos. Chem. Phys., 18, 10741–10758, https://doi.org/10.5194/acp-18-10741-2018, https://doi.org/10.5194/acp-18-10741-2018, 2018
Short summary
Short summary
Molecular distributions of dicarboxylic acids, oxocarboxylic acids and α-dicarbonyls in the free troposphere are identified, and their concentration variations between 2014 and 2006 are presented. High nighttime concentrations were probably due to precursor emissions and aqueous-phase oxidation. Biomass burning was significant, but its tracer levoglucosan in 2014 was 5 times lower than 2006 concentrations. Finally, regional emission from anthropogenic activities was identified as a major source.
Eleni Karnezi, Benjamin N. Murphy, Laurent Poulain, Hartmut Herrmann, Alfred Wiedensohler, Florian Rubach, Astrid Kiendler-Scharr, Thomas F. Mentel, and Spyros N. Pandis
Atmos. Chem. Phys., 18, 10759–10772, https://doi.org/10.5194/acp-18-10759-2018, https://doi.org/10.5194/acp-18-10759-2018, 2018
Short summary
Short summary
Different parameterizations of the organic aerosol (OA) formation and evolution are evaluated using ground and airborne measurements collected in the 2012 PEGASOS field campaign in the Po Valley (Italy). Total OA concentration and O : C ratios were reproduced within experimental error by a number of schemes. Anthropogenic secondary OA (SOA) contributed 15–25 % of the total OA, 20–35 % of SOA from intermediate volatility compounds oxidation, and 15–45 % of biogenic SOA depending on the scheme.
Julia Schmale, Silvia Henning, Stefano Decesari, Bas Henzing, Helmi Keskinen, Karine Sellegri, Jurgita Ovadnevaite, Mira L. Pöhlker, Joel Brito, Aikaterini Bougiatioti, Adam Kristensson, Nikos Kalivitis, Iasonas Stavroulas, Samara Carbone, Anne Jefferson, Minsu Park, Patrick Schlag, Yoko Iwamoto, Pasi Aalto, Mikko Äijälä, Nicolas Bukowiecki, Mikael Ehn, Göran Frank, Roman Fröhlich, Arnoud Frumau, Erik Herrmann, Hartmut Herrmann, Rupert Holzinger, Gerard Kos, Markku Kulmala, Nikolaos Mihalopoulos, Athanasios Nenes, Colin O'Dowd, Tuukka Petäjä, David Picard, Christopher Pöhlker, Ulrich Pöschl, Laurent Poulain, André Stephan Henry Prévôt, Erik Swietlicki, Meinrat O. Andreae, Paulo Artaxo, Alfred Wiedensohler, John Ogren, Atsushi Matsuki, Seong Soo Yum, Frank Stratmann, Urs Baltensperger, and Martin Gysel
Atmos. Chem. Phys., 18, 2853–2881, https://doi.org/10.5194/acp-18-2853-2018, https://doi.org/10.5194/acp-18-2853-2018, 2018
Short summary
Short summary
Collocated long-term observations of cloud condensation nuclei (CCN) number concentrations, particle number size distributions and chemical composition from 12 sites are synthesized. Observations cover coastal environments, the Arctic, the Mediterranean, the boreal and rain forest, high alpine and continental background sites, and Monsoon-influenced areas. We interpret regional and seasonal variability. CCN concentrations are predicted with the κ–Köhler model and compared to the measurements.
Julian Hofer, Dietrich Althausen, Sabur F. Abdullaev, Abduvosit N. Makhmudov, Bakhron I. Nazarov, Georg Schettler, Ronny Engelmann, Holger Baars, K. Wadinga Fomba, Konrad Müller, Bernd Heinold, Konrad Kandler, and Albert Ansmann
Atmos. Chem. Phys., 17, 14559–14577, https://doi.org/10.5194/acp-17-14559-2017, https://doi.org/10.5194/acp-17-14559-2017, 2017
Short summary
Short summary
The Central Asian Dust Experiment provides unprecedented data on vertically resolved aerosol optical properties over Central Asia from continuous 18-month polarization Raman lidar observations in Dushanbe, Tajikistan. Central Asia is affected by climate change (e.g. glacier retreat) but in a large part missing vertically resolved aerosol measurements, which would help to better understand transport of dust and pollution aerosol across Central Asia and their influence on climate and health.
Qing Mu, Gerhard Lammel, Christian N. Gencarelli, Ian M. Hedgecock, Ying Chen, Petra Přibylová, Monique Teich, Yuxuan Zhang, Guangjie Zheng, Dominik van Pinxteren, Qiang Zhang, Hartmut Herrmann, Manabu Shiraiwa, Peter Spichtinger, Hang Su, Ulrich Pöschl, and Yafang Cheng
Atmos. Chem. Phys., 17, 12253–12267, https://doi.org/10.5194/acp-17-12253-2017, https://doi.org/10.5194/acp-17-12253-2017, 2017
Short summary
Short summary
Polycyclic aromatic hydrocarbons (PAHs) are hazardous pollutants with the largest emissions in East Asia. The regional WRF-Chem-PAH model has been developed to reflect the state-of-the-art understanding of current PAHs studies with several new or updated features. It is able to reasonably well simulate the concentration levels and particulate mass fractions of PAHs near the sources and at a remote outflow region of East Asia, in high spatial and temporal resolutions.
Jiarong Li, Xinfeng Wang, Jianmin Chen, Chao Zhu, Weijun Li, Chengbao Li, Lu Liu, Caihong Xu, Liang Wen, Likun Xue, Wenxing Wang, Aijun Ding, and Hartmut Herrmann
Atmos. Chem. Phys., 17, 9885–9896, https://doi.org/10.5194/acp-17-9885-2017, https://doi.org/10.5194/acp-17-9885-2017, 2017
Short summary
Short summary
Cloud events at Mt. Tai were investigated for the chemical composition and size distribution of cloud droplets. An obvious rise in pH was found for elevated NH+4 during the last decade. Higher PM2.5 levels resulted in higher concentrations of water-soluble ions, smaller sizes and higher numbers of cloud droplets. The mechanism of cloud-droplet formation and the mass transfer between aerosol–gas–cloud phases were summarized to enrich the knowledge of cloud chemical and microphysical properties.
Carlo Bozzetti, Imad El Haddad, Dalia Salameh, Kaspar Rudolf Daellenbach, Paola Fermo, Raquel Gonzalez, María Cruz Minguillón, Yoshiteru Iinuma, Laurent Poulain, Miriam Elser, Emanuel Müller, Jay Gates Slowik, Jean-Luc Jaffrezo, Urs Baltensperger, Nicolas Marchand, and André Stephan Henry Prévôt
Atmos. Chem. Phys., 17, 8247–8268, https://doi.org/10.5194/acp-17-8247-2017, https://doi.org/10.5194/acp-17-8247-2017, 2017
Short summary
Short summary
We present the first long-term organic aerosol source apportionment in an environment influenced by anthropogenic emissions including biomass burning and industrial processes and an active photochemistry. Online and offline aerosol mass spectrometry were used to characterize these emissions and their transformation. Measurements of organic markers provided insights into the origin of biomass smoke in this area, with different seasonal contributions from domestic heating and agricultural burning.
Giancarlo Ciarelli, Sebnem Aksoyoglu, Imad El Haddad, Emily A. Bruns, Monica Crippa, Laurent Poulain, Mikko Äijälä, Samara Carbone, Evelyn Freney, Colin O'Dowd, Urs Baltensperger, and André S. H. Prévôt
Atmos. Chem. Phys., 17, 7653–7669, https://doi.org/10.5194/acp-17-7653-2017, https://doi.org/10.5194/acp-17-7653-2017, 2017
Short summary
Short summary
Organic aerosol (OA) comprises the main fraction of fine particulate matter (PM1). Using a new VBS parameterization, we performed model-based source apportionment studies to assess the importance of different emission sources to the total OA loads in Europe during winter periods. Our results indicate that residential wood burning emissions represent the major source of OA, followed by non-residential emission sources (i.e. traffic and industries).
Maria Rodigast, Anke Mutzel, and Hartmut Herrmann
Atmos. Chem. Phys., 17, 3929–3943, https://doi.org/10.5194/acp-17-3929-2017, https://doi.org/10.5194/acp-17-3929-2017, 2017
Short summary
Short summary
The study presents, for the first time, a quantification method for methylglyoxal oligomers and highlights their importance for SOA formation. The method was applied to determine the fraction of methylglyoxal oligomers of 1,3,5-trimethylbenzene SOA dependent on relative humidity and seed particle acidity. An oligomer contribution of up to 8 % was calculated varying with experimental conditions and thus further hints for the dependency of the oligomer formation mechanism on conditions were found.
Nga Lee Ng, Steven S. Brown, Alexander T. Archibald, Elliot Atlas, Ronald C. Cohen, John N. Crowley, Douglas A. Day, Neil M. Donahue, Juliane L. Fry, Hendrik Fuchs, Robert J. Griffin, Marcelo I. Guzman, Hartmut Herrmann, Alma Hodzic, Yoshiteru Iinuma, José L. Jimenez, Astrid Kiendler-Scharr, Ben H. Lee, Deborah J. Luecken, Jingqiu Mao, Robert McLaren, Anke Mutzel, Hans D. Osthoff, Bin Ouyang, Benedicte Picquet-Varrault, Ulrich Platt, Havala O. T. Pye, Yinon Rudich, Rebecca H. Schwantes, Manabu Shiraiwa, Jochen Stutz, Joel A. Thornton, Andreas Tilgner, Brent J. Williams, and Rahul A. Zaveri
Atmos. Chem. Phys., 17, 2103–2162, https://doi.org/10.5194/acp-17-2103-2017, https://doi.org/10.5194/acp-17-2103-2017, 2017
Short summary
Short summary
Oxidation of biogenic volatile organic compounds by NO3 is an important interaction between anthropogenic
and natural emissions. This review results from a June 2015 workshop and includes the recent literature
on kinetics, mechanisms, organic aerosol yields, and heterogeneous chemistry; advances in analytical
instrumentation; the current state NO3-BVOC chemistry in atmospheric models; and critical needs for
future research in modeling, field observations, and laboratory studies.
Monique Teich, Dominik van Pinxteren, Michael Wang, Simonas Kecorius, Zhibin Wang, Thomas Müller, Griša Močnik, and Hartmut Herrmann
Atmos. Chem. Phys., 17, 1653–1672, https://doi.org/10.5194/acp-17-1653-2017, https://doi.org/10.5194/acp-17-1653-2017, 2017
Short summary
Short summary
This study provides a large data set on concentrations of individual brown carbon constituents, i.e., nitrated aromatic compounds, in diverse atmospheric environments and their relative contribution to water-soluble and particulate light absorption. It extends the existing knowledge on the abundance of brown carbon and its molecular composition and provides scientific motivation for further studies on ambient brown carbon constituents.
Martin Brüggemann, Laurent Poulain, Andreas Held, Torsten Stelzer, Christoph Zuth, Stefanie Richters, Anke Mutzel, Dominik van Pinxteren, Yoshiteru Iinuma, Sarmite Katkevica, René Rabe, Hartmut Herrmann, and Thorsten Hoffmann
Atmos. Chem. Phys., 17, 1453–1469, https://doi.org/10.5194/acp-17-1453-2017, https://doi.org/10.5194/acp-17-1453-2017, 2017
Short summary
Short summary
Using complementary mass spectrometric techniques during a field study in central Europe, characteristic contributors to the organic aerosol mass were identified. Besides common marker compounds for biogenic secondary organic aerosol, highly oxidized sulfur species were detected in the particle phase. High-time-resolution measurements revealed correlations between these organosulfates and particulate sulfate as well as gas-phase peroxyradicals, giving hints to underlying formation mechanisms.
Johannes Schneider, Stephan Mertes, Dominik van Pinxteren, Hartmut Herrmann, and Stephan Borrmann
Atmos. Chem. Phys., 17, 1571–1593, https://doi.org/10.5194/acp-17-1571-2017, https://doi.org/10.5194/acp-17-1571-2017, 2017
Short summary
Short summary
We analyzed the composition of cloud droplet residuals and of aerosol particles sampled on a mountaintop site. The data show that about 85 % of the submicron aerosol mass partitions into the cloud phase, and that the uptake of soluble compounds (nitric acid, ammonia, and organic gases) from the gas phase into the cloud droplets is very effective. This will lead to a redistribution of these compounds among the aerosol particles and thereby to a more uniform aerosol after cloud evaporation.
Silvia Sandrini, Dominik van Pinxteren, Lara Giulianelli, Hartmut Herrmann, Laurent Poulain, Maria Cristina Facchini, Stefania Gilardoni, Matteo Rinaldi, Marco Paglione, Barbara J. Turpin, Francesca Pollini, Silvia Bucci, Nicola Zanca, and Stefano Decesari
Atmos. Chem. Phys., 16, 10879–10897, https://doi.org/10.5194/acp-16-10879-2016, https://doi.org/10.5194/acp-16-10879-2016, 2016
Short summary
Short summary
This paper deals with impactor measurements performed in the summer 2012 during the EU project PEGASOS campaign in the Po Valley, at an urban and a rural site. The paper tries to disentangle the effects of weather anomalies (temporal and spatial) from those of diverse emissions (NH3) and chemical processes on the formation of secondary aerosols in the region, with special focus on nocturnal ammonium nitrate formation and its implications (aqueous formation of secondary organic aerosol).
Giancarlo Ciarelli, Sebnem Aksoyoglu, Monica Crippa, Jose-Luis Jimenez, Eriko Nemitz, Karine Sellegri, Mikko Äijälä, Samara Carbone, Claudia Mohr, Colin O'Dowd, Laurent Poulain, Urs Baltensperger, and André S. H. Prévôt
Atmos. Chem. Phys., 16, 10313–10332, https://doi.org/10.5194/acp-16-10313-2016, https://doi.org/10.5194/acp-16-10313-2016, 2016
Short summary
Short summary
Recent studies based on aerosol mass spectrometer measurements revealed that the organic fraction dominates the non-refractory PM1 composition. However its representation in chemical transport models is still very challenging due to uncertainties in emission sources and formation pathways. In this study, a novel organic aerosol scheme was tested in the regional air quality model CAMx and results were compared with ambient measurements at 11 different sites in Europe.
Stefanie Richters, Hartmut Herrmann, and Torsten Berndt
Atmos. Chem. Phys., 16, 9831–9845, https://doi.org/10.5194/acp-16-9831-2016, https://doi.org/10.5194/acp-16-9831-2016, 2016
Short summary
Short summary
New reaction pathways of highly oxidized multifunctional organic compounds (HOMs) from the ozonolysis of the sesquiterpene (C15H24) beta-caryophyllene were elucidated based on experiments using isotopically labelled ozone and H/D exchange experiments. These new insights in reaction pathways of unsaturated RO2 radicals are responsible for the production of about two-thirds of the detected HOMs from beta-caryophyllene and extend the knowledge of HOM formation mechanisms in the atmosphere.
Nan Ma, Chunsheng Zhao, Jiangchuan Tao, Zhijun Wu, Simonas Kecorius, Zhibin Wang, Johannes Größ, Hongjian Liu, Yuxuan Bian, Ye Kuang, Monique Teich, Gerald Spindler, Konrad Müller, Dominik van Pinxteren, Hartmut Herrmann, Min Hu, and Alfred Wiedensohler
Atmos. Chem. Phys., 16, 8593–8607, https://doi.org/10.5194/acp-16-8593-2016, https://doi.org/10.5194/acp-16-8593-2016, 2016
Short summary
Short summary
New particle formation (NPF) is one of main sources of cloud condensation nuclei (CCN) in the atmosphere. Based on in situ measurements, we found that CCN activity of newly formed particles largely differs in different NPF events. It is therefore difficult to find a simple parameterization of CCN activity for NPF events. Using a fixed size-resolved activation ratio curve or critical diameter is very likely to result in large biases up to 50 % in the calculated NCCN during NPF events.
Amy P. Sullivan, Natasha Hodas, Barbara J. Turpin, Kate Skog, Frank N. Keutsch, Stefania Gilardoni, Marco Paglione, Matteo Rinaldi, Stefano Decesari, Maria Cristina Facchini, Laurent Poulain, Hartmut Herrmann, Alfred Wiedensohler, Eiko Nemitz, Marsailidh M. Twigg, and Jeffrey L. Collett Jr.
Atmos. Chem. Phys., 16, 8095–8108, https://doi.org/10.5194/acp-16-8095-2016, https://doi.org/10.5194/acp-16-8095-2016, 2016
Short summary
Short summary
This paper presents the results from our measurements and approach for the investigation of aqueous secondary organic aerosol (aqSOA) formation in the ambient atmosphere. When local aqSOA formation was observed, a correlation of water-soluble organic carbon with organic aerosol, aerosol liquid water, relative humidity, and aerosol nitrate was found. Key factors of local aqSOA production include air mass stagnation, formation of local nitrate overnight, and significant amounts of ammonia.
Bernadette Rosati, Martin Gysel, Florian Rubach, Thomas F. Mentel, Brigitta Goger, Laurent Poulain, Patrick Schlag, Pasi Miettinen, Aki Pajunoja, Annele Virtanen, Henk Klein Baltink, J. S. Bas Henzing, Johannes Größ, Gian Paolo Gobbi, Alfred Wiedensohler, Astrid Kiendler-Scharr, Stefano Decesari, Maria Cristina Facchini, Ernest Weingartner, and Urs Baltensperger
Atmos. Chem. Phys., 16, 7295–7315, https://doi.org/10.5194/acp-16-7295-2016, https://doi.org/10.5194/acp-16-7295-2016, 2016
Short summary
Short summary
This study presents PEGASOS project data from field campaigns in the Po Valley, Italy and the Netherlands. Vertical profiles of aerosol hygroscopicity and chemical composition were investigated with airborne measurements on board a Zeppelin NT airship. A special focus was on the evolution of different mixing layers within the PBL as a function of daytime. A closure study showed that variations in aerosol hygroscopicity can well be explained by the variations in chemical composition.
James W. Grayson, Yue Zhang, Anke Mutzel, Lindsay Renbaum-Wolff, Olaf Böge, Saeid Kamal, Hartmut Herrmann, Scot T. Martin, and Allan K. Bertram
Atmos. Chem. Phys., 16, 6027–6040, https://doi.org/10.5194/acp-16-6027-2016, https://doi.org/10.5194/acp-16-6027-2016, 2016
Short summary
Short summary
The effect of several experimental parameters on the viscosity of secondary organic material (SOM) generated from the ozonolysis of α-pinene has been studied. The results demonstrate that the viscosity of SOM depends on the particle mass concentration at which SOM is produced, and the relative humidity (RH) at which the SOM is studied. Hence, particle mass concentration and RH should be considered when comparing experimental results for SOM, or extrapolating laboratory results to the atmosphere.
Dominik van Pinxteren, Khanneh Wadinga Fomba, Stephan Mertes, Konrad Müller, Gerald Spindler, Johannes Schneider, Taehyoung Lee, Jeffrey L. Collett, and Hartmut Herrmann
Atmos. Chem. Phys., 16, 3185–3205, https://doi.org/10.5194/acp-16-3185-2016, https://doi.org/10.5194/acp-16-3185-2016, 2016
Yan Lv, Xiang Li, Ting Ting Xu, Tian Tao Cheng, Xin Yang, Jian Min Chen, Yoshiteru Iinuma, and Hartmut Herrmann
Atmos. Chem. Phys., 16, 2971–2983, https://doi.org/10.5194/acp-16-2971-2016, https://doi.org/10.5194/acp-16-2971-2016, 2016
Short summary
Short summary
The study focused on size-resolved PAHs in urban aerosols at a megacity Shanghai site. The results provide us with a mechanistic understanding of the particle size distribution of PAHs and their transport in the human respiratory system; this can help develop better source control strategies.
Maria Rodigast, Anke Mutzel, Janine Schindelka, and Hartmut Herrmann
Atmos. Chem. Phys., 16, 2689–2702, https://doi.org/10.5194/acp-16-2689-2016, https://doi.org/10.5194/acp-16-2689-2016, 2016
Short summary
Short summary
The study highlights methyl ethyl ketone as a new and unknown source for methylglyoxal in the aqueous phase that is important for aqueous secondary organic aerosol (aqSOA) formation. Besides 2,3-butanedione (29.5 %) and hydroxyacetone (3.0 %), methylglyoxal was formed with a molar yield of 9.5 %. According to the detected products a reaction mechanism was developed and evaluated. The comparison of the model and experimental data showed excellent agreements, in particular for methylglyoxal.
A. J. Rusumdar, R. Wolke, A. Tilgner, and H. Herrmann
Geosci. Model Dev., 9, 247–281, https://doi.org/10.5194/gmd-9-247-2016, https://doi.org/10.5194/gmd-9-247-2016, 2016
Short summary
Short summary
The present paper was aimed at the further development of SPACCIM to treat both complex multiphase chemistry and phase transfer processes considering new non-ideality properties of concentrated solutions. Model studies showed the applicability of the new kinetic model approach for complex aerosol mixtures and detailed chemical mechanisms. Simulations have implied that the treatment of non-ideality should be mandatory for modeling multiphase chemical processes in deliquesced particles.
A. Roth, J. Schneider, T. Klimach, S. Mertes, D. van Pinxteren, H. Herrmann, and S. Borrmann
Atmos. Chem. Phys., 16, 505–524, https://doi.org/10.5194/acp-16-505-2016, https://doi.org/10.5194/acp-16-505-2016, 2016
Short summary
Short summary
This paper reports on single-particle measurements of ambient aerosol particles and cloud residues sampled from orographic clouds on a mountain site in central Germany.
The results show that soot particles can get efficiently activated in cloud droplets when they are mixed with or coated by sulfate and nitrate. Cloud processing leads to addition of nitrate and sulfate to the particles, thereby increasing the hygroscopicity of these particles when they remain in the air after cloud evaporation.
K. R. Daellenbach, C. Bozzetti, A. Křepelová, F. Canonaco, R. Wolf, P. Zotter, P. Fermo, M. Crippa, J. G. Slowik, Y. Sosedova, Y. Zhang, R.-J. Huang, L. Poulain, S. Szidat, U. Baltensperger, I. El Haddad, and A. S. H. Prévôt
Atmos. Meas. Tech., 9, 23–39, https://doi.org/10.5194/amt-9-23-2016, https://doi.org/10.5194/amt-9-23-2016, 2016
Short summary
Short summary
In this study, we developed an offline technique using the AMS for the characterization of the chemical fingerprints of aerosols collected on quartz filters, and evaluated the suitability of the organic mass spectral data for source apportionment. This technique may be used to enhance the AMS capabilities in measuring size-fractionated, spatially resolved long-term data sets.
V. Crenn, J. Sciare, P. L. Croteau, S. Verlhac, R. Fröhlich, C. A. Belis, W. Aas, M. Äijälä, A. Alastuey, B. Artiñano, D. Baisnée, N. Bonnaire, M. Bressi, M. Canagaratna, F. Canonaco, C. Carbone, F. Cavalli, E. Coz, M. J. Cubison, J. K. Esser-Gietl, D. C. Green, V. Gros, L. Heikkinen, H. Herrmann, C. Lunder, M. C. Minguillón, G. Močnik, C. D. O'Dowd, J. Ovadnevaite, J.-E. Petit, E. Petralia, L. Poulain, M. Priestman, V. Riffault, A. Ripoll, R. Sarda-Estève, J. G. Slowik, A. Setyan, A. Wiedensohler, U. Baltensperger, A. S. H. Prévôt, J. T. Jayne, and O. Favez
Atmos. Meas. Tech., 8, 5063–5087, https://doi.org/10.5194/amt-8-5063-2015, https://doi.org/10.5194/amt-8-5063-2015, 2015
Short summary
Short summary
A large intercomparison study of 13 Q-ACSM was conducted for a 3-week period in the region of Paris to evaluate the performance of this instrument and to monitor the major NR-PM1 chemical components. Reproducibility expanded uncertainties of Q-ACSM concentration measurements were found to be 9, 15, 19, 28, and 36% for NR-PM1, NO3, OM, SO4, and NH4, respectively. Some recommendations regarding best calibration practices, standardized data processing and data treatment are also provided.
Z. J. Wu, L. Poulain, W. Birmili, J. Größ, N. Niedermeier, Z. B. Wang, H. Herrmann, and A. Wiedensohler
Atmos. Chem. Phys., 15, 13071–13083, https://doi.org/10.5194/acp-15-13071-2015, https://doi.org/10.5194/acp-15-13071-2015, 2015
Y. Zhang, N. Mahowald, R. A. Scanza, E. Journet, K. Desboeufs, S. Albani, J. F. Kok, G. Zhuang, Y. Chen, D. D. Cohen, A. Paytan, M. D. Patey, E. P. Achterberg, J. P. Engelbrecht, and K. W. Fomba
Biogeosciences, 12, 5771–5792, https://doi.org/10.5194/bg-12-5771-2015, https://doi.org/10.5194/bg-12-5771-2015, 2015
Short summary
Short summary
A new technique to determine a size-fractionated global soil elemental emission inventory based on a global soil and mineralogical data set is introduced. Spatial variability of mineral dust elemental fractions (8 elements, e.g., Ca, Fe, Al) is identified on a global scale, particularly for Ca. The Ca/Al ratio ranged between 0.1 and 5.0 and is confirmed as an indicator of dust source regions by a global dust model. Total and soluble dust element fluxes into different ocean basins are estimated.
K. W. Fomba, D. van Pinxteren, K. Müller, Y. Iinuma, T. Lee, J. L. Collett Jr., and H. Herrmann
Atmos. Chem. Phys., 15, 8751–8765, https://doi.org/10.5194/acp-15-8751-2015, https://doi.org/10.5194/acp-15-8751-2015, 2015
R. Fröhlich, V. Crenn, A. Setyan, C. A. Belis, F. Canonaco, O. Favez, V. Riffault, J. G. Slowik, W. Aas, M. Aijälä, A. Alastuey, B. Artiñano, N. Bonnaire, C. Bozzetti, M. Bressi, C. Carbone, E. Coz, P. L. Croteau, M. J. Cubison, J. K. Esser-Gietl, D. C. Green, V. Gros, L. Heikkinen, H. Herrmann, J. T. Jayne, C. R. Lunder, M. C. Minguillón, G. Močnik, C. D. O'Dowd, J. Ovadnevaite, E. Petralia, L. Poulain, M. Priestman, A. Ripoll, R. Sarda-Estève, A. Wiedensohler, U. Baltensperger, J. Sciare, and A. S. H. Prévôt
Atmos. Meas. Tech., 8, 2555–2576, https://doi.org/10.5194/amt-8-2555-2015, https://doi.org/10.5194/amt-8-2555-2015, 2015
Short summary
Short summary
Source apportionment (SA) of organic aerosol mass spectrometric data measured with the Aerodyne ACSM using PMF/ME2 is a frequently used technique in the AMS/ACSM community. ME2 uncertainties due to instrument-to-instrument variations are elucidated by performing SA on ambient data from 14 individual, co-located ACSMs, recorded during the first ACTRIS ACSM intercomparison study at SIRTA near Paris (France). The mean uncertainty was 17.2%. Recommendations for future studies using ME2 are provided.
M. Rodigast, A. Mutzel, Y. Iinuma, S. Haferkorn, and H. Herrmann
Atmos. Meas. Tech., 8, 2409–2416, https://doi.org/10.5194/amt-8-2409-2015, https://doi.org/10.5194/amt-8-2409-2015, 2015
Short summary
Short summary
An optimised method for derivatisation of carbonyl compounds with o-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine (PFBHA) in aqueous samples is described. The comprehensive optimisation of the method leads to an improvement of the detection limit up to a factor of 10 highlighting the good sensitivity of the optimised method for atmospherically relevant carbonyl compounds. The optimised method was successfully applied to detect carbonyl compounds from the aqueous phase oxidation of 3-methylbutanone.
L. K. Whalley, D. Stone, I. J. George, S. Mertes, D. van Pinxteren, A. Tilgner, H. Herrmann, M. J. Evans, and D. E. Heard
Atmos. Chem. Phys., 15, 3289–3301, https://doi.org/10.5194/acp-15-3289-2015, https://doi.org/10.5194/acp-15-3289-2015, 2015
L. Poulain, W. Birmili, F. Canonaco, M. Crippa, Z. J. Wu, S. Nordmann, G. Spindler, A. S. H. Prévôt, A. Wiedensohler, and H. Herrmann
Atmos. Chem. Phys., 14, 10145–10162, https://doi.org/10.5194/acp-14-10145-2014, https://doi.org/10.5194/acp-14-10145-2014, 2014
A. Tilgner, L. Schöne, P. Bräuer, D. van Pinxteren, E. Hoffmann, G. Spindler, S. A. Styler, S. Mertes, W. Birmili, R. Otto, M. Merkel, K. Weinhold, A. Wiedensohler, H. Deneke, R. Schrödner, R. Wolke, J. Schneider, W. Haunold, A. Engel, A. Wéber, and H. Herrmann
Atmos. Chem. Phys., 14, 9105–9128, https://doi.org/10.5194/acp-14-9105-2014, https://doi.org/10.5194/acp-14-9105-2014, 2014
C. Fountoukis, A. G. Megaritis, K. Skyllakou, P. E. Charalampidis, C. Pilinis, H. A. C. Denier van der Gon, M. Crippa, F. Canonaco, C. Mohr, A. S. H. Prévôt, J. D. Allan, L. Poulain, T. Petäjä, P. Tiitta, S. Carbone, A. Kiendler-Scharr, E. Nemitz, C. O'Dowd, E. Swietlicki, and S. N. Pandis
Atmos. Chem. Phys., 14, 9061–9076, https://doi.org/10.5194/acp-14-9061-2014, https://doi.org/10.5194/acp-14-9061-2014, 2014
K. W. Fomba, K. Müller, D. van Pinxteren, L. Poulain, M. van Pinxteren, and H. Herrmann
Atmos. Chem. Phys., 14, 8883–8904, https://doi.org/10.5194/acp-14-8883-2014, https://doi.org/10.5194/acp-14-8883-2014, 2014
S. Henning, K. Dieckmann, K. Ignatius, M. Schäfer, P. Zedler, E. Harris, B. Sinha, D. van Pinxteren, S. Mertes, W. Birmili, M. Merkel, Z. Wu, A. Wiedensohler, H. Wex, H. Herrmann, and F. Stratmann
Atmos. Chem. Phys., 14, 7859–7868, https://doi.org/10.5194/acp-14-7859-2014, https://doi.org/10.5194/acp-14-7859-2014, 2014
R. M. Healy, N. Riemer, J. C. Wenger, M. Murphy, M. West, L. Poulain, A. Wiedensohler, I. P. O'Connor, E. McGillicuddy, J. R. Sodeau, and G. J. Evans
Atmos. Chem. Phys., 14, 6289–6299, https://doi.org/10.5194/acp-14-6289-2014, https://doi.org/10.5194/acp-14-6289-2014, 2014
M. Crippa, F. Canonaco, V. A. Lanz, M. Äijälä, J. D. Allan, S. Carbone, G. Capes, D. Ceburnis, M. Dall'Osto, D. A. Day, P. F. DeCarlo, M. Ehn, A. Eriksson, E. Freney, L. Hildebrandt Ruiz, R. Hillamo, J. L. Jimenez, H. Junninen, A. Kiendler-Scharr, A.-M. Kortelainen, M. Kulmala, A. Laaksonen, A. A. Mensah, C. Mohr, E. Nemitz, C. O'Dowd, J. Ovadnevaite, S. N. Pandis, T. Petäjä, L. Poulain, S. Saarikoski, K. Sellegri, E. Swietlicki, P. Tiitta, D. R. Worsnop, U. Baltensperger, and A. S. H. Prévôt
Atmos. Chem. Phys., 14, 6159–6176, https://doi.org/10.5194/acp-14-6159-2014, https://doi.org/10.5194/acp-14-6159-2014, 2014
L. Schöne and H. Herrmann
Atmos. Chem. Phys., 14, 4503–4514, https://doi.org/10.5194/acp-14-4503-2014, https://doi.org/10.5194/acp-14-4503-2014, 2014
S. Scheinhardt, D. van Pinxteren, K. Müller, G. Spindler, and H. Herrmann
Atmos. Chem. Phys., 14, 4531–4538, https://doi.org/10.5194/acp-14-4531-2014, https://doi.org/10.5194/acp-14-4531-2014, 2014
E. Harris, B. Sinha, D. van Pinxteren, J. Schneider, L. Poulain, J. Collett, B. D'Anna, B. Fahlbusch, S. Foley, K. W. Fomba, C. George, T. Gnauk, S. Henning, T. Lee, S. Mertes, A. Roth, F. Stratmann, S. Borrmann, P. Hoppe, and H. Herrmann
Atmos. Chem. Phys., 14, 4219–4235, https://doi.org/10.5194/acp-14-4219-2014, https://doi.org/10.5194/acp-14-4219-2014, 2014
D. van Pinxteren, C. Neusüß, and H. Herrmann
Atmos. Chem. Phys., 14, 3913–3928, https://doi.org/10.5194/acp-14-3913-2014, https://doi.org/10.5194/acp-14-3913-2014, 2014
N. Niedermeier, A. Held, T. Müller, B. Heinold, K. Schepanski, I. Tegen, K. Kandler, M. Ebert, S. Weinbruch, K. Read, J. Lee, K. W. Fomba, K. Müller, H. Herrmann, and A. Wiedensohler
Atmos. Chem. Phys., 14, 2245–2266, https://doi.org/10.5194/acp-14-2245-2014, https://doi.org/10.5194/acp-14-2245-2014, 2014
A. Kahnt, Y. Iinuma, A. Mutzel, O. Böge, M. Claeys, and H. Herrmann
Atmos. Chem. Phys., 14, 719–736, https://doi.org/10.5194/acp-14-719-2014, https://doi.org/10.5194/acp-14-719-2014, 2014
M. van Pinxteren and H. Herrmann
Atmos. Chem. Phys., 13, 11791–11802, https://doi.org/10.5194/acp-13-11791-2013, https://doi.org/10.5194/acp-13-11791-2013, 2013
R. M. Healy, J. Sciare, L. Poulain, M. Crippa, A. Wiedensohler, A. S. H. Prévôt, U. Baltensperger, R. Sarda-Estève, M. L. McGuire, C.-H. Jeong, E. McGillicuddy, I. P. O'Connor, J. R. Sodeau, G. J. Evans, and J. C. Wenger
Atmos. Chem. Phys., 13, 9479–9496, https://doi.org/10.5194/acp-13-9479-2013, https://doi.org/10.5194/acp-13-9479-2013, 2013
M. Crippa, F. Canonaco, J. G. Slowik, I. El Haddad, P. F. DeCarlo, C. Mohr, M. F. Heringa, R. Chirico, N. Marchand, B. Temime-Roussel, E. Abidi, L. Poulain, A. Wiedensohler, U. Baltensperger, and A. S. H. Prévôt
Atmos. Chem. Phys., 13, 8411–8426, https://doi.org/10.5194/acp-13-8411-2013, https://doi.org/10.5194/acp-13-8411-2013, 2013
Z. J. Wu, L. Poulain, S. Henning, K. Dieckmann, W. Birmili, M. Merkel, D. van Pinxteren, G. Spindler, K. Müller, F. Stratmann, H. Herrmann, and A. Wiedensohler
Atmos. Chem. Phys., 13, 7983–7996, https://doi.org/10.5194/acp-13-7983-2013, https://doi.org/10.5194/acp-13-7983-2013, 2013
Z. Wu, W. Birmili, L. Poulain, Z. Wang, M. Merkel, B. Fahlbusch, D. van Pinxteren, H. Herrmann, and A. Wiedensohler
Atmos. Chem. Phys., 13, 6637–6646, https://doi.org/10.5194/acp-13-6637-2013, https://doi.org/10.5194/acp-13-6637-2013, 2013
Q. J. Zhang, M. Beekmann, F. Drewnick, F. Freutel, J. Schneider, M. Crippa, A. S. H. Prevot, U. Baltensperger, L. Poulain, A. Wiedensohler, J. Sciare, V. Gros, A. Borbon, A. Colomb, V. Michoud, J.-F. Doussin, H. A. C. Denier van der Gon, M. Haeffelin, J.-C. Dupont, G. Siour, H. Petetin, B. Bessagnet, S. N. Pandis, A. Hodzic, O. Sanchez, C. Honoré, and O. Perrussel
Atmos. Chem. Phys., 13, 5767–5790, https://doi.org/10.5194/acp-13-5767-2013, https://doi.org/10.5194/acp-13-5767-2013, 2013
K. W. Fomba, K. Müller, D. van Pinxteren, and H. Herrmann
Atmos. Chem. Phys., 13, 4801–4814, https://doi.org/10.5194/acp-13-4801-2013, https://doi.org/10.5194/acp-13-4801-2013, 2013
C. Mouchel-Vallon, P. Bräuer, M. Camredon, R. Valorso, S. Madronich, H. Herrmann, and B. Aumont
Atmos. Chem. Phys., 13, 1023–1037, https://doi.org/10.5194/acp-13-1023-2013, https://doi.org/10.5194/acp-13-1023-2013, 2013
M. Crippa, P. F. DeCarlo, J. G. Slowik, C. Mohr, M. F. Heringa, R. Chirico, L. Poulain, F. Freutel, J. Sciare, J. Cozic, C. F. Di Marco, M. Elsasser, J. B. Nicolas, N. Marchand, E. Abidi, A. Wiedensohler, F. Drewnick, J. Schneider, S. Borrmann, E. Nemitz, R. Zimmermann, J.-L. Jaffrezo, A. S. H. Prévôt, and U. Baltensperger
Atmos. Chem. Phys., 13, 961–981, https://doi.org/10.5194/acp-13-961-2013, https://doi.org/10.5194/acp-13-961-2013, 2013
F. Freutel, J. Schneider, F. Drewnick, S.-L. von der Weiden-Reinmüller, M. Crippa, A. S. H. Prévôt, U. Baltensperger, L. Poulain, A. Wiedensohler, J. Sciare, R. Sarda-Estève, J. F. Burkhart, S. Eckhardt, A. Stohl, V. Gros, A. Colomb, V. Michoud, J. F. Doussin, A. Borbon, M. Haeffelin, Y. Morille, M. Beekmann, and S. Borrmann
Atmos. Chem. Phys., 13, 933–959, https://doi.org/10.5194/acp-13-933-2013, https://doi.org/10.5194/acp-13-933-2013, 2013
Related subject area
Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Understanding the mechanism and importance of brown carbon bleaching across the visible spectrum in biomass burning plumes from the WE-CAN campaign
Influence of terrestrial and marine air mass on the constituents and intermixing of bioaerosols over a coastal atmosphere
A multi-site passive approach to studying the emissions and evolution of smoke from prescribed fires
The annual cycle and sources of relevant aerosol precursor vapors in the central Arctic during the MOSAiC expedition
Opinion: How will advances in aerosol science inform our understanding of the health impacts of outdoor particulate pollution?
Measurement report: Intra-annual variability of black carbon and brown carbon and their interrelation with meteorological conditions over Gangtok, Sikkim
Long-range transport of air pollutants increases the concentration of hazardous components of PM2.5 in northern South America
Dominant influence of biomass combustion and cross-border transport on nitrogen-containing organic compound levels in the southeastern Tibetan Plateau
Impacts of elevated anthropogenic emissions on physicochemical characteristics of black-carbon-containing particles over the Tibetan Plateau
Online characterization of primary and secondary emissions of particulate matter and acidic molecules from a modern fleet of city buses
Atmospheric evolution of environmentally persistent free radicals in the rural North China Plain: effects on water solubility and PM2.5 oxidative potential
Two distinct ship emission profiles for organic-sulfate source apportionment of PM in sulfur emission control areas
Automated compound speciation, cluster analysis, and quantification of organic vapors and aerosols using comprehensive two-dimensional gas chromatography and mass spectrometry
Measurement report: Occurrence of aminiums in PM2.5 during winter in China – aminium outbreak during polluted episodes and potential constraints
Bridging gas and aerosol properties between the northeastern US and Bermuda: analysis of eight transit flights
The behaviour of charged particles (ions) during new particle formation events in urban Leipzig, Germany
Exploring the sources of light-absorbing carbonaceous aerosols by integrating observational and modeling results: insights from Northeast China
Measurement report: Characteristics of airborne black-carbon-containing particles during the 2021 summer COVID-19 lockdown in a typical Yangtze River Delta city, China
Aerosol optical properties within the atmospheric boundary layer predicted from ground-based observations compared to Raman lidar retrievals during RITA-2021
Hygroscopic growth and activation changed submicron aerosol composition and properties in the North China Plain
Measurement report: Formation of tropospheric brown carbon in a lifting air mass
Vertical variability of aerosol properties and trace gases over a remote marine region: a case study over Bermuda
Differences in aerosol and cloud properties along the central California coast when winds change from northerly to southerly
International airport emissions and their impact on local air quality: chemical speciation of ambient aerosols at Madrid–Barajas Airport during the AVIATOR campaign
Significant role of biomass burning in heavy haze formation in a megacity: Molecular-level insights from intensive PM2.5 sampling on winter hazy days
The local ship speed reduction effect on black carbon emissions measured at a remote marine station
High-altitude aerosol chemical characterization and source identification: insights from the CALISHTO campaign
Measurement report: Impact of emission control measures on environmental persistent free radicals and reactive oxygen species – a short-term case study in Beijing
Characterizing water solubility of fresh and aged secondary organic aerosol in PM2.5 with the stable carbon isotope technique
Measurement report: Impact of cloud processes on secondary organic aerosols at a forested mountain site in southeastern China
Critical contribution of chemically diverse carbonyl molecules to the oxidative potential of atmospheric aerosols
Seasonal Investigation of Ultrafine Particle Composition in an Eastern Amazonian Rainforest
Measurement report: Vanadium-containing ship exhaust particles detected in and above the marine boundary layer in the remote atmosphere
Diverging trends in aerosol sulfate and nitrate measured in the remote North Atlantic in Barbados are attributed to clean air policies, African smoke, and anthropogenic emissions
Technical note: Quantified organic aerosol subsaturated hygroscopicity by a simple optical scatter monitor system through field measurements
Diverse sources and aging change the mixing state and ice nucleation properties of aerosol particles over the western Pacific and Southern Ocean
The water-insoluble organic carbon in PM2.5 of typical Chinese urban areas: light-absorbing properties, potential sources, radiative forcing effects, and a possible light-absorbing continuum
Measurement report: Size-resolved secondary organic aerosol formation modulated by aerosol water uptake in wintertime haze
In situ measurement of organic aerosol molecular markers in urban Hong Kong during a summer period: temporal variations and source apportionment
Technical note: Determining chemical composition of atmospheric single particles by a standard-free mass calibration algorithm
Different formation pathways of nitrogen-containing organic compounds in aerosols and fog water in northern China
Impact of weather patterns and meteorological factors on PM2.5 and O3 responses to the COVID-19 lockdown in China
Daytime and nighttime aerosol soluble iron formation in clean and slightly polluted moist air in a coastal city in eastern China
Non-negligible secondary contribution to brown carbon in autumn and winter: inspiration from particulate nitrated and oxygenated aromatic compounds in urban Beijing
Non-sea-salt aerosols that contain trace bromine and iodine are widespread in the remote troposphere
Simultaneous organic aerosol source apportionment at two Antarctic sites reveals large-scale and ecoregion-specific components
Measurement report: Optical characterization, seasonality, and sources of brown carbon in fine aerosols from Tianjin, North China: year-round observations
High-resolution analyses of concentrations and sizes of black carbon particles deposited on northwest Greenland over the past 350 years – Part 2: Seasonal and temporal trends in black carbon originated from fossil fuel combustion and biomass burning
Bayesian inference-based estimation of hourly primary and secondary organic carbon in suburban Hong Kong: multi-temporal-scale variations and evolution characteristics during PM2.5 episodes
Formation and chemical evolution of SOA in two different environments: A dual chamber study
Yingjie Shen, Rudra P. Pokhrel, Amy P. Sullivan, Ezra J. T. Levin, Lauren A. Garofalo, Delphine K. Farmer, Wade Permar, Lu Hu, Darin W. Toohey, Teresa Campos, Emily V. Fischer, and Shane M. Murphy
Atmos. Chem. Phys., 24, 12881–12901, https://doi.org/10.5194/acp-24-12881-2024, https://doi.org/10.5194/acp-24-12881-2024, 2024
Short summary
Short summary
The magnitude and evolution of brown carbon (BrC) absorption remain unclear, with uncertainty in climate models. Data from the WE-CAN airborne experiment show that model parameterizations overestimate the mass absorption cross section (MAC) of BrC. Observed decreases in BrC absorption with chemical markers are due to decreasing organic aerosol (OA) mass rather than a decreasing BrC MAC, which is currently implemented in models. Water-soluble BrC contributes 23 % of total absorption at 660 nm.
Qun He, Zhaowen Wang, Houfeng Liu, Pengju Xu, Rongbao Duan, Caihong Xu, Jianmin Chen, and Min Wei
Atmos. Chem. Phys., 24, 12775–12792, https://doi.org/10.5194/acp-24-12775-2024, https://doi.org/10.5194/acp-24-12775-2024, 2024
Short summary
Short summary
Coastal environments provide an ideal setting for investigating the intermixing of terrestrial and marine aerosols. Terrestrial air mass constituted a larger number of microbes from anthropogenic and soil emissions, whereas saprophytic and gut microbes were predominant in marine samples. Mixed air masses indicated a fusion of marine and terrestrial aerosols, characterized by alterations in the ratio of pathogenic and saprophytic microbes when compared to either terrestrial or marine samples.
Rime El Asmar, Zongrun Li, David J. Tanner, Yongtao Hu, Susan O'Neill, L. Gregory Huey, M. Talat Odman, and Rodney J. Weber
Atmos. Chem. Phys., 24, 12749–12773, https://doi.org/10.5194/acp-24-12749-2024, https://doi.org/10.5194/acp-24-12749-2024, 2024
Short summary
Short summary
Prescribed burning is an important method for managing ecosystems and preventing wildfires. However, smoke from prescribed fires can have a significant impact on air quality. Here, using a network of fixed sites and sampling throughout an extended prescribed burning period in 2 different years, we characterize emissions and evolutions of up to 8 h of PM2.5 mass, black carbon (BC), and brown carbon (BrC) in smoke from burning of forested lands in the southeastern USA.
Matthew Boyer, Diego Aliaga, Lauriane L. J. Quéléver, Silvia Bucci, Hélène Angot, Lubna Dada, Benjamin Heutte, Lisa Beck, Marina Duetsch, Andreas Stohl, Ivo Beck, Tiia Laurila, Nina Sarnela, Roseline C. Thakur, Branka Miljevic, Markku Kulmala, Tuukka Petäjä, Mikko Sipilä, Julia Schmale, and Tuija Jokinen
Atmos. Chem. Phys., 24, 12595–12621, https://doi.org/10.5194/acp-24-12595-2024, https://doi.org/10.5194/acp-24-12595-2024, 2024
Short summary
Short summary
We analyze the seasonal cycle and sources of gases that are relevant for the formation of aerosol particles in the central Arctic. Since theses gases can form new particles, they can influence Arctic climate. We show that the sources of these gases are associated with changes in the Arctic environment during the year, especially with respect to sea ice. Therefore, the concentration of these gases will likely change in the future as the Arctic continues to warm.
Imad El Haddad, Danielle Vienneau, Kaspar R. Daellenbach, Robin Modini, Jay G. Slowik, Abhishek Upadhyay, Petros N. Vasilakos, David Bell, Kees de Hoogh, and Andre S. H. Prevot
Atmos. Chem. Phys., 24, 11981–12011, https://doi.org/10.5194/acp-24-11981-2024, https://doi.org/10.5194/acp-24-11981-2024, 2024
Short summary
Short summary
This opinion paper explores how advances in aerosol science inform our understanding of the health impacts of outdoor particulate pollution. We advocate for a shift in the way we target PM pollution, focusing on the most harmful anthropogenic emissions. We highlight key observations, modelling developments, and emission measurements needed to achieve this shift.
Pramod Kumar, Khushboo Sharma, Ankita Malu, Rajeev Rajak, Aparna Gupta, Bidyutjyoti Baruah, Shailesh Yadav, Thupstan Angchuk, Jayant Sharma, Rakesh Kumar Ranjan, Anil Kumar Misra, and Nishchal Wanjari
Atmos. Chem. Phys., 24, 11585–11601, https://doi.org/10.5194/acp-24-11585-2024, https://doi.org/10.5194/acp-24-11585-2024, 2024
Short summary
Short summary
This work monitors and assesses air pollution, especially black and brown carbon, its controlling factor, and its effect on the environment of Sikkim Himalayan region. The huge urban sprawl in recent decades has led to regional human-induced air pollution in the region. Black carbon was highest in April 2021 and March 2022, exceeding the WHO limit. The monsoon season causes huge rainfall over the region, which reduces the pollutants by scavenging (rainout and washout).
Maria P. Velásquez-García, K. Santiago Hernández, James A. Vergara-Correa, Richard J. Pope, Miriam Gómez-Marín, and Angela M. Rendón
Atmos. Chem. Phys., 24, 11497–11520, https://doi.org/10.5194/acp-24-11497-2024, https://doi.org/10.5194/acp-24-11497-2024, 2024
Short summary
Short summary
In the Aburrá Valley, northern South America, local emissions determine air quality conditions. However, we found that external sources, such as regional fires, Saharan dust, and volcanic emissions, increase particulate concentrations and worsen chemical composition by introducing elements like heavy metals. Dry winds and source variability contribute to seasonal influences on these events. This study assesses the air quality risks posed by such events, which can affect broad regions worldwide.
Meng Wang, Qiyuan Wang, Steven Sai Hang Ho, Jie Tian, Yong Zhang, Shun-cheng Lee, and Junji Cao
Atmos. Chem. Phys., 24, 11175–11189, https://doi.org/10.5194/acp-24-11175-2024, https://doi.org/10.5194/acp-24-11175-2024, 2024
Short summary
Short summary
We studied nitrogen-containing organic compounds (NOCs) in particulate matter <2.5 µm particles on the southeastern Tibetan Plateau. We found that biomass burning and transboundary transport are the main sources of NOCs in the high-altitude area. Understanding these aerosol sources informs how they add to regional and potentially global climate changes. Our findings could help shape effective environmental policies to enhance air quality and address climate impacts in this sensitive region.
Jinbo Wang, Jiaping Wang, Yuxuan Zhang, Tengyu Liu, Xuguang Chi, Xin Huang, Dafeng Ge, Shiyi Lai, Caijun Zhu, Lei Wang, Qiaozhi Zha, Ximeng Qi, Wei Nie, Congbin Fu, and Aijun Ding
Atmos. Chem. Phys., 24, 11063–11080, https://doi.org/10.5194/acp-24-11063-2024, https://doi.org/10.5194/acp-24-11063-2024, 2024
Short summary
Short summary
In this study, we found large spatial discrepancies in the physical and chemical properties of black carbon over the Tibetan Plateau (TP). Elevated anthropogenic emissions from low-altitude regions can significantly change the mass concentration, mixing state and chemical composition of black-carbon-containing aerosol in the TP region, further altering its light absorption ability. Our study emphasizes the vulnerability of remote plateau regions to intense anthropogenic influences.
Liyuan Zhou, Qianyun Liu, Christian M. Salvador, Michael Le Breton, Mattias Hallquist, Jian Zhen Yu, Chak K. Chan, and Åsa M. Hallquist
Atmos. Chem. Phys., 24, 11045–11061, https://doi.org/10.5194/acp-24-11045-2024, https://doi.org/10.5194/acp-24-11045-2024, 2024
Short summary
Short summary
Our research on city bus emissions reveals that alternative fuels (compressed natural gas and biofuels) reduce fresh particle emissions compared to diesel. However, all fuels lead to secondary air pollution. Aiming at guiding better environmental policies, we studied 76 buses using advanced emission measurement techniques. This work sheds light on the complex effects of bus fuels on urban air quality, emphasizing the need for comprehensive evaluations of future transportation technologies.
Xu Yang, Fobang Liu, Shuqi Yang, Yuling Yang, Yanan Wang, Jingjing Li, Mingyu Zhao, Zhao Wang, Kai Wang, Chi He, and Haijie Tong
Atmos. Chem. Phys., 24, 11029–11043, https://doi.org/10.5194/acp-24-11029-2024, https://doi.org/10.5194/acp-24-11029-2024, 2024
Short summary
Short summary
A study in the rural North China Plain showed environmentally persistent free radicals (EPFRs) in atmospheric particulate matter (PM), with a notable water-soluble fraction likely from atmospheric oxidation during transport. Significant positive correlations between EPFRs and the water-soluble oxidative potential of PM2.5 were found, primarily attributable to the water-soluble fractions of EPFRs. These findings emphasize understanding EPFRs' atmospheric evolution for climate and health impacts.
Kirsten N. Fossum, Chunshui Lin, Niall O'Sullivan, Lu Lei, Stig Hellebust, Darius Ceburnis, Aqeel Afzal, Anja Tremper, David Green, Srishti Jain, Steigvilė Byčenkienė, Colin O'Dowd, John Wenger, and Jurgita Ovadnevaite
Atmos. Chem. Phys., 24, 10815–10831, https://doi.org/10.5194/acp-24-10815-2024, https://doi.org/10.5194/acp-24-10815-2024, 2024
Short summary
Short summary
The chemical composition and sources of submicron aerosol in the Dublin Port area were investigated over a month-long campaign. Two distinct types of ship emissions were identified and characterised: sulfate-rich plumes from the use of heavy fuel oil with scrubbers and organic-rich plumes from the use of low-sulfur fuels. The latter were more frequent, emitting double the particle number and having a typical V / Ni ratio for ship emission.
Xiao He, Xuan Zheng, Shuwen Guo, Lewei Zeng, Ting Chen, Bohan Yang, Shupei Xiao, Qiongqiong Wang, Zhiyuan Li, Yan You, Shaojun Zhang, and Ye Wu
Atmos. Chem. Phys., 24, 10655–10666, https://doi.org/10.5194/acp-24-10655-2024, https://doi.org/10.5194/acp-24-10655-2024, 2024
Short summary
Short summary
This study introduces an innovative method for identifying and quantifying complex organic vapors and aerosols. By combining advanced analytical techniques and new algorithms, we categorized thousands of compounds from heavy-duty diesel vehicles and ambient air and highlighted specific tracers for emission sources. The innovative approach enhances peak identification, reduces quantification uncertainties, and offers new insights for air quality management and atmospheric chemistry.
Yu Xu, Tang Liu, Yi-Jia Ma, Qi-Bin Sun, Hong-Wei Xiao, Hao Xiao, Hua-Yun Xiao, and Cong-Qiang Liu
Atmos. Chem. Phys., 24, 10531–10542, https://doi.org/10.5194/acp-24-10531-2024, https://doi.org/10.5194/acp-24-10531-2024, 2024
Short summary
Short summary
This study investigates the characteristics of aminiums and ammonium in PM2.5 on clean and polluted winter days in 11 Chinese cities, highlighting the possibility of the competitive uptake of ammonia versus amines on acidic aerosols or the displacement of aminiums by ammonia under high-ammonia conditions. The overall results deepen the understanding of the spatiotemporal differences in aminium characteristics and formation in China.
Cassidy Soloff, Taiwo Ajayi, Yonghoon Choi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Marta A. Fenn, Richard A. Ferrare, Francesca Gallo, Johnathan W. Hair, Miguel Ricardo A. Hilario, Simon Kirschler, Richard H. Moore, Taylor J. Shingler, Michael A. Shook, Kenneth L. Thornhill, Christiane Voigt, Edward L. Winstead, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 24, 10385–10408, https://doi.org/10.5194/acp-24-10385-2024, https://doi.org/10.5194/acp-24-10385-2024, 2024
Short summary
Short summary
Using aircraft measurements over the northwestern Atlantic between the US East Coast and Bermuda and trajectory modeling of continental outflow, we identify trace gas and particle properties that exhibit gradients with offshore distance and quantify these changes with high-resolution measurements of concentrations and particle chemistry, size, and scattering properties. This work furthers our understanding of the complex interactions between continental and marine environments.
Alex Rowell, James Brean, David C. S. Beddows, Zongbo Shi, Avinash Kumar, Matti Rissanen, Miikka Dal Maso, Peter Mettke, Kay Weinhold, Maik Merkel, and Roy M. Harrison
Atmos. Chem. Phys., 24, 10349–10361, https://doi.org/10.5194/acp-24-10349-2024, https://doi.org/10.5194/acp-24-10349-2024, 2024
Short summary
Short summary
Ions enhance the formation and growth rates of new particles, affecting the Earth's radiation budget. Despite these effects, there is little published data exploring the sources of ions in the urban environment and their role in new particle formation (NPF). Here we show that natural ion sources dominate in urban environments, while traffic is a secondary source. Ions contribute up to 12.7 % of the formation rate of particles, indicating that they are important for forming urban PM.
Yuan Cheng, Xu-bing Cao, Sheng-qiang Zhu, Zhi-qing Zhang, Jiu-meng Liu, Hong-liang Zhang, Qiang Zhang, and Ke-bin He
Atmos. Chem. Phys., 24, 9869–9883, https://doi.org/10.5194/acp-24-9869-2024, https://doi.org/10.5194/acp-24-9869-2024, 2024
Short summary
Short summary
The agreement between observational and modeling results is essential for the development of efficient air pollution control strategies. Here we constrained the modeling results of carbonaceous aerosols by field observation in Northeast China, a historically overlooked but recently targeted region of national clean-air actions. Our study suggested that the simulation of agricultural fire emissions and secondary organic aerosols remains challenging.
Yuan Dai, Junfeng Wang, Houjun Wang, Shijie Cui, Yunjiang Zhang, Haiwei Li, Yun Wu, Ming Wang, Eleonora Aruffo, and Xinlei Ge
Atmos. Chem. Phys., 24, 9733–9748, https://doi.org/10.5194/acp-24-9733-2024, https://doi.org/10.5194/acp-24-9733-2024, 2024
Short summary
Short summary
Short-term strict emission control can improve air quality, but its effectiveness needs assessment. During the 2021 summer COVID-19 lockdown in Yangzhou, we found that PM2.5 levels did not decrease despite reduced primary emissions. Aged black-carbon particles increased substantially due to higher O3 levels and transported pollutants. High humidity and low wind also played key roles. The results highlight the importance of a regionally balanced control strategy for future air quality management.
Xinya Liu, Diego Alves Gouveia, Bas Henzing, Arnoud Apituley, Arjan Hensen, Danielle van Dinther, Rujin Huang, and Ulrike Dusek
Atmos. Chem. Phys., 24, 9597–9614, https://doi.org/10.5194/acp-24-9597-2024, https://doi.org/10.5194/acp-24-9597-2024, 2024
Short summary
Short summary
The vertical distribution of aerosol optical properties is important for their effect on climate. This is usually measured by lidar, which has limitations, most notably the assumption of a lidar ratio. Our study shows that routine surface-level aerosol measurements are able to predict this lidar ratio reasonably well within the lower layers of the atmosphere and thus provide a relatively simple and cost-effective method to improve lidar measurements.
Weiqi Xu, Ye Kuang, Wanyun Xu, Zhiqiang Zhang, Biao Luo, Xiaoyi Zhang, Jiangchuang Tao, Hongqin Qiao, Li Liu, and Yele Sun
Atmos. Chem. Phys., 24, 9387–9399, https://doi.org/10.5194/acp-24-9387-2024, https://doi.org/10.5194/acp-24-9387-2024, 2024
Short summary
Short summary
We deployed an advanced aerosol–fog sampling system at a rural site in the North China Plain to investigate impacts of aerosol hygroscopic growth and activation on the physicochemical properties of submicron aerosols. Observed results highlighted remarkably different aqueous processing of primary and secondary submicron aerosol components under distinct ambient relative humidity (RH) conditions and that RH levels significantly impact aerosol sampling through the aerosol swelling effect.
Can Wu, Xiaodi Liu, Ke Zhang, Si Zhang, Cong Cao, Jianjun Li, Rui Li, Fan Zhang, and Gehui Wang
Atmos. Chem. Phys., 24, 9263–9275, https://doi.org/10.5194/acp-24-9263-2024, https://doi.org/10.5194/acp-24-9263-2024, 2024
Short summary
Short summary
Brown carbon (BrC) is prevalent in the troposphere and can efficiently absorb solar and terrestrial radiation. Our observations show that the enhanced light absorption of BrC relative to black carbon at the tropopause can be attributed to the formation of nitrogen-containing organic compounds through the aqueous-phase reactions of carbonyls with ammonium.
Taiwo Ajayi, Yonghoon Choi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Marta A. Fenn, Richard A. Ferrare, Johnathan W. Hair, Miguel Ricardo A. Hilario, Chris A. Hostetler, Simon Kirschler, Richard H. Moore, Taylor J. Shingler, Michael A. Shook, Cassidy Soloff, Kenneth L. Thornhill, Christiane Voigt, Edward L. Winstead, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 24, 9197–9218, https://doi.org/10.5194/acp-24-9197-2024, https://doi.org/10.5194/acp-24-9197-2024, 2024
Short summary
Short summary
This study uses airborne data to examine vertical profiles of trace gases, aerosol particles, and meteorological variables over a remote marine area (Bermuda). Results show distinct differences based on both air mass source region (North America, Ocean, Caribbean/North Africa) and altitude for a given air mass type. This work highlights the sensitivity of remote marine areas to long-range transport and the importance of considering the vertical dependence of trace gas and aerosol properties.
Kira Zeider, Grace Betito, Anthony Bucholtz, Peng Xian, Annette Walker, and Armin Sorooshian
Atmos. Chem. Phys., 24, 9059–9083, https://doi.org/10.5194/acp-24-9059-2024, https://doi.org/10.5194/acp-24-9059-2024, 2024
Short summary
Short summary
The predominant wind direction along the California coast (northerly) reverses several times during the summer (to southerly). The effects of these wind reversals on aerosol and cloud characteristics are not well understood. Using data from multiple datasets we found that southerly flow periods had enhanced signatures of anthropogenic emissions due to shipping and continental sources, and clouds had more but smaller droplets.
Saleh Alzahrani, Doğuşhan Kılıç, Michael Flynn, Paul I. Williams, and James Allan
Atmos. Chem. Phys., 24, 9045–9058, https://doi.org/10.5194/acp-24-9045-2024, https://doi.org/10.5194/acp-24-9045-2024, 2024
Short summary
Short summary
This paper investigates emissions from aviation activities at an international airport to evaluate their impact on local air quality. The study provides detailed insights into the chemical composition of aerosols and key pollutants in the airport environment. Source apportionment analysis using positive matrix factorisation (PMF) identified three significant sources: less oxidised oxygenated organic aerosol, alkane organic aerosol, and more oxidised oxygenated organic aerosol.
Mingjie Kang, Mengying Bao, Wenhuai Song, Aduburexiati Abulimiti, Fang Cao, Sönke Szidat, and Yanlin Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2098, https://doi.org/10.5194/egusphere-2024-2098, 2024
Short summary
Short summary
Reports on the molecular level knowledge of high temporal resolution PM2.5 components on hazy days are still limited. This study investigated many individual PM2.5 species and sources. The results show biomass burning (BB) was the main source of organic carbon. Moreover, BB enhanced fungal spore emissions and secondary aerosol formation. The contribution of non-fossils increased with increasing haze pollution. These findings suggest BB may be an important driver of haze events in winter.
Mikko Heikkilä, Krista Luoma, Timo Mäkelä, and Tiia Grönholm
Atmos. Chem. Phys., 24, 8927–8941, https://doi.org/10.5194/acp-24-8927-2024, https://doi.org/10.5194/acp-24-8927-2024, 2024
Short summary
Short summary
Black carbon (BC) concentration was measured from 211 ship exhaust gas plumes at a remote marine station. Emission factors of BC were calculated in grams per kilogram of fuel. Ships with an exhaust gas cleaning system (EGCS) were found to have median BC emissions per fuel consumed 5 times lower than ships without an EGCS. However, this might be because of non-EGCS ships running at low engine loads rather than the EGCS itself. A local speed restriction would increase BC emissions of ships.
Olga Zografou, Maria Gini, Prodromos Fetfatzis, Konstantinos Granakis, Romanos Foskinis, Manousos Ioannis Manousakas, Fotios Tsopelas, Evangelia Diapouli, Eleni Dovrou, Christina N. Vasilakopoulou, Alexandros Papayannis, Spyros N. Pandis, Athanasios Nenes, and Konstantinos Eleftheriadis
Atmos. Chem. Phys., 24, 8911–8926, https://doi.org/10.5194/acp-24-8911-2024, https://doi.org/10.5194/acp-24-8911-2024, 2024
Short summary
Short summary
Characterization of PM1 and positive matrix factorization (PMF) source apportionment of organic and inorganic fractions were conducted at the high-altitude station (HAC)2. Cloud presence reduced PM1, affecting sulfate more than organics. Free-troposphere (FT) conditions showed more black carbon (eBC) than planetary boundary layer (PBL) conditions.
Yuanyuan Qin, Xinghua Zhang, Wei Huang, Juanjuan Qin, Xiaoyu Hu, Yuxuan Cao, Tianyi Zhao, Yang Zhang, Jihua Tan, Ziyin Zhang, Xinming Wang, and Zhenzhen Wang
Atmos. Chem. Phys., 24, 8737–8750, https://doi.org/10.5194/acp-24-8737-2024, https://doi.org/10.5194/acp-24-8737-2024, 2024
Short summary
Short summary
Environmental persistent free radicals (EPFRs) and reactive oxygen species (ROSs) play an active role in the atmosphere. Despite control measures having effectively reduced their emissions, reductions were less than in PM2.5. Emission control measures performed well in achieving Parade Blue, but reducing the impact of the atmosphere on human health remains challenging. Thus, there is a need to reassess emission control measures to better address the challenges posed by EPFRs and ROSs.
Fenghua Wei, Xing Peng, Liming Cao, Mengxue Tang, Ning Feng, Xiaofeng Huang, and Lingyan He
Atmos. Chem. Phys., 24, 8507–8518, https://doi.org/10.5194/acp-24-8507-2024, https://doi.org/10.5194/acp-24-8507-2024, 2024
Short summary
Short summary
The water solubility of secondary organic aerosols (SOAs) is a crucial factor in determining their hygroscopicity and climatic impact. Stable carbon isotope and mass spectrometry techniques were combined to assess the water solubility of SOAs with different aging degrees in a coastal megacity in China. This work revealed a much higher water-soluble fraction of aged SOA compared to fresh SOA, indicating that the aging degree of SOA has considerable impacts on its water solubility.
Zijun Zhang, Weiqi Xu, Yi Zhang, Wei Zhou, Xiangyu Xu, Aodong Du, Yinzhou Zhang, Hongqin Qiao, Ye Kuang, Xiaole Pan, Zifa Wang, Xueling Cheng, Lanzhong Liu, Qingyan Fu, Douglas R. Worsnop, Jie Li, and Yele Sun
Atmos. Chem. Phys., 24, 8473–8488, https://doi.org/10.5194/acp-24-8473-2024, https://doi.org/10.5194/acp-24-8473-2024, 2024
Short summary
Short summary
We investigated aerosol composition and sources and the interaction between secondary organic aerosol (SOA) and clouds at a regional mountain site in southeastern China. Clouds efficiently scavenge more oxidized SOA; however, cloud evaporation leads to the production of less oxidized SOA. The unexpectedly high presence of nitrate in aerosol particles indicates that nitrate formed in polluted areas has undergone interactions with clouds, significantly influencing the regional background site.
Feifei Li, Shanshan Tang, Jitao Lv, Shiyang Yu, Xu Sun, Dong Cao, Yawei Wang, and Guibin Jiang
Atmos. Chem. Phys., 24, 8397–8411, https://doi.org/10.5194/acp-24-8397-2024, https://doi.org/10.5194/acp-24-8397-2024, 2024
Short summary
Short summary
Targeted derivatization and non-targeted analysis with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) were used to reveal the molecular composition of carbonyl molecules in PM2.5, and the important role of carbonyls in increasing the oxidative potential of organic aerosol was found in real samples.
Adam E. Thomas, Hayley S. Glicker, Alex B. Guenther, Roger Seco, Oscar Vega Bustillos, Julio Tota, Rodrigo A. F. Souza, and James N. Smith
EGUsphere, https://doi.org/10.5194/egusphere-2024-2230, https://doi.org/10.5194/egusphere-2024-2230, 2024
Short summary
Short summary
We present measurements of the composition of ultrafine particles collected from the eastern Amazon, a relatively understudied region that is subjected to increasing human influence. We find that while isoprene chemistry is likely significant to ultrafine particle growth throughout the year, compounds related to other sources such as biological spore emissions and biomass burning exhibit striking seasonal differences, implying an extensive variation in regional ultrafine particle sources.
Maya Abou-Ghanem, Daniel M. Murphy, Gregory P. Schill, Michael J. Lawler, and Karl D. Froyd
Atmos. Chem. Phys., 24, 8263–8275, https://doi.org/10.5194/acp-24-8263-2024, https://doi.org/10.5194/acp-24-8263-2024, 2024
Short summary
Short summary
Using particle analysis by laser mass spectrometry, we examine vanadium-containing ship exhaust particles measured on NASA's DC-8 during the Atmospheric Tomography Mission (ATom). Our results reveal ship exhaust particles are sufficiently widespread in the marine atmosphere and experience atmospheric aging. Finally, we use laboratory calibrations to determine the vanadium, sulfate, and organic single-particle mass fractions of vanadium-containing ship exhaust particles.
Cassandra J. Gaston, Joseph M. Prospero, Kristen Foley, Havala O. T. Pye, Lillian Custals, Edmund Blades, Peter Sealy, and James A. Christie
Atmos. Chem. Phys., 24, 8049–8066, https://doi.org/10.5194/acp-24-8049-2024, https://doi.org/10.5194/acp-24-8049-2024, 2024
Short summary
Short summary
To understand how changing emissions have impacted aerosols in remote regions, we measured nitrate and sulfate in Barbados and compared them to model predictions from EPA’s Air QUAlity TimE Series (EQUATES). Nitrate was stable, except for spikes in 2008 and 2010 due to transported smoke. Sulfate decreased in the 1990s due to reductions in sulfur dioxide (SO2) in the US and Europe; then it increased in the 2000s, likely due to anthropogenic emissions from Africa.
Jie Zhang, Tianyu Zhu, Alexandra Catena, Yaowei Li, Margaret Schwab, Pengfei Liu, Akua Asa-Awuku, and James Schwab
EGUsphere, https://doi.org/10.5194/egusphere-2024-1390, https://doi.org/10.5194/egusphere-2024-1390, 2024
Short summary
Short summary
This study shows the derived organic aerosol hygroscopicity under high humidity conditions based on a simple optical scatter monitor system, including two nephelometric monitors (pDR-1500), after knowing the aerosol chemical composition.
Jiao Xue, Tian Zhang, Keyhong Park, Jinpei Yan, Young Jun Yoon, Jiyeon Park, and Bingbing Wang
Atmos. Chem. Phys., 24, 7731–7754, https://doi.org/10.5194/acp-24-7731-2024, https://doi.org/10.5194/acp-24-7731-2024, 2024
Short summary
Short summary
Ice formation by particles is an important way of making mixed-phase and ice clouds. We found that particles collected in the marine atmosphere exhibit diverse ice nucleation abilities and mixing states. Sea salt mixed-sulfate particles were enriched in ice-nucleating particles. Selective aging on sea salt particles made particle populations more externally mixed. Characterizations of particles and their mixing state are needed for a better understanding of aerosol–cloud interactions.
Yangzhi Mo, Jun Li, Guangcai Zhong, Sanyuan Zhu, Shizhen Zhao, Jiao Tang, Hongxing Jiang, Zhineng Cheng, Chongguo Tian, Yingjun Chen, and Gan Zhang
Atmos. Chem. Phys., 24, 7755–7772, https://doi.org/10.5194/acp-24-7755-2024, https://doi.org/10.5194/acp-24-7755-2024, 2024
Short summary
Short summary
In this study, we found that biomass burning (31.0 %) and coal combustion (31.1 %) were the dominant sources of water-insoluble organic carbon in China, with coal combustion sources exhibiting the strongest light-absorbing capacity. Additionally, we propose a light-absorbing carbonaceous continuum, revealing that components enriched with fossil sources tend to have stronger light-absorbing capacity, higher aromaticity, higher molecular weights, and greater recalcitrance in the atmosphere.
Jing Duan, Ru-Jin Huang, Ying Wang, Wei Xu, Haobin Zhong, Chunshui Lin, Wei Huang, Yifang Gu, Jurgita Ovadnevaite, Darius Ceburnis, and Colin O'Dowd
Atmos. Chem. Phys., 24, 7687–7698, https://doi.org/10.5194/acp-24-7687-2024, https://doi.org/10.5194/acp-24-7687-2024, 2024
Short summary
Short summary
The chemical composition of atmospheric particles has shown significant changes in recent years. We investigated the potential effects of changes in inorganics on aerosol water uptake and, thus, secondary organic aerosol formation in wintertime haze based on the size-resolved measurements of non-refractory fine particulate matter (NR-PM2.5) in Xi’an, northwestern China. We highlight the key role of aerosol water as a medium to link inorganics and organics in their multiphase processes.
Hongyong Li, Xiaopu Lyu, Likun Xue, Yunxi Huo, Dawen Yao, Haoxian Lu, and Hai Guo
Atmos. Chem. Phys., 24, 7085–7100, https://doi.org/10.5194/acp-24-7085-2024, https://doi.org/10.5194/acp-24-7085-2024, 2024
Short summary
Short summary
Organic aerosol is ubiquitous in the atmosphere and largely explains the gap between current levels of fine particulate matter in many cities and the World Health Organization guideline values. This study highlights the dominant contributions of cooking emissions to organic aerosol when marine air prevailed in Hong Kong, which were occasionally overwhelmed by aromatics-derived secondary organic aerosol in continental ouflows.
Shao Shi, Jinghao Zhai, Xin Yang, Yechun Ruan, Yuanlong Huang, Xujian Chen, Antai Zhang, Jianhuai Ye, Guomao Zheng, Baohua Cai, Yaling Zeng, Yixiang Wang, Chunbo Xing, Yujie Zhang, Tzung-May Fu, Lei Zhu, Huizhong Shen, and Chen Wang
Atmos. Chem. Phys., 24, 7001–7012, https://doi.org/10.5194/acp-24-7001-2024, https://doi.org/10.5194/acp-24-7001-2024, 2024
Short summary
Short summary
The determination of ions in the mass spectra of individual particles remains uncertain. We have developed a standard-free mass calibration algorithm applicable to more than 98 % of ambient particles. With our algorithm, ions with ~ 0.05 Th mass difference could be determined. Therefore, many more atmospheric species could be determined and involved in the source apportionment of aerosols, the study of chemical reaction mechanisms, and the analysis of single-particle mixing states.
Wei Sun, Xiaodong Hu, Yuzhen Fu, Guohua Zhang, Yujiao Zhu, Xinfeng Wang, Caiqing Yan, Likun Xue, He Meng, Bin Jiang, Yuhong Liao, Xinming Wang, Ping'an Peng, and Xinhui Bi
Atmos. Chem. Phys., 24, 6987–6999, https://doi.org/10.5194/acp-24-6987-2024, https://doi.org/10.5194/acp-24-6987-2024, 2024
Short summary
Short summary
The formation pathways of nitrogen-containing compounds (NOCs) in the atmosphere remain unclear. We investigated the composition of aerosols and fog water by state-of-the-art mass spectrometry and compared the formation pathways of NOCs. We found that NOCs in aerosols were mainly formed through nitration reaction, while ammonia addition played a more important role in fog water. The results deepen our understanding of the processes of organic particulate pollution.
Fuzhen Shen, Michaela I. Hegglin, and Yue Yuan
Atmos. Chem. Phys., 24, 6539–6553, https://doi.org/10.5194/acp-24-6539-2024, https://doi.org/10.5194/acp-24-6539-2024, 2024
Short summary
Short summary
We attempt to use a novel structural self-organising map and machine learning models to identify a weather system and quantify the importance of each meteorological factor in driving the unexpected PM2.5 and O3 changes under the specific weather system during the COVID-19 lockdown in China. The result highlights that temperature under the double-centre high-pressure system plays the most crucial role in abnormal events.
Wenshuai Li, Yuxuan Qi, Yingchen Liu, Guanru Wu, Yanjing Zhang, Jinhui Shi, Wenjun Qu, Lifang Sheng, Wencai Wang, Daizhou Zhang, and Yang Zhou
Atmos. Chem. Phys., 24, 6495–6508, https://doi.org/10.5194/acp-24-6495-2024, https://doi.org/10.5194/acp-24-6495-2024, 2024
Short summary
Short summary
Aerosol particles from mainland can transport to oceans and deposit, providing soluble Fe and affecting phytoplankton growth. Thus, we studied the dissolution process of aerosol Fe and found that photochemistry played a key role in promoting Fe dissolution in clean conditions. RH-dependent reactions were more influential in slightly polluted conditions. These results highlight the distinct roles of two weather-related parameters (radiation and RH) in influencing geochemical cycles related to Fe.
Yanqin Ren, Zhenhai Wu, Yuanyuan Ji, Fang Bi, Junling Li, Haijie Zhang, Hao Zhang, Hong Li, and Gehui Wang
Atmos. Chem. Phys., 24, 6525–6538, https://doi.org/10.5194/acp-24-6525-2024, https://doi.org/10.5194/acp-24-6525-2024, 2024
Short summary
Short summary
Nitrated aromatic compounds (NACs) and oxygenated derivatives of polycyclic aromatic hydrocarbons (OPAHs) in PM2.5 were examined from an urban area in Beijing during the autumn and winter. The OPAH and NAC concentrations were much higher during heating than before heating. They majorly originated from the combustion of biomass and automobile emissions, and the secondary generation was the major contributor throughout the whole sampling period.
Gregory P. Schill, Karl D. Froyd, Daniel M. Murphy, Christina J. Williamson, Charles Brock, Tomás Sherwen, Mat J. Evans, Eric A. Ray, Eric C. Apel, Rebecca S. Hornbrook, Alan J. Hills, Jeff Peischl, Tomas B. Ryerson, Chelsea R. Thompson, Ilann Bourgeois, Donald R. Blake, Joshua P. DiGangi, and Glenn S. Diskin
EGUsphere, https://doi.org/10.5194/egusphere-2024-1399, https://doi.org/10.5194/egusphere-2024-1399, 2024
Short summary
Short summary
Using single-particle mass spectrometry, we show that trace concentrations of bromine and iodine are ubiquitous in remote tropospheric aerosol, and suggest that aerosols are an important part of the global reactive iodine budget. Comparisons to a global climate model with detailed iodine chemistry are favorable in the background atmosphere; however, the model cannot replicate our measurements near the ocean surface, in biomass burning plumes, and in the stratosphere.
Marco Paglione, David C. S. Beddows, Anna Jones, Thomas Lachlan-Cope, Matteo Rinaldi, Stefano Decesari, Francesco Manarini, Mara Russo, Karam Mansour, Roy M. Harrison, Andrea Mazzanti, Emilio Tagliavini, and Manuel Dall'Osto
Atmos. Chem. Phys., 24, 6305–6322, https://doi.org/10.5194/acp-24-6305-2024, https://doi.org/10.5194/acp-24-6305-2024, 2024
Short summary
Short summary
Applying factor analysis techniques to H-NMR spectra, we present the organic aerosol (OA) source apportionment of PM1 samples collected in parallel at two Antarctic stations, namely Signy and Halley, allowing investigation of aerosol–climate interactions in an unperturbed atmosphere. Our results show remarkable differences between pelagic (open-ocean) and sympagic (sea-ice-influenced) air masses and indicate that various sources and processes are controlling Antarctic aerosols.
Zhichao Dong, Chandra Mouli Pavuluri, Peisen Li, Zhanjie Xu, Junjun Deng, Xueyan Zhao, Xiaomai Zhao, Pingqing Fu, and Cong-Qiang Liu
Atmos. Chem. Phys., 24, 5887–5905, https://doi.org/10.5194/acp-24-5887-2024, https://doi.org/10.5194/acp-24-5887-2024, 2024
Short summary
Short summary
Comprehensive study of optical properties of brown carbon (BrC) in fine aerosols from Tianjin, China, implied that biological emissions are major sources of BrC in summer, whereas fossil fuel combustion and biomass burning emissions are in cold periods. The direct radiation absorption caused by BrC in short wavelengths contributed about 40 % to that caused by BrC in 300–700 nm. Water-insoluble but methanol-soluble BrC contains more protein-like chromophores (PLOM) than that of water-soluble BrC.
Kumiko Goto-Azuma, Yoshimi Ogawa-Tsukagawa, Kaori Fukuda, Koji Fujita, Motohiro Hirabayashi, Remi Dallmayr, Jun Ogata, Nobuhiro Moteki, Tatsuhiro Mori, Sho Ohata, Yutaka Kondo, Makoto Koike, Sumito Matoba, and Teruo Aoki
EGUsphere, https://doi.org/10.5194/egusphere-2024-1498, https://doi.org/10.5194/egusphere-2024-1498, 2024
Short summary
Short summary
Monthly records spanning 350 years from a Greenland ice core reveal trends in black carbon (BC) concentrations and sizes. BC concentrations have risen since the late 19th century due to the inflow of anthropogenic BC, with these particles being larger than those from biomass burning (BB). High BB BC concentration peaks in summer originating from BB could reduce albedo. However, BB BC showed no upward trend until the early 2000s. Our findings are crucial for validating aerosol and climate models.
Shan Wang, Kezheng Liao, Zijing Zhang, Yuk Ying Cheng, Qiongqiong Wang, Hanzhe Chen, and Jian Zhen Yu
Atmos. Chem. Phys., 24, 5803–5821, https://doi.org/10.5194/acp-24-5803-2024, https://doi.org/10.5194/acp-24-5803-2024, 2024
Short summary
Short summary
In this work, hourly primary and secondary organic carbon were estimated by a novel Bayesian inference approach in suburban Hong Kong. Their multi-temporal-scale variations and evolution characteristics during PM2.5 episodes were examined. The methodology could serve as a guide for other locations with similar monitoring capabilities. The observation-based results are helpful for understanding the evolving nature of secondary organic aerosols and refining the accuracy of model simulations.
Andreas Aktypis, Dontavious Sippial, Christina Vasilakopoulou, Angeliki Matrali, Christos Kaltsonoudis, Andrea Simonati, Marco Paglione, Matteo Rinaldi, Stefano Decesari, and Spyros Pandis
EGUsphere, https://doi.org/10.5194/egusphere-2024-1317, https://doi.org/10.5194/egusphere-2024-1317, 2024
Short summary
Short summary
A dual chamber system was deployed in two different environments (Po Valley, Italy and Pertouli forest, Greece) to study the potential of ambient air directly injected into the chambers, to form secondary aerosol. In the Po Valley, the system reacts rapidly forming large amounts of SOA, while in Pertouli the corresponding SOA formation chemistry appears to have been practically terminated before the beginning of most experiments, so there is little additional SOA formation potential left.
Cited articles
Alastuey, A., Querol, X., Castillo, S., Escudero, M., Avila, A., Cuevas, E., Torres, C., Romero, P., Exposito, F., and Garcia, O.: Characterisation of TSP and PM2.5 at Izaña and Sta. Cruz de Tenerife (Canary Islands, Spain) during a Saharan Dust Episode (July 2002), Atmospheric Environment, 39, 4715–4728, https://doi.org/10.1016/j.atmosenv.2005.04.018, 2005.
Alves, C., Vicente, A., Pio, C., Kiss, G., Hoffer, A., Decesari, S.,
Prevôt, A. S. H., Minguillón, M. C., Querol, X., Hillamo, R.,
Spindler, G., and Swietlicki, E.: Organic compounds in aerosols from
selected European sites – Biogenic versus anthropogenic sources,
Atmos. Environ., 59, 243–255,
https://doi.org/10.1016/j.atmosenv.2012.06.013, 2012.
Ambrose, J. L., Reidmiller, D. R., and Jaffe, D. A.: Causes of high O3 in
the lower free troposphere over the Pacific Northwest as observed at the Mt.
Bachelor Observatory, Atmos. Environ., 45, 5302–5315,
https://doi.org/10.1016/j.atmosenv.2011.06.056, 2011.
Amodio, M., Catino, S., Dambruoso, P. R., de Gennaro, G., Di Gilio, A.,
Giungato, P., Laiola, E., Marzocca, A., Mazzone, A., Sardaro, A., and
Tutino, M.: Atmospheric Deposition: Sampling Procedures, Analytical Methods,
and Main Recent Findings from the Scientific Literature, Adv. Meteorol., 2014, 1–27, https://doi.org/10.1155/2014/161730, 2014.
Arimoto, R., Kim, Y. J., Kim, Y. P., Quinn, P. K., Bates, T. S., Anderson,
T. L., Gong, S., Uno, I., Chin, M., Huebert, B. J., Clarke, A. D.,
Shinozuka, Y., Weber, R. J., Anderson, J. R., Guazzotti, S. A., Sullivan, R.
C., Sodeman, D. A., Prather, K. A., and Sokolik, I. N.: Characterization of
Asian Dust during ACE-Asia, Global Planet. Change, 52, 23–56,
https://doi.org/10.1016/j.gloplacha.2006.02.013, 2006.
Astitha, M., Kallos, G., Spyrou, C., O'Hirok, W., Lelieveld, J., and Denier van der Gon, H. A. C.: Modelling the chemically aged and mixed aerosols over the eastern central Atlantic Ocean – potential impacts, Atmos. Chem. Phys., 10, 5797–5822, https://doi.org/10.5194/acp-10-5797-2010, 2010.
Baker, K. and Scheff, P.: Photochemical model performance for PM2.5 sulfate,
nitrate, ammonium, and precursor species SO2, HNO3, and NH3 at background
monitor locations in the central and eastern United States, Atmos. Environ., 41, 6185–6195, https://doi.org/10.1016/j.atmosenv.2007.04.006,
2007.
Bauer, H., Schueller, E., Weinke, G., Berger, A., Hitzenberger, R., Marr, I.
L., and Puxbaum, H.: Significant contributions of fungal spores to the
organic carbon and to the aerosol mass balance of the urban atmospheric
aerosol, Atmos. Environ., 42, 5542–5549,
https://doi.org/10.1016/j.atmosenv.2008.03.019, 2008.
Bei, N., Zhao, L., Wu, J., Li, X., Feng, T., and Li, G.: Impacts of sea-land
and mountain-valley circulations on the air pollution in
Beijing-Tianjin-Hebei (BTH): A case study, Environ. Pollut., 234,
429–438, https://doi.org/10.1016/j.envpol.2017.11.066, 2018.
Benchrif, A., Guinot, B., Bounakhla, M., Cachier, H., Damnati, B., and
Baghdad, B.: Aerosols in Northern Morocco: Input pathways and their chemical
fingerprint, Atmos. Environ., 174, 140–147,
https://doi.org/10.1016/j.atmosenv.2017.11.047, 2018.
Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore,
A. M., Li, Q., Liu, H. Y., Mickley, L. J., and Schultz, M. G.: Global
modeling of tropospheric chemistry with assimilated meteorology: Model
description and evaluation, J. Geophys. Res., 106, 23073–23095,
https://doi.org/10.1029/2001JD000807, 2001.
Birmili, W., Allen, A. G., Bary, F., and Harrison, R. M.: Trace Metal Concentrations and Water Solubility in Size-Fractionated Atmospheric Particles and Influence of Road Traffic, Environ. Sci. Technol., 40, 1144–1153, https://doi.org/10.1021/es0486925, 2006.
Bourcier, L., Sellegri, K., Chausse, P., Pichon, J. M., and Laj, P.:
Seasonal variation of water-soluble inorganic components in aerosol
size-segregated at the puy de Dôme station (1,465 m a.s.l.), France, J.
Atmos. Chem., 69, 47–66, https://doi.org/10.1007/s10874-012-9229-2, 2012.
Bove, M. C., Brotto, P., Cassola, F., Cuccia, E., Massabò, D., Mazzino,
A., Piazzalunga, A., and Prati, P.: An integrated PM2.5 source apportionment study: Positive Matrix Factorisation vs. the chemical transport model CAMx, Atmos. Environ., 94, 274–286,
https://doi.org/10.1016/j.atmosenv.2014.05.039, 2014.
Buchunde, P., Safai, P. D., Mukherjee, S., Leena, P. P., Siingh, D., Meena, G. S., and Pandithurai, G.: Characterisation of particulate matter at a high-altitude site in southwest India: Impact of dust episodes, J. Earth Syst. Sci., 128, 237, https://doi.org/10.1007/s12040-019-1265-8, 2019.
Campbell, J. F. E., Fletcher, W. J., Joannin, S., Hughes, P. D., Rhanem, M.,
and Zielhofer, C.: Environmental Drivers of Holocene Forest Development in
the Middle Atlas, Morocco, Front. Ecol. Evol., 5, 113,
https://doi.org/10.3389/fevo.2017.00113, 2017.
Carter, W., Cockeriii, D., Fitz, D., Malkina, I., Bumiller, K., Sauer, C., Pisano, J., Bufalino, C., and Song, C.: A new environmental chamber for evaluation of gas-phase chemical mechanisms and secondary aerosol formation, Atmos. Environ., 39, 7768–7788, https://doi.org/10.1016/j.atmosenv.2005.08.040, 2005.
Cavalli, F., Viana, M., Yttri, K. E., Genberg, J., and Putaud, J.-P.: Toward a standardised thermal-optical protocol for measuring atmospheric organic and elemental carbon: the EUSAAR protocol, Atmos. Meas. Tech., 3, 79–89, https://doi.org/10.5194/amt-3-79-2010, 2010.
Cesari, D., Contini, D., Genga, A., Siciliano, M., Elefante, C., Baglivi,
F., and Daniele, L.: Analysis of raw soils and their re-suspended PM10
fractions: Characterisation of source profiles and enrichment factors,
Appl. Geochem., 27, 1238–1246,
https://doi.org/10.1016/j.apgeochem.2012.02.029, 2012.
Chatterjee, A., Adak, A., Singh, A. K., Srivastava, M. K., Ghosh, S. K.,
Tiwari, S., Devara, P. C. S., and Raha, S.: Aerosol Chemistry over a High
Altitude Station at Northeastern Himalayas, India, PLoS ONE, 5, e11122,
https://doi.org/10.1371/journal.pone.0011122, 2010.
Chiapello, I., Bergametti, G., Chatenet, B., Bousquet, P., Dulac, F., and
Soares, E. S.: Origins of African dust transported over the northeastern
tropical Atlantic, J. Geophys. Res., 102, 13701–13709,
https://doi.org/10.1029/97JD00259, 1997.
Chu, A. K. M., Kwok, R. C. W., and Yu, K. N.: Study of pollution dispersion
in urban areas using Computational Fluid Dynamics (CFD) and Geographic
Information System (GIS), Environ. Modell. Softw., 20,
273–277, https://doi.org/10.1016/j.envsoft.2004.05.007, 2005.
Cincinelli, A., Bubba, M. D., Martellini, T., Gambaro, A., and Lepri, L.:
Gas-particle concentration and distribution of n-alkanes and polycyclic
aromatic hydrocarbons in the atmosphere of Prato (Italy), Chemosphere, 68,
472–478, https://doi.org/10.1016/j.chemosphere.2006.12.089, 2007.
Clegg, S. L., Brimblecombe, P., and Wexler, A. S.: Thermodynamic Model of
the System H NH SO NO H2O at Tropospheric Temperatures, J. Phys. Chem. A, 102, 2137–2154, https://doi.org/10.1021/jp973042r, 1998.
Contini, D., Genga, A., Cesari, D., Siciliano, M., Donateo, A., Bove, M. C.,
and Guascito, M. R.: Characterisation and source apportionment of PM10 in an urban background site in Lecce, Atmos. Res., 95, 40–54,
https://doi.org/10.1016/j.atmosres.2009.07.010, 2010.
Contini, D., Belosi, F., Gambaro, A., Cesari, D., Stortini, A. M., and Bove, M. C.: Comparison of PM10 concentrations and metal content in three different sites of the Venice Lagoon: An analysis of possible aerosol sources, Journal of Environmental Sciences, 24, 1954–1965, https://doi.org/10.1016/S1001-0742(11)61027-9, 2012.
Contini, D., Cesari, D., Donateo, A., Chirizzi, D., and Belosi, F.:
Characterization of PM10 and PM2.5 and Their Metals Content in Different Typologies of Sites in South-Eastern Italy, Atmosphere, 5, 435–453, https://doi.org/10.3390/atmos5020435, 2014.
Cozic, J., Verheggen, B., Weingartner, E., Crosier, J., Bower, K. N., Flynn, M., Coe, H., Henning, S., Steinbacher, M., Henne, S., Collaud Coen, M., Petzold, A., and Baltensperger, U.: Chemical composition of free tropospheric aerosol for PM1 and coarse mode at the high alpine site Jungfraujoch, Atmos. Chem. Phys., 8, 407–423, https://doi.org/10.5194/acp-8-407-2008, 2008.
Decesari, S., Facchini, M. C., Carbone, C., Giulianelli, L., Rinaldi, M., Finessi, E., Fuzzi, S., Marinoni, A., Cristofanelli, P., Duchi, R., Bonasoni, P., Vuillermoz, E., Cozic, J., Jaffrezo, J. L., and Laj, P.: Chemical composition of PM10 and PM1 at the high-altitude Himalayan station Nepal Climate Observatory-Pyramid (NCO-P) (5079 m a.s.l.), Atmos. Chem. Phys., 10, 4583–4596, https://doi.org/10.5194/acp-10-4583-2010, 2010.
Desboeufs, K. V. and Cautenet, G.: Transport and mixing zone of desert dust and sulphate over Tropical Africa and the Atlantic Ocean region, Atmos. Chem. Phys. Discuss., 5, 5615–5644, https://doi.org/10.5194/acpd-5-5615-2005, 2005.
Ding, K., Liu, J., Ding, A., Liu, Q., Zhao, T. L., Shi, J., Han, Y., Wang, H., and Jiang, F.: Uplifting of carbon monoxide from biomass burning and anthropogenic sources to the free troposphere in East Asia, Atmos. Chem. Phys., 15, 2843–2866, https://doi.org/10.5194/acp-15-2843-2015, 2015.
Draxler, R. and Hess, G.: Description of the HYSPLIT4 modeling system, NOAA
Technical Memorandum, ERL, ARL-224, 24, 2004.
Du, Y., Xu, X., Chu, M., Guo, Y., and Wang, J.: Air particulate matter and
cardiovascular disease: the epidemiological, biomedical and clinical
evidence, J. Thorac. Dis., 8, 12, https://doi.org/10.3978/j.issn.2072-1439.2015.11.37 2016.
Falkovich, A. H., Ganor, E., Levin, Z., Formenti, P., and Rudich, Y.:
Chemical and mineralogical analysis of individual mineral dust particles, J.
Geophys. Res., 106, 18029–18036, https://doi.org/10.1029/2000JD900430,
2001.
Fiore, A. M., Dentener, F. J., Wild, O., Cuvelier, C., Schultz, M. G., Hess, P., Textor, C., Schulz, M., Doherty, R. M., Horowitz, L. W., MacKenzie, I. A., Sanderson, M. G., Shindell, D. T., Stevenson, D. S., Szopa, S., Van Dingenen, R., Zeng, G., Atherton, C., Bergmann, D., Bey, I., Carmichael, G., Collins, W. J., Duncan, B. N., Faluvegi, G., Folberth, G., Gauss, M., Gong, S., Hauglustaine, D., Holloway, T., Isaksen, I. S. A., Jacob, D. J., Jonson, J. E., Kaminski, J. W., Keating, T. J., Lupu, A., Marmer, E., Montanaro, V., Park, R. J., Pitari, G., Pringle, K. J., Pyle, J. A., Schroeder, S., Vivanco, M. G., Wind, P., Wojcik, G., Wu, S., and Zuber, A.: Multimodel estimates of intercontinental source-receptor relationships for ozone pollution, J. Geophys. Res., 114, D04301, https://doi.org/10.1029/2008JD010816, 2009.
Fomba, K. W., Müller, K., van Pinxteren, D., and Herrmann, H.: Aerosol size-resolved trace metal composition in remote northern tropical Atlantic marine environment: case study Cape Verde islands, Atmos. Chem. Phys., 13, 4801–4814, https://doi.org/10.5194/acp-13-4801-2013, 2013.
Fomba, K. W., Müller, K., van Pinxteren, D., Poulain, L., van Pinxteren, M., and Herrmann, H.: Long-term chemical characterization of tropical and marine aerosols at the Cape Verde Atmospheric Observatory (CVAO) from 2007 to 2011, Atmos. Chem. Phys., 14, 8883–8904, https://doi.org/10.5194/acp-14-8883-2014, 2014.
Fomba, K. W., Deabji, N., Barcha, S. E. I., Ouchen, I., Elbaramoussi, E. M., El Moursli, R. C., Harnafi, M., El Hajjaji, S., Mellouki, A., and Herrmann, H.: Application of TXRF in monitoring trace metals in particulate matter and cloud water, Atmos. Meas. Tech., 13, 4773–4790, https://doi.org/10.5194/amt-13-4773-2020, 2020.
Formenti, P., Caquineau, S., Desboeufs, K., Klaver, A., Chevaillier, S., Journet, E., and Rajot, J. L.: Mapping the physico-chemical properties of mineral dust in western Africa: mineralogical composition, Atmos. Chem. Phys., 14, 10663–10686, https://doi.org/10.5194/acp-14-10663-2014, 2014.
Fu, P., Kawamura, K., Kobayashi, M., and Simoneit, B. R. T.: Seasonal
variations of sugars in atmospheric particulate matter from Gosan, Jeju
Island: Significant contributions of airborne pollen and Asian dust in
spring, Atmos. Environ., 55, 234–239,
https://doi.org/10.1016/j.atmosenv.2012.02.061, 2012.
Gangoiti, G., Alonso, L., Navazo, M., García, J. A., and Millán, M.
M.: North African soil dust and European pollution transport to America
during the warm season: Hidden links shown by a passive tracer simulation:
European pollution transport to America, J. Geophys. Res., 111, D10109,
https://doi.org/10.1029/2005JD005941, 2006.
García, M. I., Rodríguez, S., and Alastuey, A.: Impact of North America on the aerosol composition in the North Atlantic free troposphere, Atmos. Chem. Phys., 17, 7387–7404, https://doi.org/10.5194/acp-17-7387-2017, 2017.
Gherboudj, I., Naseema Beegum, S., and Ghedira, H.: Identifying natural dust source regions over the Middle-East and North-Africa: Estimation of dust emission potential, Earth-Science Reviews, 165, 342–355, https://doi.org/10.1016/j.earscirev.2016.12.010, 2017.
Gilge, S., Plass-Duelmer, C., Fricke, W., Kaiser, A., Ries, L., Buchmann, B., and Steinbacher, M.: Ozone, carbon monoxide and nitrogen oxides time series at four alpine GAW mountain stations in central Europe, Atmos. Chem. Phys., 10, 12295–12316, https://doi.org/10.5194/acp-10-12295-2010, 2010.
Glaccum, R. A. and Prospero, J. M.: Saharan aerosols over the tropical North
Atlantic – Mineralogy, Mar. Geol., 37, 295–321,
https://doi.org/10.1016/0025-3227(80)90107-3, 1980.
Glasius, M., Hansen, A. M. K., Claeys, M., Henzing, J. S., Jedynska, A. D.,
Kasper-Giebl, A., Kistler, M., Kristensen, K., Martinsson, J., Maenhaut, W.,
Nøjgaard, J. K., Spindler, G., Stenström, K. E., Swietlicki, E.,
Szidat, S., Simpson, D., and Yttri, K. E.: Composition and sources of
carbonaceous aerosols in Northern Europe during winter, Atmos. Environ., 173, 127–141, https://doi.org/10.1016/j.atmosenv.2017.11.005, 2018.
Guinot, B., Cachier, H., Sciare, J., Tong, Y., Xin, W., and Jianhua, Y.: Beijing aerosol: Atmospheric interactions and new trends, J. Geophys. Res., 112, D14314, https://doi.org/10.1029/2006JD008195, 2007.
Hien, P. D., Bac, V. T., Tham, H. C., Nhan, D. D., and Vinh, L. D.: Influence
of meteorological conditions on PM2.5 and PM2.5−10 concentrations during the monsoon season in Hanoi, Vietnam, 12, 3473–3484,
https://doi.org/10.1016/S1352-2310(02)00295-9, 2002.
Holst, J., Mayer, H., and Holst, T.: Effect of meteorological exchange
conditions on PM10 concentration, Meteorol. Z., 17, 273–282,
https://doi.org/10.1127/0941-2948/2008/0283, 2008.
Iinuma, Y., Brüggemann, E., Gnauk, T., Müller, K., Andreae, M. O.,
Helas, G., Parmar, R., and Herrmann, H.: Source characterization of biomass
burning particles: The combustion of selected European conifers, African
hardwood, savanna grass, and German and Indonesian peat, J. Geophys. Res.,
112, D08209, https://doi.org/10.1029/2006JD007120, 2007.
Iinuma, Y., Engling, G., Puxbaum, H., and Herrmann, H.: A highly resolved
anion-exchange chromatographic method for determination of saccharidic
tracers for biomass combustion and primary bio-particles in atmospheric
aerosol, Atmos. Environ., 43, 1367–1371,
https://doi.org/10.1016/j.atmosenv.2008.11.020, 2009.
Inchaouh, M.: state of ambient air quality in marrakech city (morocco) over
the period 2009–2012, Int. J. Geomate, 12, 99–106, 2017.
Jaenicke, R.: Abundance of Cellular Material and Proteins in the Atmosphere, Science, 308, 73–73, https://doi.org/10.1126/science.1106335, 2005.
Jonson, J. E., Stohl, A., Fiore, A. M., Hess, P., Szopa, S., Wild, O., Zeng, G., Dentener, F. J., Lupu, A., Schultz, M. G., Duncan, B. N., Sudo, K., Wind, P., Schulz, M., Marmer, E., Cuvelier, C., Keating, T., Zuber, A., Valdebenito, A., Dorokhov, V., De Backer, H., Davies, J., Chen, G. H., Johnson, B., Tarasick, D. W., Stübi, R., Newchurch, M. J., von der Gathen, P., Steinbrecht, W., and Claude, H.: A multi-model analysis of vertical ozone profiles, Atmos. Chem. Phys., 10, 5759–5783, https://doi.org/10.5194/acp-10-5759-2010, 2010.
Kalderon-Asael, B., Erel, Y., Sandler, A., and Dayan, U.: Mineralogical and
chemical characterization of suspended atmospheric particles over the east
Mediterranean based on synoptic-scale circulation patterns, Atmos. Environ., 43, 3963–3970, https://doi.org/10.1016/j.atmosenv.2009.03.057, 2009.
Kandler, K., Schütz, L., Deutscher, C., Ebert, M., Hofmann, H.,
Jäckel, S., Jaenicke, R., Knippertz, P., Lieke, K., Massling, A.,
Petzold, A., Schladitz, A., Weinzierl, B., Wiedensohler, A., Zorn, S., and
Weinbruch1, S.: Size distribution, mass concentration, chemical and
mineralogical composition and derived optical parameters of the boundary
layer aerosol at Tinfou, Morocco, during SAMUM 2006, Tellus B, 61, 32–50,
https://doi.org/10.1111/j.1600-0889.2008.00385.x, 2009.
Kavouras, I. G.: Particle size distribution of organic primary and secondary
aerosol constituents in urban, background marine, and forest atmosphere, J.
Geophys. Res., 107, 4069, https://doi.org/10.1029/2000JD000278, 2002.
Khan, B., Stenchikov, G., Weinzierl, B., Kalenderski, S., and Osipov, S.:
Dust plume formation in the free troposphere and aerosol size distribution
during the Saharan Mineral Dust Experiment in North Africa, Tellus B, 67, 27170, https://doi.org/10.3402/tellusb.v67.27170, 2015.
Khedidji, S., Müller, K., Rabhi, L., Spindler, G., Fomba, K. W.,
van Pinxteren, D., Yassaa, N., and Herrmann, H.: Chemical Characterization
of Marine Aerosols in a South Mediterranean Coastal Area Located in Bou
Ismaïl, Algeria, Aerosol Air Qual. Res., 20, 2448–2473,
https://doi.org/10.4209/aaqr.2019.09.0458, 2020.
Khrissi, S., Bejjit, L., Haddad, M., Falguères, C., Ait Lyazidi, S., and
El Amraoui, M.: Study of marbles from Middle Atlas (Morocco): elemental,
mineralogical and structural analysis, IOP Conf. Ser.-Mat. Sci.,
353, 012013, https://doi.org/10.1088/1757-899X/353/1/012013, 2018.
King, M. D., Menzel, W. P., Kaufman, Y. J., Tanre, D., Gao, B.-C., Platnick,
S., Ackerman, S. A., Remer, L. A., Pincus, R., and Hubanks, P. A.: Cloud and
aerosol properties, precipitable water, and profiles of temperature and
water vapor from MODIS, IEEE T. Geosci. Remote, 41, 442–458,
https://doi.org/10.1109/TGRS.2002.808226, 2003.
Koçak, M., Theodosi, C., Zarmpas, P., Séguret, M. J. M., Herut, B.,
Kallos, G., Mihalopoulos, N., Kubilay, N., and Nimmo, M.: Influence of
mineral dust transport on the chemical composition and physical properties
of the Eastern Mediterranean aerosol, Atmos. Environ., 57, 266–277,
https://doi.org/10.1016/j.atmosenv.2012.04.006, 2012.
Krueger, B. J., Grassian, V. H., Cowin, J. P., and Laskin, A.: Heterogeneous
chemistry of individual mineral dust particles from different dust source
regions: the importance of particle mineralogy, Atmos. Environ., 38,
6253–6261, https://doi.org/10.1016/j.atmosenv.2004.07.010, 2004.
Kumar, A., Wu, S., Weise, M. F., Honrath, R., Owen, R. C., Helmig, D., Kramer, L., Val Martin, M., and Li, Q.: Free-troposphere ozone and carbon monoxide over the North Atlantic for 2001–2011, Atmos. Chem. Phys., 13, 12537–12547, https://doi.org/10.5194/acp-13-12537-2013, 2013.
Lang, M. N., Gohm, A., and Wagner, J. S.: The impact of embedded valleys on daytime pollution transport over a mountain range, Atmos. Chem. Phys., 15, 11981–11998, https://doi.org/10.5194/acp-15-11981-2015, 2015.
Leena, P. P., Vijayakumar, K., Anilkumar, V., and Pandithurai, G.: Analysing
temporal variability of particulate matter and possible contributing factors
over Mahabaleshwar, a high-altitude station in Western Ghats, India, J. Atmos. Sol.-Terr. Phy., 164, 105–115, https://doi.org/10.1016/j.jastp.2017.08.013, 2017.
Leng, C., Zhang, Q., Tao, J., Zhang, H., Zhang, D., Xu, C., Li, X., Kong, L., Cheng, T., Zhang, R., Yang, X., Chen, J., Qiao, L., Lou, S., Wang, H., and Chen, C.: Impacts of new particle formation on aerosol cloud condensation nuclei (CCN) activity in Shanghai: case study, Atmos. Chem. Phys., 14, 11353–11365, https://doi.org/10.5194/acp-14-11353-2014, 2014.
Liang, Q., Jaeglé, L., Jaffe, D. A., Weiss-Penzias, P., Heckman, A., and
Snow, J. A.: Long-range transport of Asian pollution to the northeast
Pacific: Seasonal variations and transport pathways of carbon monoxide:
transport pathways to the northeast pacific, J. Geophys. Res., 109, D23S07,
https://doi.org/10.1029/2003JD004402, 2004.
Liu, J., Russell, L. M., Lee, A. K. Y., McKinney, K. A., Surratt, J. D., and
Ziemann, P. J.: Observational evidence for pollution-influenced selective
uptake contributing to biogenic secondary organic aerosols in the
southeastern U.S.: Evidence for Selective Uptake of bSOA, Geophys. Res.
Lett., 44, 8056–8064, https://doi.org/10.1002/2017GL074665, 2017.
Logan, J. A., Staehelin, J., Megretskaia, I. A., Cammas, J.-P., Thouret, V., Claude, H., De Backer, H., Steinbacher, M., Scheel, H.-E., Stübi, R., Fröhlich, M., and Derwent, R.: Changes in ozone over Europe: Analysis of ozone measurements from sondes, regular aircraft (MOZAIC) and alpine surface sites: CHANGES IN OZONE OVER EUROPE, J. Geophys. Res., 117, 0148–0227, https://doi.org/10.1029/2011JD016952, 2012.
Lugauer, M., Baltensperger, U., Furger, M., Gaggeler, H. W., Jost, D. T., Schwikowski, M., and Wanner, H.: Aerosol transport to the high Alpine sites Jungfraujoch (3454 m asl) and Colle Gnifetti (4452 m asl), Tellus B, 50, 76–92, https://doi.org/10.1034/j.1600-0889.1998.00006.x, 1998.
Maenhaut, W., Raes, N., Chi, X., Cafmeyer, J., Wang, W., and Salma, I.:
Chemical composition and mass closure for fine and coarse aerosols at a
kerbside in Budapest, Hungary, in spring 2002, X-Ray Spectrom., 34, 290–296,
https://doi.org/10.1002/xrs.820, 2005.
Marenco, F., Bonasoni, P., Calzolari, F., Ceriani, M., Chiari, M.,
Cristofanelli, P., D'Alessandro, A., Fermo, P., Lucarelli, F., Mazzei, F.,
Nava, S., Piazzalunga, A., Prati, P., Valli, G., and Vecchi, R.:
Characterization of atmospheric aerosols at Monte Cimone, Italy, during
summer 2004: Source apportionment and transport mechanisms, J. Geophys.
Res., 111, D24202, https://doi.org/10.1029/2006JD007145, 2006.
Mazzei, F., D'Alessandro, A., Lucarelli, F., Nava, S., Prati, P., Valli, G.,
and Vecchi, R.: Characterization of particulate matter sources in an urban
environment, Sci. Total Environ., 401, 81–89,
https://doi.org/10.1016/j.scitotenv.2008.03.008, 2008.
McInnes, L. M., Covert, D. S., Quinn, P. K., and Germani, M. S.:
Measurements of chloride depletion and sulfur enrichment in individual
seasalt particles collected from the remote marine boundary layer, J. Geophys. Res., 99, 8257–8268, https://doi.org/10.1029/93JD03453, 1994.
Minguillón, M. C., Querol, X., Alastuey, A., Monfort, E., and Miró,
J. V.: PM sources in a highly industrialised area in the process of
implementing PM abatement technology, Quantification and evolution, J. Environ. Monitor., 9, 1071–1081, https://doi.org/10.1039/B705474B, 2007.
Mukherjee, S., Singla, V., Meena, G. S., Aslam, M. Y., Safai, P. D., Buchunde, P., Vasudevan, A. K., Jena, C. K., Ghude, S. D., Dani, K., and Pandithurai, G.: Sub micron aerosol variability and its ageing process at a high altitude site in India: Impact of meteorological conditions, Environ. Pollut., 265, 115019, https://doi.org/10.1016/j.envpol.2020.115019, 2020.
Mounir, S., Saoud, N., Charroud, M., Mounir, K., and Choukrad, J.: The
Middle Atlas Geological karsts forms: Towards Geosites characterization, Oil
Gas Sci. Technol., 74, 17, https://doi.org/10.2516/ogst/2018089, 2019.
Müller, K.: Determination of aldehydes and ketones in the atmosphere –
A comparative long time study at an urban and a rural site in Eastern
Germany, Chemosphere, 35, 2093–2106,
https://doi.org/10.1016/S0045-6535(97)00267-1, 1997.
Müller, L., Reinnig, M.-C., Naumann, K. H., Saathoff, H., Mentel, T. F., Donahue, N. M., and Hoffmann, T.: Formation of 3-methyl-1,2,3-butanetricarboxylic acid via gas phase oxidation of pinonic acid – a mass spectrometric study of SOA aging, Atmos. Chem. Phys., 12, 1483–1496, https://doi.org/10.5194/acp-12-1483-2012, 2012.
Nair, V. S., Moorthy, K. K., Alappattu, D. P., Kunhikrishnan, P. K., George,
S., Nair, P. R., Babu, S. S., Abish, B., Satheesh, S. K., Tripathi, S. N.,
Niranjan, K., Madhavan, B. L., Srikant, V., Dutt, C. B. S., Badarinath, K.
V. S., and Reddy, R. R.: Wintertime aerosol characteristics over the
Indo-Gangetic Plain (IGP): Impacts of local boundary layer processes and
long-range transport: winter aerosols over indo-gangetic plain, J. Geophys.
Res., 112, D13205, https://doi.org/10.1029/2006JD008099, 2007.
Nerriere, É., Guegan, H., Bordigoni, B., Hautemaniere, A., Momas, I.,
Ladner, J., Target, A., Lameloise, P., Delmas, V., Personnaz, M.-B.,
Koutrakis, P., and Zmirou-Navier, D.: Spatial heterogeneity of personal
exposure to airborne metals in French urban areas, Sci. Total
Environ., 373, 49–56, https://doi.org/10.1016/j.scitotenv.2006.10.042,
2007.
Neusüss, C., Pelzing, M., Plewka, A., and Herrmann, H.: A new analytical
approach for size-resolved speciation of organic compounds in atmospheric
aerosol particles: Methods and first results, J. Geophys. Res., 105,
4513–4527, https://doi.org/10.1029/1999JD901038, 2000.
Okada, K. and Kai, K.: Atmospheric mineral particles collected at Qira in
the Taklamakan Desert, China, Atmos. Environ., 38, 6927–6935,
https://doi.org/10.1016/j.atmosenv.2004.03.078, 2004.
Okamoto, S. and Tanimoto, H.: A review of atmospheric chemistry observations at mountain sites, Prog. Earth Planet. Sci., 3, 34, https://doi.org/10.1186/s40645-016-0109-2, 2016.
Pacyna, E. G., Pacyna, J. M., Fudala, J., Strzelecka-Jastrzab, E.,
Hlawiczka, S., Panasiuk, D., Nitter, S., Pregger, T., Pfeiffer, H., and
Friedrich, R.: Current and future emissions of selected heavy metals to the
atmosphere from anthropogenic sources in Europe, Atmos. Environ.,
41, 8557–8566, https://doi.org/10.1016/j.atmosenv.2007.07.040, 2007.
Pandolfi, M., Gonzalez-Castanedo, Y., Alastuey, A., Pey, J., Querol, X., and de La Rosa, J. D.: Source apportionment to PM10 and PM2.5 at multiple sites in the Bay of Gibraltar (S Spain) by PMF: estimate of shipping emission, 7662, 2009.
Pandolfi, M., Gonzalez-Castanedo, Y., Alastuey, A., de la Rosa, J. D.,
Mantilla, E., de la Campa, A. S., Querol, X., Pey, J., Amato, F., and
Moreno, T.: Source apportionment of PM10 and PM2.5 at multiple sites in the strait of Gibraltar by PMF: impact of shipping emissions, Environ. Sci. Pollut. Res., 18, 260–269, https://doi.org/10.1007/s11356-010-0373-4, 2011.
Perrino, C., Catrambone, M., Dalla Torre, S., Rantica, E., Sargolini, T.,
and Canepari, S.: Seasonal variations in the chemical composition of
particulate matter: a case study in the Po Valley, Part I: macro-components
and mass closure, Environ. Sci. Pollut. Res., 21, 3999–4009,
https://doi.org/10.1007/s11356-013-2067-1, 2014.
Pietrogrande, M. C., Mercuriali, M., Perrone, M. G., Ferrero, L., Sangiorgi,
G., and Bolzacchini, E.: Distribution of n-Alkanes in the Northern Italy
Aerosols: Data Handling of GC-MS Signals for Homologous Series
Characterization, Environ. Sci. Technol., 44, 4232–4240,
https://doi.org/10.1021/es1001242, 2010.
Pietrogrande, M. C., Abbaszade, G., Schnelle-Kreis, J., Bacco, D.,
Mercuriali, M., and Zimmermann, R.: Seasonal variation and source estimation
of organic compounds in urban aerosol of Augsburg, Germany, Environ.
Pollut., 159, 1861–1868, https://doi.org/10.1016/j.envpol.2011.03.023,
2011.
Pio, C. A., Alves, C. A., and Duarte, A. C.: Identification, abundance and
origin of atmospheric organic particulate matter in a Portuguese rural area,
Atmos. Environ., 35, 1365–1375,
https://doi.org/10.1016/S1352-2310(00)00391-5, 2001.
Pope, C. A., Cohen, A. J., and Burnett, R. T.: Cardiovascular Disease and
Fine Particulate Matter: Lessons and Limitations of an Integrated
Exposure – Response Approach, Circ. Res., 122, 1645–1647,
https://doi.org/10.1161/circresaha.118.312956, 2018.
Prodi, F., Belosi, F., Contini, D., Santachiara, G., Matteo, L. D., Gambaro,
A., Donateo, A., and Cesari, D.: Aerosol fine fraction in the Venice Lagoon:
Particle composition and sources, Atmos. Res., 10, 141–150,
https://doi.org/10.1016/j.atmosres.2008.09.020, 2009.
Querol, X., Alastuey, A., Ruiz, C. R., Artiñano, B., Hansson, H. C.,
Harrison, R. M., Buringh, E., ten Brink, H. M., Lutz, M., Bruckmann, P.,
Straehl, P., and Schneider, J.: Speciation and origin of PM10 and PM2.5 in selected European cities, Atmos. Environ., 38, 6547–6555,
https://doi.org/10.1016/j.atmosenv.2004.08.037, 2004.
Ricciardelli, I., Bacco, D., Rinaldi, M., Bonafè, G., Scotto, F.,
Trentini, A., Bertacci, G., Ugolini, P., Zigola, C., Rovere, F., Maccone,
C., Pironi, C., and Poluzzi, V.: A three-year investigation of daily PM2.5 main chemical components in four sites: the routine measurement program of the Supersito Project (Po Valley, Italy), Atmos. Environ., 152,
418–430, https://doi.org/10.1016/j.atmosenv.2016.12.052, 2017.
Rodríguez, S., Alastuey, A., Alonso-Pérez, S., Querol, X., Cuevas, E., Abreu-Afonso, J., Viana, M., Pérez, N., Pandolfi, M., and de la Rosa, J.: Transport of desert dust mixed with North African industrial pollutants in the subtropical Saharan Air Layer, Atmos. Chem. Phys., 11, 6663–6685, https://doi.org/10.5194/acp-11-6663-2011, 2011.
Royaume du Maroc: Plan national de lutte contre le réchauffement
climatique, Ministère de l'Énergie, des Mines, de l'Eau et de
l'Environnement, (Département de l’Environnement), Rabat, 35 p., 2009.
Ryder, C. L., Marenco, F., Brooke, J. K., Estelles, V., Cotton, R., Formenti, P., McQuaid, J. B., Price, H. C., Liu, D., Ausset, P., Rosenberg, P. D., Taylor, J. W., Choularton, T., Bower, K., Coe, H., Gallagher, M., Crosier, J., Lloyd, G., Highwood, E. J., and Murray, B. J.: Coarse-mode mineral dust size distributions, composition and optical properties from AER-D aircraft measurements over the tropical eastern Atlantic, Atmos. Chem. Phys., 18, 17225–17257, https://doi.org/10.5194/acp-18-17225-2018, 2018.
Sarkar, S., Chauhan, A., Kumar, R., and Singh, R. P.: Impact of Deadly Dust
Storms (May 2018) on Air Quality, Meteorological, and Atmospheric Parameters
Over the Northern Parts of India, GeoHealth, 3, 67–80,
https://doi.org/10.1029/2018GH000170, 2019.
Satheesh, S. K. and Krishna Moorthy, K.: Radiative effects of natural
aerosols: A review, Atmos. Environ., 39, 2089–2110,
https://doi.org/10.1016/j.atmosenv.2004.12.029, 2005.
Schepanski, K., Mallet, M., Heinold, B., and Ulrich, M.: North African dust transport toward the western Mediterranean basin: atmospheric controls on dust source activation and transport pathways during June–July 2013, Atmos. Chem. Phys., 16, 14147–14168, https://doi.org/10.5194/acp-16-14147-2016, 2016.
Schladitz, A., Müller, T., Kaaden, N., Massling, A., Kandler, K., Ebert, M., Weinbruch, S., Deutscher, C., and Wiedensohler, A.: In situ measurements of optical properties at Tinfou (Morocco) during the Saharan Mineral Dust Experiment SAMUM 2006, Tellus B, 61, 64–78, https://doi.org/10.1111/j.1600-0889.2008.00397.x, 2009.
Sharma, S. K., Choudhary, N., Kotnala, G., Das, D., Mukherjee, S., Ghosh,
A., Vijayan, N., Rai, A., Chatterjee, A., and Mandal, T. K.: Wintertime
carbonaceous species and trace metals in PM10 in Darjeeling: A high altitude town in the eastern Himalayas, Urban Climate, 34, 100668,
https://doi.org/10.1016/j.uclim.2020.100668, 2020.
Song, Q., Christiani, D., Wang, X., and Ren, J.: The Global Contribution
of Outdoor Air Pollution to the Incidence, Prevalence, Mortality and
Hospital Admission for Chronic Obstructive Pulmonary Disease: A Systematic
Review and Meta-Analysis, Ind. J. Env. Res. Pub. He., 11, 11822–11832,
https://doi.org/10.3390/ijerph111111822, 2014.
Spindler, G., Gnauk, T., Grüner, A., Iinuma, Y., Müller, K.,
Scheinhardt, S., and Herrmann, H.: Size-segregated characterization of PM10 at the EMEP site Melpitz (Germany) using a five-stage impactor: a six year study, J. Atmos. Chem., 69, 127–157,
https://doi.org/10.1007/s10874-012-9233-6, 2012.
Squizzato, S., Masiol, M., Brunelli, A., Pistollato, S., Tarabotti, E., Rampazzo, G., and Pavoni, B.: Factors determining the formation of secondary inorganic aerosol: a case study in the Po Valley (Italy), Atmos. Chem. Phys., 13, 1927–1939, https://doi.org/10.5194/acp-13-1927-2013, 2013.
Tahri, M., Bounakhla, M., Zghaïd, M., Benchrif, A., Zahry, F., Noack,
Y., and Benyaïch, F.: TXRF characterization and source identification
by positive matrix factorization of airborne particulate matter sampled in
Kenitra City (Morocco): TXRF characterization and source identification in
Kenitra City, Morocco, X-Ray Spectrom., 42, 284–289, https://doi.org/10.1002/xrs.2484, 2013.
Tahri, M., Benchrif, A., Bounakhla, M., Benyaich, F., and Noack, Y.:
Seasonal variation and risk assessment of PM2.5 and PM2.5–10 in the ambient air of Kenitra, Morocco, Environ. Sci.-Proc. Imp., 19, 1427–1436, https://doi.org/10.1039/C7EM00286F, 2017.
Turpin, B. J. and Lim, H.-J.: Species Contributions to PM2.5 Mass
Concentrations: Revisiting Common Assumptions for Estimating Organic Mass,
Aerosol Sci. Technol., 35, 602–610,
https://doi.org/10.1080/02786820119445, 2001.
Van Pinxteren, D., Brüggemann, E., Gnauk, T., Müller, K., Thiel, C.,
and Herrmann, H.: A GIS based approach to back trajectory analysis for the
source apportionment of aerosol constituents and its first application, J.
Atmos. Chem., 67, 1–28, https://doi.org/10.1007/s10874-011-9199-9, 2010.
Van Pinxteren, M., Fiedler, B., van Pinxteren, D., Iinuma, Y., Körtzinger, A., and Herrmann, H.: Chemical characterization of sub-micrometer aerosol particles in the tropical Atlantic Ocean: marine and biomass burning influences, J. Atmos. Chem., 72, 105–125, https://doi.org/10.1007/s10874-015-9307-3, 2015.
Veselovskii, I., Goloub, P., Podvin, T., Bovchaliuk, V., Derimian, Y., Augustin, P., Fourmentin, M., Tanre, D., Korenskiy, M., Whiteman, D. N., Diallo, A., Ndiaye, T., Kolgotin, A., and Dubovik, O.: Retrieval of optical and physical properties of African dust from multiwavelength Raman lidar measurements during the SHADOW campaign in Senegal, Atmos. Chem. Phys., 16, 7013–7028, https://doi.org/10.5194/acp-16-7013-2016, 2016.
Viana, M., Pandolfi, M., Minguillón, M. C., Querol, X., Alastuey, A., Monfort, E., and Celades, I.: Inter-comparison of receptor models for PM source apportionment: Case study in an industrial area, Atmos. Environ., 42, 3820–3832, https://doi.org/10.1016/j.atmosenv.2007.12.056, 2008.
Wang, Y. Q., Zhang, X. Y., Sun, J. Y., Zhang, X. C., Che, H. Z., and Li, Y.: Spatial and temporal variations of the concentrations of PM10, PM2.5 and PM1 in China, Atmos. Chem. Phys., 15, 13585–13598, https://doi.org/10.5194/acp-15-13585-2015, 2015.
Wedepohl, K. H.: The composition of the continental crust, Geochim. Cosmochim. Ac., 59, 1217–1232, https://doi.org/10.1016/0016-7037(95)00038-2, 1995.
Weiss-Penzias, P., Jaffe, D. A., Swartzendruber, P., Dennison, J. B., Chand,
D., Hafner, W., and Prestbo, E.: Observations of Asian air pollution in the
free troposphere at Mount Bachelor Observatory during the spring of 2004:
observations at Mount Bachelor Observatory, J. Geophys. Res., 111, D10304,
https://doi.org/10.1029/2005JD006522, 2006.
Yttri, K. E., Simpson, D., Bergström, R., Kiss, G., Szidat, S., Ceburnis, D., Eckhardt, S., Hueglin, C., Nøjgaard, J. K., Perrino, C., Pisso, I., Prevot, A. S. H., Putaud, J.-P., Spindler, G., Vana, M., Zhang, Y.-L., and Aas, W.: The EMEP Intensive Measurement Period campaign, 2008–2009: characterizing carbonaceous aerosol at nine rural sites in Europe, Atmos. Chem. Phys., 19, 4211–4233, https://doi.org/10.5194/acp-19-4211-2019, 2019.
Zhang, J. M., Wang, T., Ding, A. J., Zhou, X. H., Xue, L. K., Poon, C. N.,
Wu, W. S., Gao, J., Zuo, H. C., Chen, J. M., Zhang, X. C., and Fan, S. J.:
Continuous measurement of peroxyacetyl nitrate (PAN) in suburban and remote
areas of western China, Atmos. Environ., 43, 228–237,
https://doi.org/10.1016/j.atmosenv.2008.09.070, 2009.
Zhao, Z., Cao, J., Shen, Z., Xu, B., Zhu, C., Chen, L.-W. A., Su, X., Liu,
S., Han, Y., Wang, G., and Ho, K.: Aerosol particles at a high-altitude site
on the Southeast Tibetan Plateau, China: Implications for pollution
transport from South Asia: AEROSOL PARTICLES IN SOUTHEAST TP, J. Geophys.
Res.-Atmos., 118, 11360–11375, https://doi.org/10.1002/jgrd.50599, 2013.
Short summary
Mountain and high-altitude sites provide representative data for the lower free troposphere, various pathways for aerosol interactions, and changing boundary layer heights useful in understanding atmospheric composition. However, only few studies exist in African regions despite diversity in both natural and anthropogenic emissions. This study provides detailed atmospheric studies in the northern African high-altitude region.
Mountain and high-altitude sites provide representative data for the lower free troposphere,...
Altmetrics
Final-revised paper
Preprint