Research article
15 Dec 2021
Research article
| 15 Dec 2021
First insights into northern Africa high-altitude background aerosol chemical composition and source influences
Nabil Deabji et al.
Related authors
Khanneh Wadinga Fomba, Nabil Deabji, Sayf El Islam Barcha, Ibrahim Ouchen, El Mehdi Elbaramoussi, Rajaa Cherkaoui El Moursli, Mimoun Harnafi, Souad El Hajjaji, Abdelwahid Mellouki, and Hartmut Herrmann
Atmos. Meas. Tech., 13, 4773–4790, https://doi.org/10.5194/amt-13-4773-2020, https://doi.org/10.5194/amt-13-4773-2020, 2020
Short summary
Short summary
As air quality monitoring networks often sample aerosol particles on quartz filters, the development and applicability of analytical methods with quartz filters are becoming important. In this study different filter preparation methods (e.g., baking, acid digestion) were investigated for quantifying trace metals on quartz and polycarbonate filters, and cloud water using the total reflection X-Ray fluorescence (TXRF) technique, with low detection limits of about 0.3 ng cm−3 for some elements.
Samira Atabakhsh, Laurent Poulain, Gang Chen, Francesco Canonaco, André S. H. Prévôt, Mira Pöhlker, Alfred Wiedensohler, and Hartmut Herrmann
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-842, https://doi.org/10.5194/acp-2022-842, 2023
Preprint under review for ACP
Short summary
Short summary
The study focuses on the aerosol chemical variations found in the rural-background station of Melpitz based on ACSM and MAAP measurements. Source apportionment on both organic aerosol (OA) and black carbon (eBC) was performed, and source seasonality was also linked to air mass trajectories. In overall, three anthropogenic sources were identified in OA and eBC, plus two additional aged-OA. Our results demonstrate the influence of transported coal-combustion-related OA even during summertime.
Yuan Wang, Silvia Henning, Laurent Poulain, Chunsong Lu, Frank Stratmann, Yuying Wang, Shengjie Niu, Mira L. Pöhlker, Hartmut Herrmann, and Alfred Wiedensohler
Atmos. Chem. Phys., 22, 15943–15962, https://doi.org/10.5194/acp-22-15943-2022, https://doi.org/10.5194/acp-22-15943-2022, 2022
Short summary
Short summary
Aerosol particle activation affects cloud, precipitation, radiation, and thus the global climate. Its long-term measurements are important but still scarce. In this study, more than 4 years of measurements at a central European station were analyzed. The overall characteristics and seasonal changes of aerosol particle activation are summarized. The power-law fit between particle hygroscopicity factor and diameter was recommended for predicting cloud
condensation nuclei number concentration.
Manuela van Pinxteren, Sebastian Zeppenfeld, Khanneh Wadinga Fomba, Nadja Triesch, Sanja Frka, and Hartmut Herrmann
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-832, https://doi.org/10.5194/acp-2022-832, 2022
Preprint under review for ACP
Short summary
Short summary
Important marine organic carbon compounds were identified in the Atlantic Ocean and marine aerosol particles. These compounds were strongly enriched in the atmosphere. Their enrichment was, however, not solely explained with sea-to-air transfer but also via atmospheric in situ formation. The identified compounds constituted about 50 % of the organic carbon on the aerosol particles and a pronounced coupling between ocean and atmosphere for this oligotrophic region could be concluded.
Roland Vernooij, Patrik Winiger, Martin Wooster, Tercia Strydom, Laurent Poulain, Ulrike Dusek, Mark Grosvenor, Gareth J. Roberts, Nick Schutgens, and Guido R. van der Werf
Atmos. Meas. Tech., 15, 4271–4294, https://doi.org/10.5194/amt-15-4271-2022, https://doi.org/10.5194/amt-15-4271-2022, 2022
Short summary
Short summary
Landscape fires are a substantial emitter of greenhouse gases and aerosols. Previous studies have indicated savanna emission factors to be highly variable. Improving fire emission estimates, and understanding future climate- and human-induced changes in fire regimes, requires in situ measurements. We present a drone-based method that enables the collection of a large amount of high-quality emission factor measurements that do not have the biases of aircraft or surface measurements.
Lady Mateus-Fontecha, Angela Vargas-Burbano, Rodrigo Jimenez, Nestor Y. Rojas, German Rueda-Saa, Dominik van Pinxteren, Manuela van Pinxteren, Khanneh Wadinga Fomba, and Hartmut Herrmann
Atmos. Chem. Phys., 22, 8473–8495, https://doi.org/10.5194/acp-22-8473-2022, https://doi.org/10.5194/acp-22-8473-2022, 2022
Short summary
Short summary
This study reports the chemical composition of regionally representative PM2.5 in an area densely populated and substantially industrialized, located in the inter-Andean valley, with the highest sugarcane yield in the world and where sugarcane is burned and harvested year round. We found that sugarcane burning is not portrayed as a distinguishable sample composition component. Instead, the composition analysis revealed multiple associations among sugarcane burning components and other sources.
Manuela van Pinxteren, Tiera-Brandy Robinson, Sebastian Zeppenfeld, Xianda Gong, Enno Bahlmann, Khanneh Wadinga Fomba, Nadja Triesch, Frank Stratmann, Oliver Wurl, Anja Engel, Heike Wex, and Hartmut Herrmann
Atmos. Chem. Phys., 22, 5725–5742, https://doi.org/10.5194/acp-22-5725-2022, https://doi.org/10.5194/acp-22-5725-2022, 2022
Short summary
Short summary
A class of marine particles (transparent exopolymer particles, TEPs) that is ubiquitously found in the world oceans was measured for the first time in ambient marine aerosol particles and marine cloud waters in the tropical Atlantic Ocean. TEPs are likely to have good properties for influencing clouds. We show that TEPs are transferred from the ocean to the marine atmosphere via sea-spray formation and our results suggest that they can also form directly in aerosol particles and in cloud water.
Kristina Glojek, Griša Močnik, Honey Dawn C. Alas, Andrea Cuesta-Mosquera, Luka Drinovec, Asta Gregorič, Matej Ogrin, Kay Weinhold, Irena Ježek, Thomas Müller, Martin Rigler, Maja Remškar, Dominik van Pinxteren, Hartmut Herrmann, Martina Ristorini, Maik Merkel, Miha Markelj, and Alfred Wiedensohler
Atmos. Chem. Phys., 22, 5577–5601, https://doi.org/10.5194/acp-22-5577-2022, https://doi.org/10.5194/acp-22-5577-2022, 2022
Short summary
Short summary
A pilot study to determine the emissions of wood burning under
real-world laboratoryconditions was conducted. We found that measured black carbon (eBC) and particulate matter (PM) in rural shallow terrain depressions with residential wood burning could be much greater than predicted by models. The exceeding levels are a cause for concern since similar conditions can be expected in numerous hilly and mountainous regions across Europe, where approximately 20 % of the total population lives.
Sebastian Düsing, Albert Ansmann, Holger Baars, Joel C. Corbin, Cyrielle Denjean, Martin Gysel-Beer, Thomas Müller, Laurent Poulain, Holger Siebert, Gerald Spindler, Thomas Tuch, Birgit Wehner, and Alfred Wiedensohler
Atmos. Chem. Phys., 21, 16745–16773, https://doi.org/10.5194/acp-21-16745-2021, https://doi.org/10.5194/acp-21-16745-2021, 2021
Short summary
Short summary
The work deals with optical properties of aerosol particles in dried and atmospheric states. Based on two measurement campaigns in the rural background of central Europe, different measurement approaches were compared with each other, such as modeling based on Mie theory and direct in situ or remote sensing measurements. Among others, it was shown that the aerosol extinction-to-backscatter ratio is relative humidity dependent, and refinement with respect to the model input parameters is needed.
Andreas Tilgner, Thomas Schaefer, Becky Alexander, Mary Barth, Jeffrey L. Collett Jr., Kathleen M. Fahey, Athanasios Nenes, Havala O. T. Pye, Hartmut Herrmann, and V. Faye McNeill
Atmos. Chem. Phys., 21, 13483–13536, https://doi.org/10.5194/acp-21-13483-2021, https://doi.org/10.5194/acp-21-13483-2021, 2021
Short summary
Short summary
Feedbacks of acidity and atmospheric multiphase chemistry in deliquesced particles and clouds are crucial for the tropospheric composition, depositions, climate, and human health. This review synthesizes the current scientific knowledge on these feedbacks using both inorganic and organic aqueous-phase chemistry. Finally, this review outlines atmospheric implications and highlights the need for future investigations with respect to reducing emissions of key acid precursors in a changing world.
R. Anthony Cox, Markus Ammann, John N. Crowley, Paul T. Griffiths, Hartmut Herrmann, Erik H. Hoffmann, Michael E. Jenkin, V. Faye McNeill, Abdelwahid Mellouki, Christopher J. Penkett, Andreas Tilgner, and Timothy J. Wallington
Atmos. Chem. Phys., 21, 13011–13018, https://doi.org/10.5194/acp-21-13011-2021, https://doi.org/10.5194/acp-21-13011-2021, 2021
Short summary
Short summary
The term open-air factor was coined in the 1960s, establishing that rural air had powerful germicidal properties possibly resulting from immediate products of the reaction of ozone with alkenes, unsaturated compounds ubiquitously present in natural and polluted environments. We have re-evaluated those early experiments, applying the recently substantially improved knowledge, and put them into the context of the lifetime of aerosol-borne pathogens that are so important in the Covid-19 pandemic.
Markus Hartmann, Xianda Gong, Simonas Kecorius, Manuela van Pinxteren, Teresa Vogl, André Welti, Heike Wex, Sebastian Zeppenfeld, Hartmut Herrmann, Alfred Wiedensohler, and Frank Stratmann
Atmos. Chem. Phys., 21, 11613–11636, https://doi.org/10.5194/acp-21-11613-2021, https://doi.org/10.5194/acp-21-11613-2021, 2021
Short summary
Short summary
Ice-nucleating particles (INPs) are not well characterized in the Arctic despite their importance for the Arctic energy budget. Little is known about their nature (mineral or biological) and sources (terrestrial or marine, long-range transport or local). We find indications that, at the beginning of the melt season, a local, biogenic, probably marine source is likely, but significant enrichment of INPs has to take place from the ocean to the aerosol phase.
Anke Mutzel, Yanli Zhang, Olaf Böge, Maria Rodigast, Agata Kolodziejczyk, Xinming Wang, and Hartmut Herrmann
Atmos. Chem. Phys., 21, 8479–8498, https://doi.org/10.5194/acp-21-8479-2021, https://doi.org/10.5194/acp-21-8479-2021, 2021
Short summary
Short summary
This study investigates secondary organic aerosol (SOA) formation and particle growth from α-pinene, limonene, and m-cresol oxidation through NO3 and OH radicals and the effect of relative humidity. The formed SOA is comprehensively characterized with respect to the content of OC / EC, WSOC, SOA-bound peroxides, and SOA marker compounds. The findings present new insights and implications of nighttime chemistry, which can form SOA more efficiently than OH radical reaction during daytime.
Abdelwahid Mellouki, Markus Ammann, R. Anthony Cox, John N. Crowley, Hartmut Herrmann, Michael E. Jenkin, V. Faye McNeill, Jürgen Troe, and Timothy J. Wallington
Atmos. Chem. Phys., 21, 4797–4808, https://doi.org/10.5194/acp-21-4797-2021, https://doi.org/10.5194/acp-21-4797-2021, 2021
Short summary
Short summary
Volatile organic compounds play an important role in atmospheric chemistry. This article, the eighth in the series, presents kinetic and photochemical data sheets evaluated by the IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation. It covers the gas-phase reactions of organic species with four, or more, carbon atoms (≥ C4) including thermal reactions of closed-shell organic species with HO and NO3 radicals and their photolysis. These data are important for atmospheric models.
Nadja Triesch, Manuela van Pinxteren, Sanja Frka, Christian Stolle, Tobias Spranger, Erik Hans Hoffmann, Xianda Gong, Heike Wex, Detlef Schulz-Bull, Blaženka Gašparović, and Hartmut Herrmann
Atmos. Chem. Phys., 21, 4267–4283, https://doi.org/10.5194/acp-21-4267-2021, https://doi.org/10.5194/acp-21-4267-2021, 2021
Short summary
Short summary
To investigate the source of lipids and their representatives in the marine atmosphere, concerted measurements of seawater and submicrometer aerosol particle sampling were carried out on the Cabo Verde islands. This field study describes the biogenic sources of lipids, their selective transfer from the ocean into the atmosphere and their enrichment as part of organic matter. A strong enrichment of the studied representatives of the lipid classes on submicrometer aerosol particles was observed.
Laurent Poulain, Benjamin Fahlbusch, Gerald Spindler, Konrad Müller, Dominik van Pinxteren, Zhijun Wu, Yoshiteru Iinuma, Wolfram Birmili, Alfred Wiedensohler, and Hartmut Herrmann
Atmos. Chem. Phys., 21, 3667–3684, https://doi.org/10.5194/acp-21-3667-2021, https://doi.org/10.5194/acp-21-3667-2021, 2021
Short summary
Short summary
We present results from source apportionment analysis on the carbonaceous aerosol particles, including organic aerosol (OA) and equivalent black carbon (eBC), allowing us to distinguish local emissions from long-range transport for OA and eBC sources. By merging online chemical measurements and considering particle number size distribution, the different air masses reaching the sampling place were described and discussed, based on their respective chemical composition and size distribution.
Jinfeng Yuan, Robin Lewis Modini, Marco Zanatta, Andreas B. Herber, Thomas Müller, Birgit Wehner, Laurent Poulain, Thomas Tuch, Urs Baltensperger, and Martin Gysel-Beer
Atmos. Chem. Phys., 21, 635–655, https://doi.org/10.5194/acp-21-635-2021, https://doi.org/10.5194/acp-21-635-2021, 2021
Short summary
Short summary
Black carbon (BC) aerosols contribute substantially to climate warming due to their unique light absorption capabilities. We performed field measurements at a central European background site in winter and found that variability in the absorption efficiency of BC particles is driven mainly by their internal mixing state. Our results suggest that, at this site, knowing the BC mixing state is sufficient to describe BC light absorption enhancements due to the lensing effect in good approximation.
Jing Dou, Peter A. Alpert, Pablo Corral Arroyo, Beiping Luo, Frederic Schneider, Jacinta Xto, Thomas Huthwelker, Camelia N. Borca, Katja D. Henzler, Jörg Raabe, Benjamin Watts, Hartmut Herrmann, Thomas Peter, Markus Ammann, and Ulrich K. Krieger
Atmos. Chem. Phys., 21, 315–338, https://doi.org/10.5194/acp-21-315-2021, https://doi.org/10.5194/acp-21-315-2021, 2021
Short summary
Short summary
Photochemistry of iron(III) complexes plays an important role in aerosol aging, especially in the lower troposphere. Ensuing radical chemistry leads to decarboxylation, and the production of peroxides, and oxygenated volatile compounds, resulting in particle mass loss due to release of the volatile products to the gas phase. We investigated kinetic transport limitations due to high particle viscosity under low relative humidity conditions. For quantification a numerical model was developed.
Nadja Triesch, Manuela van Pinxteren, Anja Engel, and Hartmut Herrmann
Atmos. Chem. Phys., 21, 163–181, https://doi.org/10.5194/acp-21-163-2021, https://doi.org/10.5194/acp-21-163-2021, 2021
Short summary
Short summary
To investigate the sources of free amino acids (FAAs) in the marine atmosphere, concerted measurements (the simultaneous investigation of seawater, size-segregated aerosol particles and cloud water) were performed at the Cabo Verde islands. This study describes the transfer of FAAs as part of organic matter from the ocean into the atmosphere on a molecular level. In the investigated marine environment, a high enrichment of FAAs in submicron aerosol particles and in cloud droplets was observed.
Jiarong Li, Chao Zhu, Hui Chen, Defeng Zhao, Likun Xue, Xinfeng Wang, Hongyong Li, Pengfei Liu, Junfeng Liu, Chenglong Zhang, Yujing Mu, Wenjin Zhang, Luming Zhang, Hartmut Herrmann, Kai Li, Min Liu, and Jianmin Chen
Atmos. Chem. Phys., 20, 13735–13751, https://doi.org/10.5194/acp-20-13735-2020, https://doi.org/10.5194/acp-20-13735-2020, 2020
Short summary
Short summary
Based on a field study at Mt. Tai, China, the simultaneous variations of cloud microphysics, aerosol microphysics and their potential interactions during cloud life cycles were discussed. Results demonstrated that clouds on clean days were more susceptible to the concentrations of particle number, while clouds formed on polluted days might be more sensitive to meteorological parameters. Particles larger than 150 nm played important roles in forming cloud droplets with sizes of 5–10 μm.
R. Anthony Cox, Markus Ammann, John N. Crowley, Hartmut Herrmann, Michael E. Jenkin, V. Faye McNeill, Abdelwahid Mellouki, Jürgen Troe, and Timothy J. Wallington
Atmos. Chem. Phys., 20, 13497–13519, https://doi.org/10.5194/acp-20-13497-2020, https://doi.org/10.5194/acp-20-13497-2020, 2020
Short summary
Short summary
Criegee intermediates, formed from alkene–ozone reactions, play a potentially important role as tropospheric oxidants. Evaluated kinetic data are provided for reactions governing their formation and removal for use in atmospheric models. These include their formation from reactions of simple and complex alkenes and removal by decomposition and reaction with a number of atmospheric species (e.g. H2O, SO2). An overview of the tropospheric chemistry of Criegee intermediates is also provided.
Yangang Ren, Bastian Stieger, Gerald Spindler, Benoit Grosselin, Abdelwahid Mellouki, Thomas Tuch, Alfred Wiedensohler, and Hartmut Herrmann
Atmos. Chem. Phys., 20, 13069–13089, https://doi.org/10.5194/acp-20-13069-2020, https://doi.org/10.5194/acp-20-13069-2020, 2020
Short summary
Short summary
We present HONO measurements from the TROPOS research site in Melpitz, Germany. Investigations of HONO sources and sinks revealed the nighttime formation by heterogeneous conversion of NO2 to HONO followed by a significant surface deposition at night. The evaporation of dew was identified as the main HONO source in the morning. In the following, dew measurements with a self-made dew collector were performed to estimate the amount of evaporated HONO from dew in the atmospheric HONO distribution.
Laurent Poulain, Gerald Spindler, Achim Grüner, Thomas Tuch, Bastian Stieger, Dominik van Pinxteren, Jean-Eudes Petit, Olivier Favez, Hartmut Herrmann, and Alfred Wiedensohler
Atmos. Meas. Tech., 13, 4973–4994, https://doi.org/10.5194/amt-13-4973-2020, https://doi.org/10.5194/amt-13-4973-2020, 2020
Short summary
Short summary
The stability and the comparability between ACSM and collocated filter sampling and MPSS measurements was investigated in order to examine the instruments robustness for year-long measurements. Specific attention was paid to the influence of the upper size cutoff diameter to better understand how it might affect the data validation. Recommendations are provided for better on-site quality assurance and quality control of the ACSM, which would be useful for either long-term or intensive campaigns.
Khanneh Wadinga Fomba, Nabil Deabji, Sayf El Islam Barcha, Ibrahim Ouchen, El Mehdi Elbaramoussi, Rajaa Cherkaoui El Moursli, Mimoun Harnafi, Souad El Hajjaji, Abdelwahid Mellouki, and Hartmut Herrmann
Atmos. Meas. Tech., 13, 4773–4790, https://doi.org/10.5194/amt-13-4773-2020, https://doi.org/10.5194/amt-13-4773-2020, 2020
Short summary
Short summary
As air quality monitoring networks often sample aerosol particles on quartz filters, the development and applicability of analytical methods with quartz filters are becoming important. In this study different filter preparation methods (e.g., baking, acid digestion) were investigated for quantifying trace metals on quartz and polycarbonate filters, and cloud water using the total reflection X-Ray fluorescence (TXRF) technique, with low detection limits of about 0.3 ng cm−3 for some elements.
Patrick Dewald, Jonathan M. Liebmann, Nils Friedrich, Justin Shenolikar, Jan Schuladen, Franz Rohrer, David Reimer, Ralf Tillmann, Anna Novelli, Changmin Cho, Kangming Xu, Rupert Holzinger, François Bernard, Li Zhou, Wahid Mellouki, Steven S. Brown, Hendrik Fuchs, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 20, 10459–10475, https://doi.org/10.5194/acp-20-10459-2020, https://doi.org/10.5194/acp-20-10459-2020, 2020
Short summary
Short summary
We present direct measurements of NO3 reactivity resulting from the oxidation of isoprene by NO3 during an intensive simulation chamber study. Measurements were in excellent agreement with values calculated from measured isoprene amounts and the rate coefficient for the reaction of NO3 with isoprene. Comparison of the measurement with NO3 reactivities from non-steady-state and model calculations suggests that isoprene-derived RO2 and HO2 radicals account to ~ 50 % of overall NO3 losses.
Ahmad Jhony Rusumdar, Andreas Tilgner, Ralf Wolke, and Hartmut Herrmann
Atmos. Chem. Phys., 20, 10351–10377, https://doi.org/10.5194/acp-20-10351-2020, https://doi.org/10.5194/acp-20-10351-2020, 2020
Short summary
Short summary
In the present study, simulations with the SPACCIM-SpactMod multiphase chemistry model are performed. The investigations aim at assessing the impact of a detailed treatment of non-ideality in multiphase models dealing with aqueous aerosol chemistry. The model studies demonstrate that the inclusion of non-ideality considerably affects the multiphase chemical processing of transition metal ions, oxidants, and related chemical subsystems such as organic chemistry in aqueous aerosols.
Julian Hofer, Albert Ansmann, Dietrich Althausen, Ronny Engelmann, Holger Baars, Khanneh Wadinga Fomba, Ulla Wandinger, Sabur F. Abdullaev, and Abduvosit N. Makhmudov
Atmos. Chem. Phys., 20, 9265–9280, https://doi.org/10.5194/acp-20-9265-2020, https://doi.org/10.5194/acp-20-9265-2020, 2020
Short summary
Short summary
For the first time, a dense data set of particle extinction-to-backscatter ratios (lidar ratios), depolarization ratios, and backscatter- and extinction-related Ångström exponents for a Central Asian site are presented. The observations were performed with a continuously running multiwavelength polarization Raman lidar at Dushanbe, Tajikistan, during an 18-month campaign. The found optical properties reflect the large range of occurring aerosol mixtures.
Sebastian Zeppenfeld, Manuela van Pinxteren, Anja Engel, and Hartmut Herrmann
Ocean Sci., 16, 817–830, https://doi.org/10.5194/os-16-817-2020, https://doi.org/10.5194/os-16-817-2020, 2020
Short summary
Short summary
An analytical method combining electro-dialysis with high-performance anionic exchange chromatography coupled to pulsed amperometric detection was developed and optimized for analyzing free and combined carbohydrates in seawater and other saline environmental samples.
Manuela van Pinxteren, Khanneh Wadinga Fomba, Nadja Triesch, Christian Stolle, Oliver Wurl, Enno Bahlmann, Xianda Gong, Jens Voigtländer, Heike Wex, Tiera-Brandy Robinson, Stefan Barthel, Sebastian Zeppenfeld, Erik Hans Hoffmann, Marie Roveretto, Chunlin Li, Benoit Grosselin, Veronique Daële, Fabian Senf, Dominik van Pinxteren, Malena Manzi, Nicolás Zabalegui, Sanja Frka, Blaženka Gašparović, Ryan Pereira, Tao Li, Liang Wen, Jiarong Li, Chao Zhu, Hui Chen, Jianmin Chen, Björn Fiedler, Wolf von Tümpling, Katie Alana Read, Shalini Punjabi, Alastair Charles Lewis, James Roland Hopkins, Lucy Jane Carpenter, Ilka Peeken, Tim Rixen, Detlef Schulz-Bull, María Eugenia Monge, Abdelwahid Mellouki, Christian George, Frank Stratmann, and Hartmut Herrmann
Atmos. Chem. Phys., 20, 6921–6951, https://doi.org/10.5194/acp-20-6921-2020, https://doi.org/10.5194/acp-20-6921-2020, 2020
Short summary
Short summary
An introduction to a comprehensive field campaign performed at the Cape Verde Atmospheric Observatory regarding ocean–atmosphere interactions is given. Chemical, physical, biological and meteorological techniques were applied, and measurements of bulk water, the sea surface microlayer, cloud water and ambient aerosol particles took place. Oceanic compounds were found to be transferred to atmospheric aerosol and to the cloud level; however, sea spray contributions to CCN and INPs were limited.
Yanhong Zhu, Andreas Tilgner, Erik Hans Hoffmann, Hartmut Herrmann, Kimitaka Kawamura, Lingxiao Yang, Likun Xue, and Wenxing Wang
Atmos. Chem. Phys., 20, 6725–6747, https://doi.org/10.5194/acp-20-6725-2020, https://doi.org/10.5194/acp-20-6725-2020, 2020
Short summary
Short summary
The formation and processing of secondary inorganic and organic compounds at Mt. Tai, the highest mountain on the North China Plain, are modeled using a multiphase chemical model. The concentrations of key radical and non-radical oxidations in the formation processes are investigated. Sensitivity tests assess the impacts of emission data and glyoxal partitioning constants on modeled results. The key precursors of secondary organic compounds are also identified.
Erik H. Hoffmann, Roland Schrödner, Andreas Tilgner, Ralf Wolke, and Hartmut Herrmann
Geosci. Model Dev., 13, 2587–2609, https://doi.org/10.5194/gmd-13-2587-2020, https://doi.org/10.5194/gmd-13-2587-2020, 2020
Short summary
Short summary
A condensed multiphase halogen and DMS chemistry mechanism for application in chemical transport models has been developed and applied by 2D simulations to explore multiphase marine chemistry above the pristine open ocean. The model simulations have demonstrated the ability of the mechanism in studying aerosol cloud processing effects in the marine atmosphere. First 2D simulations have shown significant differences in the DMS processing under convective and stratiform cloud conditions.
Max R. McGillen, William P. L. Carter, Abdelwahid Mellouki, John J. Orlando, Bénédicte Picquet-Varrault, and Timothy J. Wallington
Earth Syst. Sci. Data, 12, 1203–1216, https://doi.org/10.5194/essd-12-1203-2020, https://doi.org/10.5194/essd-12-1203-2020, 2020
Short summary
Short summary
The gas-phase reactions of organic compounds in the atmosphere are a crucial step in the degradation of anthropogenic and biogenic emissions and the formation of secondary pollutants. This work is an attempt to produce a dataset that is as comprehensive as possible regarding the multitude of chemicals that react in the atmosphere. We find that we are able to make substantial improvements upon previous compendia and that this progress will help improve our understanding of atmospheric chemistry.
Nicolás Zabalegui, Malena Manzi, Antoine Depoorter, Nathalie Hayeck, Marie Roveretto, Chunlin Li, Manuela van Pinxteren, Hartmut Herrmann, Christian George, and María Eugenia Monge
Atmos. Chem. Phys., 20, 6243–6257, https://doi.org/10.5194/acp-20-6243-2020, https://doi.org/10.5194/acp-20-6243-2020, 2020
Short summary
Short summary
A new approach to bridging different fields of science by studying the air–sea interface is described. An untargeted ambient mass-spectrometry-based metabolomics method enables the study of enriched organic compounds found on the sea surface for air–water transfer processes. Results from the metabolomics experiments and a lab-to-field approach provide new opportunities for characterizing the seawater organic-matter content and discovering compounds involved in aerosol-formation processes.
Havala O. T. Pye, Athanasios Nenes, Becky Alexander, Andrew P. Ault, Mary C. Barth, Simon L. Clegg, Jeffrey L. Collett Jr., Kathleen M. Fahey, Christopher J. Hennigan, Hartmut Herrmann, Maria Kanakidou, James T. Kelly, I-Ting Ku, V. Faye McNeill, Nicole Riemer, Thomas Schaefer, Guoliang Shi, Andreas Tilgner, John T. Walker, Tao Wang, Rodney Weber, Jia Xing, Rahul A. Zaveri, and Andreas Zuend
Atmos. Chem. Phys., 20, 4809–4888, https://doi.org/10.5194/acp-20-4809-2020, https://doi.org/10.5194/acp-20-4809-2020, 2020
Short summary
Short summary
Acid rain is recognized for its impacts on human health and ecosystems, and programs to mitigate these effects have had implications for atmospheric acidity. Historical measurements indicate that cloud and fog droplet acidity has changed in recent decades in response to controls on emissions from human activity, while the limited trend data for suspended particles indicate acidity may be relatively constant. This review synthesizes knowledge on the acidity of atmospheric particles and clouds.
Xianda Gong, Heike Wex, Jens Voigtländer, Khanneh Wadinga Fomba, Kay Weinhold, Manuela van Pinxteren, Silvia Henning, Thomas Müller, Hartmut Herrmann, and Frank Stratmann
Atmos. Chem. Phys., 20, 1431–1449, https://doi.org/10.5194/acp-20-1431-2020, https://doi.org/10.5194/acp-20-1431-2020, 2020
Short summary
Short summary
We characterized the aerosol particles in Cabo Verde at sea and cloud levels. We found four well-separable types of PNSDs, with the strongest differences between air masses coming from the ocean compared to from the African continent. During the strongest observed dust periods, CCN concentrations were 2.5 higher than during clean marine periods. The hygroscopicity of the particles did not vary much between different periods. Aerosol at sea level and on the mountaintop was well in agreement.
Xianda Gong, Heike Wex, Manuela van Pinxteren, Nadja Triesch, Khanneh Wadinga Fomba, Jasmin Lubitz, Christian Stolle, Tiera-Brandy Robinson, Thomas Müller, Hartmut Herrmann, and Frank Stratmann
Atmos. Chem. Phys., 20, 1451–1468, https://doi.org/10.5194/acp-20-1451-2020, https://doi.org/10.5194/acp-20-1451-2020, 2020
Short summary
Short summary
In this study, we examined number concentrations of ice nucleating particles (INPs) at Cabo Verde in the oceanic sea surface microlayer and underlying seawater, in the air close to both sea level and cloud level, and in cloud water. The results show that most INPs are supermicron in size, that INP number concentrations in air fit well to those in cloud water and that sea spray aerosols at maximum contributed a small fraction of all INPs in the air at Cabo Verde.
Marco Paglione, Stefania Gilardoni, Matteo Rinaldi, Stefano Decesari, Nicola Zanca, Silvia Sandrini, Lara Giulianelli, Dimitri Bacco, Silvia Ferrari, Vanes Poluzzi, Fabiana Scotto, Arianna Trentini, Laurent Poulain, Hartmut Herrmann, Alfred Wiedensohler, Francesco Canonaco, André S. H. Prévôt, Paola Massoli, Claudio Carbone, Maria Cristina Facchini, and Sandro Fuzzi
Atmos. Chem. Phys., 20, 1233–1254, https://doi.org/10.5194/acp-20-1233-2020, https://doi.org/10.5194/acp-20-1233-2020, 2020
Short summary
Short summary
Our multi-year observational study regarding organic aerosol (OA) in the Po Valley indicates that more than half of OA is of secondary origin (SOA) through all the year and at both urban and rural sites. Within the SOA, the measurements show the importance of biomass burning (BB) aging products during cold seasons and indicate aqueous-phase processing of BB emissions as a fundamental driver of SOA formation in wintertime, with important consequences for air quality policy at the global level.
Tao Li, Zhe Wang, Yaru Wang, Chen Wu, Yiheng Liang, Men Xia, Chuan Yu, Hui Yun, Weihao Wang, Yan Wang, Jia Guo, Hartmut Herrmann, and Tao Wang
Atmos. Chem. Phys., 20, 391–407, https://doi.org/10.5194/acp-20-391-2020, https://doi.org/10.5194/acp-20-391-2020, 2020
Short summary
Short summary
This work presents a field study of cloud water chemistry and interactions of cloud, gas, and aerosols in the polluted coastal boundary layer in southern China. Substantial dissolved organic matter in the acidic cloud water was observed, and the gas- and aqueous-phase partitioning of carbonyl compounds was investigated. The results demonstrated the significant role of cloud processing in altering aerosol properties, especially in producing aqueous organics and droplet-mode aerosols.
Marco Pandolfi, Dennis Mooibroek, Philip Hopke, Dominik van Pinxteren, Xavier Querol, Hartmut Herrmann, Andrés Alastuey, Olivier Favez, Christoph Hüglin, Esperanza Perdrix, Véronique Riffault, Stéphane Sauvage, Eric van der Swaluw, Oksana Tarasova, and Augustin Colette
Atmos. Chem. Phys., 20, 409–429, https://doi.org/10.5194/acp-20-409-2020, https://doi.org/10.5194/acp-20-409-2020, 2020
Short summary
Short summary
In the last scientific assessment report from the LRTAP Convention, it is stated that because non-urban sources are often major contributors to urban pollution, many cities will be unable to meet WHO guideline levels for air pollutants through local action alone. Consequently, it is very important to estimate how much the local and non-local sources contribute to urban pollution in order to design global strategies to reduce the levels of pollutants in European cities.
Simonas Kecorius, Teresa Vogl, Pauli Paasonen, Janne Lampilahti, Daniel Rothenberg, Heike Wex, Sebastian Zeppenfeld, Manuela van Pinxteren, Markus Hartmann, Silvia Henning, Xianda Gong, Andre Welti, Markku Kulmala, Frank Stratmann, Hartmut Herrmann, and Alfred Wiedensohler
Atmos. Chem. Phys., 19, 14339–14364, https://doi.org/10.5194/acp-19-14339-2019, https://doi.org/10.5194/acp-19-14339-2019, 2019
Short summary
Short summary
Arctic sea-ice retreat, atmospheric new particle formation (NPF), and aerosol–cloud interaction may all be linked via a positive feedback mechanism. Understanding the sources of cloud condensation nuclei (CCN) is an important piece in the Arctic amplification puzzle. We show that Arctic newly formed particles do not have to grow beyond the Aitken mode to act as CCN. This is important, because NPF occurrence in the Arctic is expected to increase, making it a significant contributor to CCN budget.
Peter Bräuer, Camille Mouchel-Vallon, Andreas Tilgner, Anke Mutzel, Olaf Böge, Maria Rodigast, Laurent Poulain, Dominik van Pinxteren, Ralf Wolke, Bernard Aumont, and Hartmut Herrmann
Atmos. Chem. Phys., 19, 9209–9239, https://doi.org/10.5194/acp-19-9209-2019, https://doi.org/10.5194/acp-19-9209-2019, 2019
Short summary
Short summary
The article presents a new protocol for computer-assisted automated aqueous-phase chemistry mechanism generation, which has been validated against chamber experiments. Together with a large kinetics database and improved prediction methods for kinetic data, the novel protocol provides an unmatched tool for detailed studies of tropospheric aqueous-phase chemistry in complex model studies and for the design and analysis of chamber experiments.
Bastian Stieger, Gerald Spindler, Dominik van Pinxteren, Achim Grüner, Markus Wallasch, and Hartmut Herrmann
Atmos. Meas. Tech., 12, 281–298, https://doi.org/10.5194/amt-12-281-2019, https://doi.org/10.5194/amt-12-281-2019, 2019
Short summary
Short summary
A MARGA was combined with an additional IC system specialized for the 2 h interval online quantification of 12 low-molecular-weight organic acids in the gas and particle phases. Low limits of detection and good precision were achieved. The suitability for field measurements was shown. This setup reduces laboratory work and filter sampling artifacts. Diurnal profiles, sources and phase distributions of these compounds will improve the knowledge of the tropospheric multiphase chemistry.
Shan Huang, Zhijun Wu, Laurent Poulain, Manuela van Pinxteren, Maik Merkel, Denise Assmann, Hartmut Herrmann, and Alfred Wiedensohler
Atmos. Chem. Phys., 18, 18043–18062, https://doi.org/10.5194/acp-18-18043-2018, https://doi.org/10.5194/acp-18-18043-2018, 2018
Short summary
Short summary
The Atlantic aerosols are characterized based on high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) measurements during four open-ocean cruises. This unique data set provides the latitudinal distribution of source contributions of organic aerosols (OAs) over the Atlantic Ocean, showing that marine sources could control the OA formation over the South Atlantic, while strong continental influence was found near Africa and Europe.
Yanhong Zhu, Lingxiao Yang, Jianmin Chen, Kimitaka Kawamura, Mamiko Sato, Andreas Tilgner, Dominik van Pinxteren, Ying Chen, Likun Xue, Xinfeng Wang, Isobel J. Simpson, Hartmut Herrmann, Donald R. Blake, and Wenxing Wang
Atmos. Chem. Phys., 18, 10741–10758, https://doi.org/10.5194/acp-18-10741-2018, https://doi.org/10.5194/acp-18-10741-2018, 2018
Short summary
Short summary
Molecular distributions of dicarboxylic acids, oxocarboxylic acids and α-dicarbonyls in the free troposphere are identified, and their concentration variations between 2014 and 2006 are presented. High nighttime concentrations were probably due to precursor emissions and aqueous-phase oxidation. Biomass burning was significant, but its tracer levoglucosan in 2014 was 5 times lower than 2006 concentrations. Finally, regional emission from anthropogenic activities was identified as a major source.
Eleni Karnezi, Benjamin N. Murphy, Laurent Poulain, Hartmut Herrmann, Alfred Wiedensohler, Florian Rubach, Astrid Kiendler-Scharr, Thomas F. Mentel, and Spyros N. Pandis
Atmos. Chem. Phys., 18, 10759–10772, https://doi.org/10.5194/acp-18-10759-2018, https://doi.org/10.5194/acp-18-10759-2018, 2018
Short summary
Short summary
Different parameterizations of the organic aerosol (OA) formation and evolution are evaluated using ground and airborne measurements collected in the 2012 PEGASOS field campaign in the Po Valley (Italy). Total OA concentration and O : C ratios were reproduced within experimental error by a number of schemes. Anthropogenic secondary OA (SOA) contributed 15–25 % of the total OA, 20–35 % of SOA from intermediate volatility compounds oxidation, and 15–45 % of biogenic SOA depending on the scheme.
Julia Schmale, Silvia Henning, Stefano Decesari, Bas Henzing, Helmi Keskinen, Karine Sellegri, Jurgita Ovadnevaite, Mira L. Pöhlker, Joel Brito, Aikaterini Bougiatioti, Adam Kristensson, Nikos Kalivitis, Iasonas Stavroulas, Samara Carbone, Anne Jefferson, Minsu Park, Patrick Schlag, Yoko Iwamoto, Pasi Aalto, Mikko Äijälä, Nicolas Bukowiecki, Mikael Ehn, Göran Frank, Roman Fröhlich, Arnoud Frumau, Erik Herrmann, Hartmut Herrmann, Rupert Holzinger, Gerard Kos, Markku Kulmala, Nikolaos Mihalopoulos, Athanasios Nenes, Colin O'Dowd, Tuukka Petäjä, David Picard, Christopher Pöhlker, Ulrich Pöschl, Laurent Poulain, André Stephan Henry Prévôt, Erik Swietlicki, Meinrat O. Andreae, Paulo Artaxo, Alfred Wiedensohler, John Ogren, Atsushi Matsuki, Seong Soo Yum, Frank Stratmann, Urs Baltensperger, and Martin Gysel
Atmos. Chem. Phys., 18, 2853–2881, https://doi.org/10.5194/acp-18-2853-2018, https://doi.org/10.5194/acp-18-2853-2018, 2018
Short summary
Short summary
Collocated long-term observations of cloud condensation nuclei (CCN) number concentrations, particle number size distributions and chemical composition from 12 sites are synthesized. Observations cover coastal environments, the Arctic, the Mediterranean, the boreal and rain forest, high alpine and continental background sites, and Monsoon-influenced areas. We interpret regional and seasonal variability. CCN concentrations are predicted with the κ–Köhler model and compared to the measurements.
Julian Hofer, Dietrich Althausen, Sabur F. Abdullaev, Abduvosit N. Makhmudov, Bakhron I. Nazarov, Georg Schettler, Ronny Engelmann, Holger Baars, K. Wadinga Fomba, Konrad Müller, Bernd Heinold, Konrad Kandler, and Albert Ansmann
Atmos. Chem. Phys., 17, 14559–14577, https://doi.org/10.5194/acp-17-14559-2017, https://doi.org/10.5194/acp-17-14559-2017, 2017
Short summary
Short summary
The Central Asian Dust Experiment provides unprecedented data on vertically resolved aerosol optical properties over Central Asia from continuous 18-month polarization Raman lidar observations in Dushanbe, Tajikistan. Central Asia is affected by climate change (e.g. glacier retreat) but in a large part missing vertically resolved aerosol measurements, which would help to better understand transport of dust and pollution aerosol across Central Asia and their influence on climate and health.
Qing Mu, Gerhard Lammel, Christian N. Gencarelli, Ian M. Hedgecock, Ying Chen, Petra Přibylová, Monique Teich, Yuxuan Zhang, Guangjie Zheng, Dominik van Pinxteren, Qiang Zhang, Hartmut Herrmann, Manabu Shiraiwa, Peter Spichtinger, Hang Su, Ulrich Pöschl, and Yafang Cheng
Atmos. Chem. Phys., 17, 12253–12267, https://doi.org/10.5194/acp-17-12253-2017, https://doi.org/10.5194/acp-17-12253-2017, 2017
Short summary
Short summary
Polycyclic aromatic hydrocarbons (PAHs) are hazardous pollutants with the largest emissions in East Asia. The regional WRF-Chem-PAH model has been developed to reflect the state-of-the-art understanding of current PAHs studies with several new or updated features. It is able to reasonably well simulate the concentration levels and particulate mass fractions of PAHs near the sources and at a remote outflow region of East Asia, in high spatial and temporal resolutions.
Jiarong Li, Xinfeng Wang, Jianmin Chen, Chao Zhu, Weijun Li, Chengbao Li, Lu Liu, Caihong Xu, Liang Wen, Likun Xue, Wenxing Wang, Aijun Ding, and Hartmut Herrmann
Atmos. Chem. Phys., 17, 9885–9896, https://doi.org/10.5194/acp-17-9885-2017, https://doi.org/10.5194/acp-17-9885-2017, 2017
Short summary
Short summary
Cloud events at Mt. Tai were investigated for the chemical composition and size distribution of cloud droplets. An obvious rise in pH was found for elevated NH+4 during the last decade. Higher PM2.5 levels resulted in higher concentrations of water-soluble ions, smaller sizes and higher numbers of cloud droplets. The mechanism of cloud-droplet formation and the mass transfer between aerosol–gas–cloud phases were summarized to enrich the knowledge of cloud chemical and microphysical properties.
Carlo Bozzetti, Imad El Haddad, Dalia Salameh, Kaspar Rudolf Daellenbach, Paola Fermo, Raquel Gonzalez, María Cruz Minguillón, Yoshiteru Iinuma, Laurent Poulain, Miriam Elser, Emanuel Müller, Jay Gates Slowik, Jean-Luc Jaffrezo, Urs Baltensperger, Nicolas Marchand, and André Stephan Henry Prévôt
Atmos. Chem. Phys., 17, 8247–8268, https://doi.org/10.5194/acp-17-8247-2017, https://doi.org/10.5194/acp-17-8247-2017, 2017
Short summary
Short summary
We present the first long-term organic aerosol source apportionment in an environment influenced by anthropogenic emissions including biomass burning and industrial processes and an active photochemistry. Online and offline aerosol mass spectrometry were used to characterize these emissions and their transformation. Measurements of organic markers provided insights into the origin of biomass smoke in this area, with different seasonal contributions from domestic heating and agricultural burning.
Giancarlo Ciarelli, Sebnem Aksoyoglu, Imad El Haddad, Emily A. Bruns, Monica Crippa, Laurent Poulain, Mikko Äijälä, Samara Carbone, Evelyn Freney, Colin O'Dowd, Urs Baltensperger, and André S. H. Prévôt
Atmos. Chem. Phys., 17, 7653–7669, https://doi.org/10.5194/acp-17-7653-2017, https://doi.org/10.5194/acp-17-7653-2017, 2017
Short summary
Short summary
Organic aerosol (OA) comprises the main fraction of fine particulate matter (PM1). Using a new VBS parameterization, we performed model-based source apportionment studies to assess the importance of different emission sources to the total OA loads in Europe during winter periods. Our results indicate that residential wood burning emissions represent the major source of OA, followed by non-residential emission sources (i.e. traffic and industries).
Maria Rodigast, Anke Mutzel, and Hartmut Herrmann
Atmos. Chem. Phys., 17, 3929–3943, https://doi.org/10.5194/acp-17-3929-2017, https://doi.org/10.5194/acp-17-3929-2017, 2017
Short summary
Short summary
The study presents, for the first time, a quantification method for methylglyoxal oligomers and highlights their importance for SOA formation. The method was applied to determine the fraction of methylglyoxal oligomers of 1,3,5-trimethylbenzene SOA dependent on relative humidity and seed particle acidity. An oligomer contribution of up to 8 % was calculated varying with experimental conditions and thus further hints for the dependency of the oligomer formation mechanism on conditions were found.
Nga Lee Ng, Steven S. Brown, Alexander T. Archibald, Elliot Atlas, Ronald C. Cohen, John N. Crowley, Douglas A. Day, Neil M. Donahue, Juliane L. Fry, Hendrik Fuchs, Robert J. Griffin, Marcelo I. Guzman, Hartmut Herrmann, Alma Hodzic, Yoshiteru Iinuma, José L. Jimenez, Astrid Kiendler-Scharr, Ben H. Lee, Deborah J. Luecken, Jingqiu Mao, Robert McLaren, Anke Mutzel, Hans D. Osthoff, Bin Ouyang, Benedicte Picquet-Varrault, Ulrich Platt, Havala O. T. Pye, Yinon Rudich, Rebecca H. Schwantes, Manabu Shiraiwa, Jochen Stutz, Joel A. Thornton, Andreas Tilgner, Brent J. Williams, and Rahul A. Zaveri
Atmos. Chem. Phys., 17, 2103–2162, https://doi.org/10.5194/acp-17-2103-2017, https://doi.org/10.5194/acp-17-2103-2017, 2017
Short summary
Short summary
Oxidation of biogenic volatile organic compounds by NO3 is an important interaction between anthropogenic
and natural emissions. This review results from a June 2015 workshop and includes the recent literature
on kinetics, mechanisms, organic aerosol yields, and heterogeneous chemistry; advances in analytical
instrumentation; the current state NO3-BVOC chemistry in atmospheric models; and critical needs for
future research in modeling, field observations, and laboratory studies.
Monique Teich, Dominik van Pinxteren, Michael Wang, Simonas Kecorius, Zhibin Wang, Thomas Müller, Griša Močnik, and Hartmut Herrmann
Atmos. Chem. Phys., 17, 1653–1672, https://doi.org/10.5194/acp-17-1653-2017, https://doi.org/10.5194/acp-17-1653-2017, 2017
Short summary
Short summary
This study provides a large data set on concentrations of individual brown carbon constituents, i.e., nitrated aromatic compounds, in diverse atmospheric environments and their relative contribution to water-soluble and particulate light absorption. It extends the existing knowledge on the abundance of brown carbon and its molecular composition and provides scientific motivation for further studies on ambient brown carbon constituents.
Martin Brüggemann, Laurent Poulain, Andreas Held, Torsten Stelzer, Christoph Zuth, Stefanie Richters, Anke Mutzel, Dominik van Pinxteren, Yoshiteru Iinuma, Sarmite Katkevica, René Rabe, Hartmut Herrmann, and Thorsten Hoffmann
Atmos. Chem. Phys., 17, 1453–1469, https://doi.org/10.5194/acp-17-1453-2017, https://doi.org/10.5194/acp-17-1453-2017, 2017
Short summary
Short summary
Using complementary mass spectrometric techniques during a field study in central Europe, characteristic contributors to the organic aerosol mass were identified. Besides common marker compounds for biogenic secondary organic aerosol, highly oxidized sulfur species were detected in the particle phase. High-time-resolution measurements revealed correlations between these organosulfates and particulate sulfate as well as gas-phase peroxyradicals, giving hints to underlying formation mechanisms.
Johannes Schneider, Stephan Mertes, Dominik van Pinxteren, Hartmut Herrmann, and Stephan Borrmann
Atmos. Chem. Phys., 17, 1571–1593, https://doi.org/10.5194/acp-17-1571-2017, https://doi.org/10.5194/acp-17-1571-2017, 2017
Short summary
Short summary
We analyzed the composition of cloud droplet residuals and of aerosol particles sampled on a mountaintop site. The data show that about 85 % of the submicron aerosol mass partitions into the cloud phase, and that the uptake of soluble compounds (nitric acid, ammonia, and organic gases) from the gas phase into the cloud droplets is very effective. This will lead to a redistribution of these compounds among the aerosol particles and thereby to a more uniform aerosol after cloud evaporation.
Silvia Sandrini, Dominik van Pinxteren, Lara Giulianelli, Hartmut Herrmann, Laurent Poulain, Maria Cristina Facchini, Stefania Gilardoni, Matteo Rinaldi, Marco Paglione, Barbara J. Turpin, Francesca Pollini, Silvia Bucci, Nicola Zanca, and Stefano Decesari
Atmos. Chem. Phys., 16, 10879–10897, https://doi.org/10.5194/acp-16-10879-2016, https://doi.org/10.5194/acp-16-10879-2016, 2016
Short summary
Short summary
This paper deals with impactor measurements performed in the summer 2012 during the EU project PEGASOS campaign in the Po Valley, at an urban and a rural site. The paper tries to disentangle the effects of weather anomalies (temporal and spatial) from those of diverse emissions (NH3) and chemical processes on the formation of secondary aerosols in the region, with special focus on nocturnal ammonium nitrate formation and its implications (aqueous formation of secondary organic aerosol).
Giancarlo Ciarelli, Sebnem Aksoyoglu, Monica Crippa, Jose-Luis Jimenez, Eriko Nemitz, Karine Sellegri, Mikko Äijälä, Samara Carbone, Claudia Mohr, Colin O'Dowd, Laurent Poulain, Urs Baltensperger, and André S. H. Prévôt
Atmos. Chem. Phys., 16, 10313–10332, https://doi.org/10.5194/acp-16-10313-2016, https://doi.org/10.5194/acp-16-10313-2016, 2016
Short summary
Short summary
Recent studies based on aerosol mass spectrometer measurements revealed that the organic fraction dominates the non-refractory PM1 composition. However its representation in chemical transport models is still very challenging due to uncertainties in emission sources and formation pathways. In this study, a novel organic aerosol scheme was tested in the regional air quality model CAMx and results were compared with ambient measurements at 11 different sites in Europe.
Stefanie Richters, Hartmut Herrmann, and Torsten Berndt
Atmos. Chem. Phys., 16, 9831–9845, https://doi.org/10.5194/acp-16-9831-2016, https://doi.org/10.5194/acp-16-9831-2016, 2016
Short summary
Short summary
New reaction pathways of highly oxidized multifunctional organic compounds (HOMs) from the ozonolysis of the sesquiterpene (C15H24) beta-caryophyllene were elucidated based on experiments using isotopically labelled ozone and H/D exchange experiments. These new insights in reaction pathways of unsaturated RO2 radicals are responsible for the production of about two-thirds of the detected HOMs from beta-caryophyllene and extend the knowledge of HOM formation mechanisms in the atmosphere.
Nan Ma, Chunsheng Zhao, Jiangchuan Tao, Zhijun Wu, Simonas Kecorius, Zhibin Wang, Johannes Größ, Hongjian Liu, Yuxuan Bian, Ye Kuang, Monique Teich, Gerald Spindler, Konrad Müller, Dominik van Pinxteren, Hartmut Herrmann, Min Hu, and Alfred Wiedensohler
Atmos. Chem. Phys., 16, 8593–8607, https://doi.org/10.5194/acp-16-8593-2016, https://doi.org/10.5194/acp-16-8593-2016, 2016
Short summary
Short summary
New particle formation (NPF) is one of main sources of cloud condensation nuclei (CCN) in the atmosphere. Based on in situ measurements, we found that CCN activity of newly formed particles largely differs in different NPF events. It is therefore difficult to find a simple parameterization of CCN activity for NPF events. Using a fixed size-resolved activation ratio curve or critical diameter is very likely to result in large biases up to 50 % in the calculated NCCN during NPF events.
Amy P. Sullivan, Natasha Hodas, Barbara J. Turpin, Kate Skog, Frank N. Keutsch, Stefania Gilardoni, Marco Paglione, Matteo Rinaldi, Stefano Decesari, Maria Cristina Facchini, Laurent Poulain, Hartmut Herrmann, Alfred Wiedensohler, Eiko Nemitz, Marsailidh M. Twigg, and Jeffrey L. Collett Jr.
Atmos. Chem. Phys., 16, 8095–8108, https://doi.org/10.5194/acp-16-8095-2016, https://doi.org/10.5194/acp-16-8095-2016, 2016
Short summary
Short summary
This paper presents the results from our measurements and approach for the investigation of aqueous secondary organic aerosol (aqSOA) formation in the ambient atmosphere. When local aqSOA formation was observed, a correlation of water-soluble organic carbon with organic aerosol, aerosol liquid water, relative humidity, and aerosol nitrate was found. Key factors of local aqSOA production include air mass stagnation, formation of local nitrate overnight, and significant amounts of ammonia.
Bernadette Rosati, Martin Gysel, Florian Rubach, Thomas F. Mentel, Brigitta Goger, Laurent Poulain, Patrick Schlag, Pasi Miettinen, Aki Pajunoja, Annele Virtanen, Henk Klein Baltink, J. S. Bas Henzing, Johannes Größ, Gian Paolo Gobbi, Alfred Wiedensohler, Astrid Kiendler-Scharr, Stefano Decesari, Maria Cristina Facchini, Ernest Weingartner, and Urs Baltensperger
Atmos. Chem. Phys., 16, 7295–7315, https://doi.org/10.5194/acp-16-7295-2016, https://doi.org/10.5194/acp-16-7295-2016, 2016
Short summary
Short summary
This study presents PEGASOS project data from field campaigns in the Po Valley, Italy and the Netherlands. Vertical profiles of aerosol hygroscopicity and chemical composition were investigated with airborne measurements on board a Zeppelin NT airship. A special focus was on the evolution of different mixing layers within the PBL as a function of daytime. A closure study showed that variations in aerosol hygroscopicity can well be explained by the variations in chemical composition.
James W. Grayson, Yue Zhang, Anke Mutzel, Lindsay Renbaum-Wolff, Olaf Böge, Saeid Kamal, Hartmut Herrmann, Scot T. Martin, and Allan K. Bertram
Atmos. Chem. Phys., 16, 6027–6040, https://doi.org/10.5194/acp-16-6027-2016, https://doi.org/10.5194/acp-16-6027-2016, 2016
Short summary
Short summary
The effect of several experimental parameters on the viscosity of secondary organic material (SOM) generated from the ozonolysis of α-pinene has been studied. The results demonstrate that the viscosity of SOM depends on the particle mass concentration at which SOM is produced, and the relative humidity (RH) at which the SOM is studied. Hence, particle mass concentration and RH should be considered when comparing experimental results for SOM, or extrapolating laboratory results to the atmosphere.
Dominik van Pinxteren, Khanneh Wadinga Fomba, Stephan Mertes, Konrad Müller, Gerald Spindler, Johannes Schneider, Taehyoung Lee, Jeffrey L. Collett, and Hartmut Herrmann
Atmos. Chem. Phys., 16, 3185–3205, https://doi.org/10.5194/acp-16-3185-2016, https://doi.org/10.5194/acp-16-3185-2016, 2016
Yan Lv, Xiang Li, Ting Ting Xu, Tian Tao Cheng, Xin Yang, Jian Min Chen, Yoshiteru Iinuma, and Hartmut Herrmann
Atmos. Chem. Phys., 16, 2971–2983, https://doi.org/10.5194/acp-16-2971-2016, https://doi.org/10.5194/acp-16-2971-2016, 2016
Short summary
Short summary
The study focused on size-resolved PAHs in urban aerosols at a megacity Shanghai site. The results provide us with a mechanistic understanding of the particle size distribution of PAHs and their transport in the human respiratory system; this can help develop better source control strategies.
Maria Rodigast, Anke Mutzel, Janine Schindelka, and Hartmut Herrmann
Atmos. Chem. Phys., 16, 2689–2702, https://doi.org/10.5194/acp-16-2689-2016, https://doi.org/10.5194/acp-16-2689-2016, 2016
Short summary
Short summary
The study highlights methyl ethyl ketone as a new and unknown source for methylglyoxal in the aqueous phase that is important for aqueous secondary organic aerosol (aqSOA) formation. Besides 2,3-butanedione (29.5 %) and hydroxyacetone (3.0 %), methylglyoxal was formed with a molar yield of 9.5 %. According to the detected products a reaction mechanism was developed and evaluated. The comparison of the model and experimental data showed excellent agreements, in particular for methylglyoxal.
A. J. Rusumdar, R. Wolke, A. Tilgner, and H. Herrmann
Geosci. Model Dev., 9, 247–281, https://doi.org/10.5194/gmd-9-247-2016, https://doi.org/10.5194/gmd-9-247-2016, 2016
Short summary
Short summary
The present paper was aimed at the further development of SPACCIM to treat both complex multiphase chemistry and phase transfer processes considering new non-ideality properties of concentrated solutions. Model studies showed the applicability of the new kinetic model approach for complex aerosol mixtures and detailed chemical mechanisms. Simulations have implied that the treatment of non-ideality should be mandatory for modeling multiphase chemical processes in deliquesced particles.
A. Roth, J. Schneider, T. Klimach, S. Mertes, D. van Pinxteren, H. Herrmann, and S. Borrmann
Atmos. Chem. Phys., 16, 505–524, https://doi.org/10.5194/acp-16-505-2016, https://doi.org/10.5194/acp-16-505-2016, 2016
Short summary
Short summary
This paper reports on single-particle measurements of ambient aerosol particles and cloud residues sampled from orographic clouds on a mountain site in central Germany.
The results show that soot particles can get efficiently activated in cloud droplets when they are mixed with or coated by sulfate and nitrate. Cloud processing leads to addition of nitrate and sulfate to the particles, thereby increasing the hygroscopicity of these particles when they remain in the air after cloud evaporation.
K. R. Daellenbach, C. Bozzetti, A. Křepelová, F. Canonaco, R. Wolf, P. Zotter, P. Fermo, M. Crippa, J. G. Slowik, Y. Sosedova, Y. Zhang, R.-J. Huang, L. Poulain, S. Szidat, U. Baltensperger, I. El Haddad, and A. S. H. Prévôt
Atmos. Meas. Tech., 9, 23–39, https://doi.org/10.5194/amt-9-23-2016, https://doi.org/10.5194/amt-9-23-2016, 2016
Short summary
Short summary
In this study, we developed an offline technique using the AMS for the characterization of the chemical fingerprints of aerosols collected on quartz filters, and evaluated the suitability of the organic mass spectral data for source apportionment. This technique may be used to enhance the AMS capabilities in measuring size-fractionated, spatially resolved long-term data sets.
V. Crenn, J. Sciare, P. L. Croteau, S. Verlhac, R. Fröhlich, C. A. Belis, W. Aas, M. Äijälä, A. Alastuey, B. Artiñano, D. Baisnée, N. Bonnaire, M. Bressi, M. Canagaratna, F. Canonaco, C. Carbone, F. Cavalli, E. Coz, M. J. Cubison, J. K. Esser-Gietl, D. C. Green, V. Gros, L. Heikkinen, H. Herrmann, C. Lunder, M. C. Minguillón, G. Močnik, C. D. O'Dowd, J. Ovadnevaite, J.-E. Petit, E. Petralia, L. Poulain, M. Priestman, V. Riffault, A. Ripoll, R. Sarda-Estève, J. G. Slowik, A. Setyan, A. Wiedensohler, U. Baltensperger, A. S. H. Prévôt, J. T. Jayne, and O. Favez
Atmos. Meas. Tech., 8, 5063–5087, https://doi.org/10.5194/amt-8-5063-2015, https://doi.org/10.5194/amt-8-5063-2015, 2015
Short summary
Short summary
A large intercomparison study of 13 Q-ACSM was conducted for a 3-week period in the region of Paris to evaluate the performance of this instrument and to monitor the major NR-PM1 chemical components. Reproducibility expanded uncertainties of Q-ACSM concentration measurements were found to be 9, 15, 19, 28, and 36% for NR-PM1, NO3, OM, SO4, and NH4, respectively. Some recommendations regarding best calibration practices, standardized data processing and data treatment are also provided.
Z. J. Wu, L. Poulain, W. Birmili, J. Größ, N. Niedermeier, Z. B. Wang, H. Herrmann, and A. Wiedensohler
Atmos. Chem. Phys., 15, 13071–13083, https://doi.org/10.5194/acp-15-13071-2015, https://doi.org/10.5194/acp-15-13071-2015, 2015
Y. Zhang, N. Mahowald, R. A. Scanza, E. Journet, K. Desboeufs, S. Albani, J. F. Kok, G. Zhuang, Y. Chen, D. D. Cohen, A. Paytan, M. D. Patey, E. P. Achterberg, J. P. Engelbrecht, and K. W. Fomba
Biogeosciences, 12, 5771–5792, https://doi.org/10.5194/bg-12-5771-2015, https://doi.org/10.5194/bg-12-5771-2015, 2015
Short summary
Short summary
A new technique to determine a size-fractionated global soil elemental emission inventory based on a global soil and mineralogical data set is introduced. Spatial variability of mineral dust elemental fractions (8 elements, e.g., Ca, Fe, Al) is identified on a global scale, particularly for Ca. The Ca/Al ratio ranged between 0.1 and 5.0 and is confirmed as an indicator of dust source regions by a global dust model. Total and soluble dust element fluxes into different ocean basins are estimated.
K. W. Fomba, D. van Pinxteren, K. Müller, Y. Iinuma, T. Lee, J. L. Collett Jr., and H. Herrmann
Atmos. Chem. Phys., 15, 8751–8765, https://doi.org/10.5194/acp-15-8751-2015, https://doi.org/10.5194/acp-15-8751-2015, 2015
R. Fröhlich, V. Crenn, A. Setyan, C. A. Belis, F. Canonaco, O. Favez, V. Riffault, J. G. Slowik, W. Aas, M. Aijälä, A. Alastuey, B. Artiñano, N. Bonnaire, C. Bozzetti, M. Bressi, C. Carbone, E. Coz, P. L. Croteau, M. J. Cubison, J. K. Esser-Gietl, D. C. Green, V. Gros, L. Heikkinen, H. Herrmann, J. T. Jayne, C. R. Lunder, M. C. Minguillón, G. Močnik, C. D. O'Dowd, J. Ovadnevaite, E. Petralia, L. Poulain, M. Priestman, A. Ripoll, R. Sarda-Estève, A. Wiedensohler, U. Baltensperger, J. Sciare, and A. S. H. Prévôt
Atmos. Meas. Tech., 8, 2555–2576, https://doi.org/10.5194/amt-8-2555-2015, https://doi.org/10.5194/amt-8-2555-2015, 2015
Short summary
Short summary
Source apportionment (SA) of organic aerosol mass spectrometric data measured with the Aerodyne ACSM using PMF/ME2 is a frequently used technique in the AMS/ACSM community. ME2 uncertainties due to instrument-to-instrument variations are elucidated by performing SA on ambient data from 14 individual, co-located ACSMs, recorded during the first ACTRIS ACSM intercomparison study at SIRTA near Paris (France). The mean uncertainty was 17.2%. Recommendations for future studies using ME2 are provided.
M. Rodigast, A. Mutzel, Y. Iinuma, S. Haferkorn, and H. Herrmann
Atmos. Meas. Tech., 8, 2409–2416, https://doi.org/10.5194/amt-8-2409-2015, https://doi.org/10.5194/amt-8-2409-2015, 2015
Short summary
Short summary
An optimised method for derivatisation of carbonyl compounds with o-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine (PFBHA) in aqueous samples is described. The comprehensive optimisation of the method leads to an improvement of the detection limit up to a factor of 10 highlighting the good sensitivity of the optimised method for atmospherically relevant carbonyl compounds. The optimised method was successfully applied to detect carbonyl compounds from the aqueous phase oxidation of 3-methylbutanone.
L. K. Whalley, D. Stone, I. J. George, S. Mertes, D. van Pinxteren, A. Tilgner, H. Herrmann, M. J. Evans, and D. E. Heard
Atmos. Chem. Phys., 15, 3289–3301, https://doi.org/10.5194/acp-15-3289-2015, https://doi.org/10.5194/acp-15-3289-2015, 2015
L. Poulain, W. Birmili, F. Canonaco, M. Crippa, Z. J. Wu, S. Nordmann, G. Spindler, A. S. H. Prévôt, A. Wiedensohler, and H. Herrmann
Atmos. Chem. Phys., 14, 10145–10162, https://doi.org/10.5194/acp-14-10145-2014, https://doi.org/10.5194/acp-14-10145-2014, 2014
A. Tilgner, L. Schöne, P. Bräuer, D. van Pinxteren, E. Hoffmann, G. Spindler, S. A. Styler, S. Mertes, W. Birmili, R. Otto, M. Merkel, K. Weinhold, A. Wiedensohler, H. Deneke, R. Schrödner, R. Wolke, J. Schneider, W. Haunold, A. Engel, A. Wéber, and H. Herrmann
Atmos. Chem. Phys., 14, 9105–9128, https://doi.org/10.5194/acp-14-9105-2014, https://doi.org/10.5194/acp-14-9105-2014, 2014
C. Fountoukis, A. G. Megaritis, K. Skyllakou, P. E. Charalampidis, C. Pilinis, H. A. C. Denier van der Gon, M. Crippa, F. Canonaco, C. Mohr, A. S. H. Prévôt, J. D. Allan, L. Poulain, T. Petäjä, P. Tiitta, S. Carbone, A. Kiendler-Scharr, E. Nemitz, C. O'Dowd, E. Swietlicki, and S. N. Pandis
Atmos. Chem. Phys., 14, 9061–9076, https://doi.org/10.5194/acp-14-9061-2014, https://doi.org/10.5194/acp-14-9061-2014, 2014
K. W. Fomba, K. Müller, D. van Pinxteren, L. Poulain, M. van Pinxteren, and H. Herrmann
Atmos. Chem. Phys., 14, 8883–8904, https://doi.org/10.5194/acp-14-8883-2014, https://doi.org/10.5194/acp-14-8883-2014, 2014
S. Henning, K. Dieckmann, K. Ignatius, M. Schäfer, P. Zedler, E. Harris, B. Sinha, D. van Pinxteren, S. Mertes, W. Birmili, M. Merkel, Z. Wu, A. Wiedensohler, H. Wex, H. Herrmann, and F. Stratmann
Atmos. Chem. Phys., 14, 7859–7868, https://doi.org/10.5194/acp-14-7859-2014, https://doi.org/10.5194/acp-14-7859-2014, 2014
R. M. Healy, N. Riemer, J. C. Wenger, M. Murphy, M. West, L. Poulain, A. Wiedensohler, I. P. O'Connor, E. McGillicuddy, J. R. Sodeau, and G. J. Evans
Atmos. Chem. Phys., 14, 6289–6299, https://doi.org/10.5194/acp-14-6289-2014, https://doi.org/10.5194/acp-14-6289-2014, 2014
M. Crippa, F. Canonaco, V. A. Lanz, M. Äijälä, J. D. Allan, S. Carbone, G. Capes, D. Ceburnis, M. Dall'Osto, D. A. Day, P. F. DeCarlo, M. Ehn, A. Eriksson, E. Freney, L. Hildebrandt Ruiz, R. Hillamo, J. L. Jimenez, H. Junninen, A. Kiendler-Scharr, A.-M. Kortelainen, M. Kulmala, A. Laaksonen, A. A. Mensah, C. Mohr, E. Nemitz, C. O'Dowd, J. Ovadnevaite, S. N. Pandis, T. Petäjä, L. Poulain, S. Saarikoski, K. Sellegri, E. Swietlicki, P. Tiitta, D. R. Worsnop, U. Baltensperger, and A. S. H. Prévôt
Atmos. Chem. Phys., 14, 6159–6176, https://doi.org/10.5194/acp-14-6159-2014, https://doi.org/10.5194/acp-14-6159-2014, 2014
L. Schöne and H. Herrmann
Atmos. Chem. Phys., 14, 4503–4514, https://doi.org/10.5194/acp-14-4503-2014, https://doi.org/10.5194/acp-14-4503-2014, 2014
S. Scheinhardt, D. van Pinxteren, K. Müller, G. Spindler, and H. Herrmann
Atmos. Chem. Phys., 14, 4531–4538, https://doi.org/10.5194/acp-14-4531-2014, https://doi.org/10.5194/acp-14-4531-2014, 2014
E. Harris, B. Sinha, D. van Pinxteren, J. Schneider, L. Poulain, J. Collett, B. D'Anna, B. Fahlbusch, S. Foley, K. W. Fomba, C. George, T. Gnauk, S. Henning, T. Lee, S. Mertes, A. Roth, F. Stratmann, S. Borrmann, P. Hoppe, and H. Herrmann
Atmos. Chem. Phys., 14, 4219–4235, https://doi.org/10.5194/acp-14-4219-2014, https://doi.org/10.5194/acp-14-4219-2014, 2014
D. van Pinxteren, C. Neusüß, and H. Herrmann
Atmos. Chem. Phys., 14, 3913–3928, https://doi.org/10.5194/acp-14-3913-2014, https://doi.org/10.5194/acp-14-3913-2014, 2014
N. Niedermeier, A. Held, T. Müller, B. Heinold, K. Schepanski, I. Tegen, K. Kandler, M. Ebert, S. Weinbruch, K. Read, J. Lee, K. W. Fomba, K. Müller, H. Herrmann, and A. Wiedensohler
Atmos. Chem. Phys., 14, 2245–2266, https://doi.org/10.5194/acp-14-2245-2014, https://doi.org/10.5194/acp-14-2245-2014, 2014
A. Kahnt, Y. Iinuma, A. Mutzel, O. Böge, M. Claeys, and H. Herrmann
Atmos. Chem. Phys., 14, 719–736, https://doi.org/10.5194/acp-14-719-2014, https://doi.org/10.5194/acp-14-719-2014, 2014
M. van Pinxteren and H. Herrmann
Atmos. Chem. Phys., 13, 11791–11802, https://doi.org/10.5194/acp-13-11791-2013, https://doi.org/10.5194/acp-13-11791-2013, 2013
R. M. Healy, J. Sciare, L. Poulain, M. Crippa, A. Wiedensohler, A. S. H. Prévôt, U. Baltensperger, R. Sarda-Estève, M. L. McGuire, C.-H. Jeong, E. McGillicuddy, I. P. O'Connor, J. R. Sodeau, G. J. Evans, and J. C. Wenger
Atmos. Chem. Phys., 13, 9479–9496, https://doi.org/10.5194/acp-13-9479-2013, https://doi.org/10.5194/acp-13-9479-2013, 2013
M. Crippa, F. Canonaco, J. G. Slowik, I. El Haddad, P. F. DeCarlo, C. Mohr, M. F. Heringa, R. Chirico, N. Marchand, B. Temime-Roussel, E. Abidi, L. Poulain, A. Wiedensohler, U. Baltensperger, and A. S. H. Prévôt
Atmos. Chem. Phys., 13, 8411–8426, https://doi.org/10.5194/acp-13-8411-2013, https://doi.org/10.5194/acp-13-8411-2013, 2013
Z. J. Wu, L. Poulain, S. Henning, K. Dieckmann, W. Birmili, M. Merkel, D. van Pinxteren, G. Spindler, K. Müller, F. Stratmann, H. Herrmann, and A. Wiedensohler
Atmos. Chem. Phys., 13, 7983–7996, https://doi.org/10.5194/acp-13-7983-2013, https://doi.org/10.5194/acp-13-7983-2013, 2013
Z. Wu, W. Birmili, L. Poulain, Z. Wang, M. Merkel, B. Fahlbusch, D. van Pinxteren, H. Herrmann, and A. Wiedensohler
Atmos. Chem. Phys., 13, 6637–6646, https://doi.org/10.5194/acp-13-6637-2013, https://doi.org/10.5194/acp-13-6637-2013, 2013
Q. J. Zhang, M. Beekmann, F. Drewnick, F. Freutel, J. Schneider, M. Crippa, A. S. H. Prevot, U. Baltensperger, L. Poulain, A. Wiedensohler, J. Sciare, V. Gros, A. Borbon, A. Colomb, V. Michoud, J.-F. Doussin, H. A. C. Denier van der Gon, M. Haeffelin, J.-C. Dupont, G. Siour, H. Petetin, B. Bessagnet, S. N. Pandis, A. Hodzic, O. Sanchez, C. Honoré, and O. Perrussel
Atmos. Chem. Phys., 13, 5767–5790, https://doi.org/10.5194/acp-13-5767-2013, https://doi.org/10.5194/acp-13-5767-2013, 2013
K. W. Fomba, K. Müller, D. van Pinxteren, and H. Herrmann
Atmos. Chem. Phys., 13, 4801–4814, https://doi.org/10.5194/acp-13-4801-2013, https://doi.org/10.5194/acp-13-4801-2013, 2013
C. Mouchel-Vallon, P. Bräuer, M. Camredon, R. Valorso, S. Madronich, H. Herrmann, and B. Aumont
Atmos. Chem. Phys., 13, 1023–1037, https://doi.org/10.5194/acp-13-1023-2013, https://doi.org/10.5194/acp-13-1023-2013, 2013
M. Crippa, P. F. DeCarlo, J. G. Slowik, C. Mohr, M. F. Heringa, R. Chirico, L. Poulain, F. Freutel, J. Sciare, J. Cozic, C. F. Di Marco, M. Elsasser, J. B. Nicolas, N. Marchand, E. Abidi, A. Wiedensohler, F. Drewnick, J. Schneider, S. Borrmann, E. Nemitz, R. Zimmermann, J.-L. Jaffrezo, A. S. H. Prévôt, and U. Baltensperger
Atmos. Chem. Phys., 13, 961–981, https://doi.org/10.5194/acp-13-961-2013, https://doi.org/10.5194/acp-13-961-2013, 2013
F. Freutel, J. Schneider, F. Drewnick, S.-L. von der Weiden-Reinmüller, M. Crippa, A. S. H. Prévôt, U. Baltensperger, L. Poulain, A. Wiedensohler, J. Sciare, R. Sarda-Estève, J. F. Burkhart, S. Eckhardt, A. Stohl, V. Gros, A. Colomb, V. Michoud, J. F. Doussin, A. Borbon, M. Haeffelin, Y. Morille, M. Beekmann, and S. Borrmann
Atmos. Chem. Phys., 13, 933–959, https://doi.org/10.5194/acp-13-933-2013, https://doi.org/10.5194/acp-13-933-2013, 2013
Related subject area
Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Biogenic and anthropogenic sources of isoprene and monoterpenes and their secondary organic aerosol in Delhi, India
Different physicochemical behaviors of nitrate and ammonium during transport: a case study on Mt. Hua, China
A method for using stationary networks to observe long-term trends of on-road emission factors of primary aerosol from heavy-duty vehicles
Atmospheric particle abundance and sea salt aerosol observations in the springtime Arctic: a focus on blowing snow and leads
Chromophores and chemical composition of brown carbon characterized at an urban kerbside by excitation–emission spectroscopy and mass spectrometry
Measurement report: Contrasting elevation-dependent light absorption by black and brown carbon: lessons from in situ measurements from the highly polluted Sichuan Basin to the pristine Tibetan Plateau
Long-term declines in atmospheric nitrogen and sulfur deposition reduce critical loads exceedances at multiple Canadian rural sites, 2000–2018
Composition and mixing state of Arctic aerosol and cloud residual particles from long-term single-particle observations at Zeppelin Observatory, Svalbard
A meteorological overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) campaign over the southeastern Atlantic during 2016–2018: Part 2 – Daily and synoptic characteristics
Measurement report: Characterization of sugars and amino acids in atmospheric fine particulates and their relationship to local primary sources
Organic enrichment in droplet residual particles relative to out of cloud over the northwestern Atlantic: analysis of airborne ACTIVATE data
Long-term trends and drivers of aerosol pH in eastern China
Potential underestimation of ambient brown carbon absorption based on the methanol extraction method and its impacts on source analysis
Contributions of primary sources to submicron organic aerosols in Delhi, India
Examination of brown carbon absorption from wildfires in the western US during the WE-CAN study
Source apportionment and evolution of N-containing aerosols at a rural cloud forest in Taiwan by isotope analysis
Measurement report: Aerosol vertical profiles over the Western North Atlantic Ocean during the North Atlantic Aerosols and Marine Ecosystems Study (NAAMES)
Measurement report: Characterisation and sources of the secondary organic carbon in a Chinese megacity over 5 years from 2016 to 2020
Exploring the inorganic composition of the Asian Tropopause Aerosol Layer using medium-duration balloon flights
Technical note: Use of PM2.5 to CO ratio as an indicator of wildfire smoke in urban areas
Ice-nucleating particles near two major dust source regions
The effect of COVID-19 restrictions on atmospheric new particle formation in Beijing
The effect of clouds and precipitation on the aerosol concentrations and composition in a boreal forest environment
The impact of atmospheric motions on source-specific black carbon and the induced direct radiative effects over a river-valley region
Measurement report: The 10-year trend of PM2.5 major components and source tracers from 2008 to 2017 in an urban site of Hong Kong, China
Contribution of wood burning to exposures of PAHs and oxy-PAHs in Eastern Sweden
Chemical evolution of secondary organic aerosol tracers during high-PM2.5 episodes at a suburban site in Hong Kong over 4 months of continuous measurement
Aging impact on sources, volatility, and viscosity of organic aerosols in the Chinese outflows
Characteristics of fine particle matters at the top of Shanghai Tower
Sources and processes of water-soluble and water-insoluble organic aerosol in cold season in Beijing, China
Measurement report: Size-resolved chemical characterisation of aerosols in low-income urban settlements in South Africa
Measurement report: Large contribution of biomass burning and aqueous-phase processes to the wintertime secondary organic aerosol formation in Xi'an, Northwest China
Measurement report: Intensive biomass burning emissions and rapid nitrate formation drive severe haze formation in Sichuan basin, China: insights from aerosol mass spectrometry
PM10 variation, composition, and source analysis in Tuscany (Italy) following the COVID-19 lockdown restrictions
Emissions of organic compounds from western US wildfires and their near-fire transformations
A comprehensive study about the in-cloud processing of nitrate through coupled measurements of individual cloud residuals and cloud water
Iron (Fe) speciation in size-fractionated aerosol particles in the Pacific Ocean: The role of organic complexation of Fe with humic-like substances in controlling Fe solubility
Measurement report: On the contribution of long-distance transport to the secondary aerosol formation and aging
Measurement report: Changes in light absorption and molecular composition of water-soluble humic-like substances during a winter haze bloom-decay process in Guangzhou, China
Factors controlling atmospheric DMS and its oxidation products (MSA and nssSO42−) in the aerosol at Terra Nova Bay, Antarctica
Particle phase-state variability in the North Atlantic free troposphere during summertime is determined by atmospheric transport patterns and sources
Polycyclic aromatic hydrocarbons (PAHs) and their alkylated, nitrated and oxygenated derivatives in the atmosphere over the Mediterranean and Middle East seas
Nine-year trends of PM10 sources and oxidative potential in a rural background site in France
Dramatic changes in atmospheric pollution source contributions for a coastal megacity in northern China from 2011 to 2020
Understanding aerosol composition in a tropical inter-Andean valley impacted by agro-industrial and urban emissions
Measurement report: The importance of biomass burning in light extinction and direct radiative effect of urban aerosol during the COVID-19 lockdown in Xi'an, China
Chemical properties, sources and size-resolved hygroscopicity of submicron black-carbon-containing aerosols in urban Shanghai
Measurement report: Effects of anthropogenic emissions and environmental factors on the formation of biogenic secondary organic aerosol (BSOA) in a coastal city of southeastern China
Highly time-resolved chemical speciation and source apportionment of organic aerosol components in Delhi, India, using extractive electrospray ionization mass spectrometry
The chemical composition and mixing state of BC-containing particles and the implications on light absorption enhancement
Daniel J. Bryant, Beth S. Nelson, Stefan J. Swift, Sri Hapsari Budisulistiorini, Will S. Drysdale, Adam R. Vaughan, Mike J. Newland, James R. Hopkins, James M. Cash, Ben Langford, Eiko Nemitz, W. Joe F. Acton, C. Nicholas Hewitt, Tuhin Mandal, Bhola R. Gurjar, Shivani, Ranu Gadi, James D. Lee, Andrew R. Rickard, and Jacqueline F. Hamilton
Atmos. Chem. Phys., 23, 61–83, https://doi.org/10.5194/acp-23-61-2023, https://doi.org/10.5194/acp-23-61-2023, 2023
Short summary
Short summary
This paper investigates the sources of isoprene and monoterpene compounds and their particulate-phase oxidation products in Delhi, India. This was done to improve our understanding of the sources, concentrations, and fate of volatile emissions in megacities. By studying the chemical composition of offline filter samples, we report that a significant share of the oxidised organic aerosol in Delhi is from isoprene and monoterpenes. This has implications for human health and policy development.
Can Wu, Cong Cao, Jianjun Li, Shaojun Lv, Jin Li, Xiaodi Liu, Si Zhang, Shijie Liu, Fan Zhang, Jingjing Meng, and Gehui Wang
Atmos. Chem. Phys., 22, 15621–15635, https://doi.org/10.5194/acp-22-15621-2022, https://doi.org/10.5194/acp-22-15621-2022, 2022
Short summary
Short summary
Over the past decade, the relative abundance of NH4NO3 in aerosol has been enhanced in most urban areas of China, which profoundly affects the PM2.5 pollution episodes. Our work finds that fine-particle nitrate and ammonium exhibited distinct, different physicochemical behaviors in the aerosol aging process.
Helen L. Fitzmaurice and Ronald C. Cohen
Atmos. Chem. Phys., 22, 15403–15411, https://doi.org/10.5194/acp-22-15403-2022, https://doi.org/10.5194/acp-22-15403-2022, 2022
Short summary
Short summary
We develop a novel method for finding heavy-duty vehicle (HDV) emission factors (g PM kg fuel) using regulatory sensor networks and publicly available traffic data. We find that particulate matter emission factors have decreased by a factor of ~ 9 in the past decade in the San Francisco Bay area. Because of the wide availability of similar data sets across the USA and globally, this method could be applied to other settings to understand long-term trends and regional differences in HDV emissions.
Qianjie Chen, Jessica A. Mirrielees, Sham Thanekar, Nicole A. Loeb, Rachel M. Kirpes, Lucia M. Upchurch, Anna J. Barget, Nurun Nahar Lata, Angela R. W. Raso, Stephen M. McNamara, Swarup China, Patricia K. Quinn, Andrew P. Ault, Aaron Kennedy, Paul B. Shepson, Jose D. Fuentes, and Kerri A. Pratt
Atmos. Chem. Phys., 22, 15263–15285, https://doi.org/10.5194/acp-22-15263-2022, https://doi.org/10.5194/acp-22-15263-2022, 2022
Short summary
Short summary
During a spring field campaign in the coastal Arctic, ultrafine particles were enhanced during high wind speeds, and coarse-mode particles were reduced during blowing snow. Calculated periods blowing snow were overpredicted compared to observations. Sea spray aerosols produced by sea ice leads affected the composition of aerosols and snowpack. An improved understanding of aerosol emissions from leads and blowing snow is critical for predicting the future climate of the rapidly warming Arctic.
Feng Jiang, Junwei Song, Jonas Bauer, Linyu Gao, Magdalena Vallon, Reiner Gebhardt, Thomas Leisner, Stefan Norra, and Harald Saathoff
Atmos. Chem. Phys., 22, 14971–14986, https://doi.org/10.5194/acp-22-14971-2022, https://doi.org/10.5194/acp-22-14971-2022, 2022
Short summary
Short summary
We studied brown carbon aerosol during typical summer and winter periods in downtown Karlsruhe in southwestern Germany. The chromophore and chemical composition of brown carbon was determined by excitation–emission spectroscopy and mass spectrometry. The chromophore types and sources were substantially different in winter and summer. Humic-like chromophores of different degrees of oxidation dominated and were associated with molecules of different molecular weight and nitrogen content.
Suping Zhao, Shaofeng Qi, Ye Yu, Shichang Kang, Longxiang Dong, Jinbei Chen, and Daiying Yin
Atmos. Chem. Phys., 22, 14693–14708, https://doi.org/10.5194/acp-22-14693-2022, https://doi.org/10.5194/acp-22-14693-2022, 2022
Short summary
Short summary
Light absorption by aerosols is poorly understood at the eastern slope of the Tibetan Plateau (TP). We conducted the first in situ PM1 chemical measurements from the polluted Sichuan Basin to the eastern TP. A contrasting changes in mass absorption efficiency of black and brown carbon with altitude is found due to source differences. This study contributes to the understanding of the difference in light absorption by carbon with altitude, from the polluted basins to the pristine TP.
Irene Cheng, Leiming Zhang, Zhuanshi He, Hazel Cathcart, Daniel Houle, Amanda Cole, Jian Feng, Jason O'Brien, Anne Marie Macdonald, Julian Aherne, and Jeffrey Brook
Atmos. Chem. Phys., 22, 14631–14656, https://doi.org/10.5194/acp-22-14631-2022, https://doi.org/10.5194/acp-22-14631-2022, 2022
Short summary
Short summary
Nitrogen (N) and sulfur (S) deposition decreased significantly at 14 Canadian sites during 2000–2018. The greatest decline was observed in southeastern Canada owing to regional SO2 and NOx reductions. Wet deposition was more important than dry deposition, comprising 71–95 % of total N and 45–89 % of total S deposition. While critical loads (CLs) were exceeded at a few sites in the early 2000s, acidic deposition declined below CLs after 2012, which signifies recovery from legacy acidification.
Kouji Adachi, Yutaka Tobo, Makoto Koike, Gabriel Freitas, Paul Zieger, and Radovan Krejci
Atmos. Chem. Phys., 22, 14421–14439, https://doi.org/10.5194/acp-22-14421-2022, https://doi.org/10.5194/acp-22-14421-2022, 2022
Short summary
Short summary
Ambient aerosol and cloud residual particles in the fine mode were collected at Zeppelin Observatory in Svalbard and were analyzed using transmission electron microscopy. Fractions of mineral dust and sea salt particles increased in cloud residual samples collected at ambient temperatures below 0 °C. This study highlights the variety of aerosol and cloud residual particle compositions and mixing states that influence or are influenced by aerosol–cloud interactions in Arctic low-level clouds.
Ju-Mee Ryoo, Leonhard Pfister, Rei Ueyama, Paquita Zuidema, Robert Wood, Ian Chang, and Jens Redemann
Atmos. Chem. Phys., 22, 14209–14241, https://doi.org/10.5194/acp-22-14209-2022, https://doi.org/10.5194/acp-22-14209-2022, 2022
Short summary
Short summary
The variability in the meteorological fields during each deployment is highly modulated at a daily to synoptic timescale. This paper, along with part 1, the climatological overview paper, provides a meteorological context for interpreting the airborne measurements gathered during the three ORACLES deployments. This study supports related studies focusing on the detailed investigation of the processes controlling stratocumulus decks, aerosol lifting, transport, and their interactions.
Ren-Guo Zhu, Hua-Yun Xiao, Liqin Cheng, Huixiao Zhu, Hongwei Xiao, and Yunyun Gong
Atmos. Chem. Phys., 22, 14019–14036, https://doi.org/10.5194/acp-22-14019-2022, https://doi.org/10.5194/acp-22-14019-2022, 2022
Short summary
Short summary
Sugars and amino acids are major classes of organic components in atmospheric fine particles and play important roles in the atmosphere. To identify their sources in different regions, the concentrations and compositions of sugar amino acids in fine particles were analysed. Our findings suggest that combining specific sugar tracers and chemical profiles of combined amino acids in local emission sources can identify various source characteristics of primary sources.
Hossein Dadashazar, Andrea F. Corral, Ewan Crosbie, Sanja Dmitrovic, Simon Kirschler, Kayla McCauley, Richard Moore, Claire Robinson, Joseph S. Schlosser, Michael Shook, K. Lee Thornhill, Christiane Voigt, Edward Winstead, Luke Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 22, 13897–13913, https://doi.org/10.5194/acp-22-13897-2022, https://doi.org/10.5194/acp-22-13897-2022, 2022
Short summary
Short summary
Multi-season airborne data over the northwestern Atlantic show that organic mass fraction and the relative amount of oxygenated organics within that fraction are enhanced in droplet residual particles as compared to particles below and above cloud. In-cloud aqueous processing is shown to be a potential driver of this compositional shift in cloud. This implies that aerosol–cloud interactions in the region reduce aerosol hygroscopicity due to the jump in the organic : sulfate ratio in cloud.
Min Zhou, Guangjie Zheng, Hongli Wang, Liping Qiao, Shuhui Zhu, DanDan Huang, Jingyu An, Shengrong Lou, Shikang Tao, Qian Wang, Rusha Yan, Yingge Ma, Changhong Chen, Yafang Cheng, Hang Su, and Cheng Huang
Atmos. Chem. Phys., 22, 13833–13844, https://doi.org/10.5194/acp-22-13833-2022, https://doi.org/10.5194/acp-22-13833-2022, 2022
Short summary
Short summary
The trend of aerosol pH and its drivers is crucial in understanding the multiphase formation pathways of aerosols. We reported the first trend analysis of aerosol pH from 2011 to 2019 in eastern China. Although significant variations of aerosol compositions were observed from 2011 to 2019, the aerosol pH estimated by model only slightly declined by 0.24. Our work shows that the opposite effects of SO42− and non-volatile cation changes play key roles in determining the moderate pH trend.
Zhenqi Xu, Wei Feng, Yicheng Wang, Haoran Ye, Yuhang Wang, Hong Liao, and Mingjie Xie
Atmos. Chem. Phys., 22, 13739–13752, https://doi.org/10.5194/acp-22-13739-2022, https://doi.org/10.5194/acp-22-13739-2022, 2022
Short summary
Short summary
This work uses a solvent (DMF) that can efficiently dissolve low-volatility OC to examine BrC absorption and sources, which will benefit future investigations on the physicochemical properties of large organic molecules. The study results also shed light on potential sources for methanol-insoluble OC. These results highlight the importance of testing different solvents to investigate the structures and light absorption of low-volatility BrC.
Sahil Bhandari, Zainab Arub, Gazala Habib, Joshua S. Apte, and Lea Hildebrandt Ruiz
Atmos. Chem. Phys., 22, 13631–13657, https://doi.org/10.5194/acp-22-13631-2022, https://doi.org/10.5194/acp-22-13631-2022, 2022
Short summary
Short summary
Here we determine the sources of primary organic aerosol in Delhi, India, in two different seasons. In winter, the main sources are traffic and biomass burning; in the summer, the main sources are traffic and cooking. We obtain this result by conducting source apportionment resolved by time of day, using data from an aerosol chemical speciation monitor. Results from this work can be used to better design policies that target sources of organic aerosol.
Amy P. Sullivan, Rudra P. Pokhrel, Yingjie Shen, Shane M. Murphy, Darin W. Toohey, Teresa Campos, Jakob Lindaas, Emily V. Fischer, and Jeffrey L. Collett Jr.
Atmos. Chem. Phys., 22, 13389–13406, https://doi.org/10.5194/acp-22-13389-2022, https://doi.org/10.5194/acp-22-13389-2022, 2022
Short summary
Short summary
During the WE-CAN (Western Wildfire Experiment for Cloud Chemistry, Aerosol Absorption and Nitrogen) study, brown carbon (BrC) absorption was measured on the NSF/NCAR C-130 aircraft using a particle-into-liquid sampler and photoacoustic aerosol absorption spectrometer. Approximately 45 % of the BrC absorption in wildfires was observed to be due to water-soluble species. The ratio of BrC absorption to WSOC or ΔCO showed no clear dependence on fire dynamics or the time since emission over 9 h.
Ting-Yu Chen, Chia-Li Chen, Yi-Chi Chen, Charles C.-K. Chou, Haojia Ren, and Hui-Ming Hung
Atmos. Chem. Phys., 22, 13001–13012, https://doi.org/10.5194/acp-22-13001-2022, https://doi.org/10.5194/acp-22-13001-2022, 2022
Short summary
Short summary
The anthropogenic influence on aerosol composition in a downstream river-valley forest was investigated using FTIR and isotope analysis. A higher N-containing species concentration during daytime fog events indicates that a stronger inversion leads to higher pollutant concentrations, and the fog enhances the aqueous-phase chemical processes. Moreover, the observed size-dependent oxygen isotope suggests the contribution of organic peroxyl radicals to local nitrate formation for small particles.
Francesca Gallo, Kevin J. Sanchez, Bruce E. Anderson, Ryan Bennett, Matthew D. Brown, Ewan C. Crosbie, Chris Hostetler, Carolyn Jordan, Melissa Yang Martin, Claire E. Robinson, Lynn M. Russell, Taylor J. Shingler, Michael A. Shook, Kenneth L. Thornhill, Elizabeth B. Wiggins, Edward L. Winstead, Armin Wisthaler, Luke D. Ziemba, and Richard H. Moore
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-654, https://doi.org/10.5194/acp-2022-654, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
We integrate in-situ ship- and aircraft-based measurements of aerosol, trace gases, and meteorological parameters collected during the NASA North Atlantic Aerosols and Marine Ecosystems Study (NAAMES) field campaigns in the Western North Atlantic Ocean region. A comprehensive characterization of the vertical profiles of aerosol properties under different seasonal regimes is provide for improving the understanding of aerosol key processes and aerosol cloud interactions in marine regions.
Meng Wang, Yusen Duan, Wei Xu, Qiyuan Wang, Zhuozhi Zhang, Qi Yuan, Xinwei Li, Shuwen Han, Haijie Tong, Juntao Huo, Jia Chen, Shan Gao, Zhongbiao Wu, Long Cui, Yu Huang, Guangli Xiu, Junji Cao, Qingyan Fu, and Shun-cheng Lee
Atmos. Chem. Phys., 22, 12789–12802, https://doi.org/10.5194/acp-22-12789-2022, https://doi.org/10.5194/acp-22-12789-2022, 2022
Short summary
Short summary
In this study, we report the long-term measurement of organic carbon (OC) and elementary carbon (EC) in PM2.5 with hourly time resolution conducted at a regional site in Shanghai from 2016 to 2020. The results from this study provide critical information about the long-term trend of carbonaceous aerosol, in particular secondary OC, in one of the largest megacities in the world and are helpful for developing pollution control measures from a long-term planning perspective.
Hazel Vernier, Neeraj Rastogi, Hongyu Liu, Amit Kumar Pandit, Kris Bedka, Anil Patel, Madineni Venkat Ratnam, Buduru Suneel Kumar, Bo Zhang, Harish Gadhavi, Frank Wienhold, Gwenael Berthet, and Jean-Paul Vernier
Atmos. Chem. Phys., 22, 12675–12694, https://doi.org/10.5194/acp-22-12675-2022, https://doi.org/10.5194/acp-22-12675-2022, 2022
Short summary
Short summary
The chemical composition of the stratospheric aerosols collected aboard high-altitude balloons above the summer Asian monsoon reveals the presence of nitrate/nitrite. Using numerical simulations and satellite observations, we found that pollution as well as lightning could explain some of our observations.
Daniel A. Jaffe, Brendan Schnieder, and Daniel Inouye
Atmos. Chem. Phys., 22, 12695–12704, https://doi.org/10.5194/acp-22-12695-2022, https://doi.org/10.5194/acp-22-12695-2022, 2022
Short summary
Short summary
In this paper we use commonly measured pollutants (PM2.5 and carbon monoxide) to develop a Monte Carlo simulation of the mixing of urban pollution with smoke. The simulations compare well with observations from a heavily impacted smoke site and show that we can use standard regulatory measurements to quantify the amount of smoke in urban areas.
Charlotte M. Beall, Thomas C. J. Hill, Paul J. DeMott, Tobias Köneman, Michael Pikridas, Frank Drewnick, Hartwig Harder, Christopher Pöhlker, Jos Lelieveld, Bettina Weber, Minas Iakovides, Roman Prokeš, Jean Sciare, Meinrat O. Andreae, M. Dale Stokes, and Kimberly A. Prather
Atmos. Chem. Phys., 22, 12607–12627, https://doi.org/10.5194/acp-22-12607-2022, https://doi.org/10.5194/acp-22-12607-2022, 2022
Short summary
Short summary
Ice-nucleating particles (INPs) are rare aerosols that can trigger ice formation in clouds and affect climate-relevant cloud properties such as phase, reflectivity and lifetime. Dust is the dominant INP source, yet few measurements have been reported near major dust sources. We report INP observations within hundreds of kilometers of the biggest dust source regions globally: the Sahara and the Arabian Peninsula. Results show that at temperatures > −15 °C, INPs are dominated by organics.
Chao Yan, Yicheng Shen, Dominik Stolzenburg, Lubna Dada, Ximeng Qi, Simo Hakala, Anu-Maija Sundström, Yishuo Guo, Antti Lipponen, Tom V. Kokkonen, Jenni Kontkanen, Runlong Cai, Jing Cai, Tommy Chan, Liangduo Chen, Biwu Chu, Chenjuan Deng, Wei Du, Xiaolong Fan, Xu-Cheng He, Juha Kangasluoma, Joni Kujansuu, Mona Kurppa, Chang Li, Yiran Li, Zhuohui Lin, Yiliang Liu, Yuliang Liu, Yiqun Lu, Wei Nie, Jouni Pulliainen, Xiaohui Qiao, Yonghong Wang, Yifan Wen, Ye Wu, Gan Yang, Lei Yao, Rujing Yin, Gen Zhang, Shaojun Zhang, Feixue Zheng, Ying Zhou, Antti Arola, Johanna Tamminen, Pauli Paasonen, Yele Sun, Lin Wang, Neil M. Donahue, Yongchun Liu, Federico Bianchi, Kaspar R. Daellenbach, Douglas R. Worsnop, Veli-Matti Kerminen, Tuukka Petäjä, Aijun Ding, Jingkun Jiang, and Markku Kulmala
Atmos. Chem. Phys., 22, 12207–12220, https://doi.org/10.5194/acp-22-12207-2022, https://doi.org/10.5194/acp-22-12207-2022, 2022
Short summary
Short summary
Atmospheric new particle formation (NPF) is a dominant source of atmospheric ultrafine particles. In urban environments, traffic emissions are a major source of primary pollutants, but their contribution to NPF remains under debate. During the COVID-19 lockdown, traffic emissions were significantly reduced, providing a unique chance to examine their relevance to NPF. Based on our comprehensive measurements, we demonstrate that traffic emissions alone are not able to explain the NPF in Beijing.
Sini Isokääntä, Paul Kim, Santtu Mikkonen, Thomas Kühn, Harri Kokkola, Taina Yli-Juuti, Liine Heikkinen, Krista Luoma, Tuukka Petäjä, Zak Kipling, Daniel Partridge, and Annele Virtanen
Atmos. Chem. Phys., 22, 11823–11843, https://doi.org/10.5194/acp-22-11823-2022, https://doi.org/10.5194/acp-22-11823-2022, 2022
Short summary
Short summary
This research employs air mass history analysis and observations to study how clouds and precipitation affect atmospheric aerosols during transport to a boreal forest site. The mass concentrations of studied chemical species showed exponential decrease as a function of accumulated rain along the air mass route. Our analysis revealed in-cloud sulfate formation, while no major changes in organic mass were seen. Most of the in-cloud-formed sulfate could be assigned to particle sizes above 200 nm.
Huikun Liu, Qiyuan Wang, Suixin Liu, Bianhong Zhou, Yao Qu, Jie Tian, Ting Zhang, Yongming Han, and Junji Cao
Atmos. Chem. Phys., 22, 11739–11757, https://doi.org/10.5194/acp-22-11739-2022, https://doi.org/10.5194/acp-22-11739-2022, 2022
Short summary
Short summary
Atmospheric motions play an important role in the mass concentration and the direct radiative effect (DRE) of black carbon (BC). The finding from this study elaborated the impacts of different scales of atmospheric motion on source-specific BC and its DREs, which revealed the nonlinear change between BC mass concentration and its DREs and emphasizes the importance of regionally transported BC for potential climatic effects.
Wing Sze Chow, Kezheng Liao, X. H. Hilda Huang, Ka Fung Leung, Alexis K. H. Lau, and Jian Zhen Yu
Atmos. Chem. Phys., 22, 11557–11577, https://doi.org/10.5194/acp-22-11557-2022, https://doi.org/10.5194/acp-22-11557-2022, 2022
Short summary
Short summary
Long-term monitoring data of PM2.5 chemical composition provide essential information for evaluation and planning of control measures. Here we present a 10-year (2008–2017) time series of PM2.5, its major components, and select source markers in an urban site in Hong Kong. The dataset verified the success of local vehicular emission control measures as well as reduction of sulfate and regional sources such as industrial and coal combustion and crop residue burning emissions over the decade.
Hwanmi Lim, Sanna Silvergren, Silvia Spinicci, Farshid Mashayekhy Rad, Ulrika Nilsson, Roger Westerholm, and Christer Johansson
Atmos. Chem. Phys., 22, 11359–11379, https://doi.org/10.5194/acp-22-11359-2022, https://doi.org/10.5194/acp-22-11359-2022, 2022
Short summary
Short summary
Air pollutants from wood burning become more important as other regulated emissions are being reduced, e.g. combustion of diesel. We analysed particles in residential areas and found that local wood burning was the most important source of polycyclic aromatic hydrocarbons (PAHs). Specific tracers were used to separate wood combustion from other contributions. Calculations of population exposure showed that the mix of PAHs may cause 13 cancer cases per 0.1 million inhabitants.
Qiongqiong Wang, Shan Wang, Yuk Ying Cheng, Hanzhe Chen, Zijing Zhang, Jinjian Li, Dasa Gu, Zhe Wang, and Jian Zhen Yu
Atmos. Chem. Phys., 22, 11239–11253, https://doi.org/10.5194/acp-22-11239-2022, https://doi.org/10.5194/acp-22-11239-2022, 2022
Short summary
Short summary
Secondary organic aerosol (SOA) is often enhanced during fine-particulate-matter (PM2.5) episodes. We examined bi-hourly measurements of SOA molecular tracers in suburban Hong Kong during 11 city-wide PM2.5 episodes. The tracers showed regional characteristics for both anthropogenic and biogenic SOA as well as biomass-burning-derived SOA. Multiple tracers of the same precursor revealed the dominance of low-NOx formation pathways for isoprene SOA and less-aged monoterpene SOA during winter.
Tingting Feng, Yingkun Wang, Weiwei Hu, Ming Zhu, Wei Song, Wei Chen, Yanyan Sang, Zheng Fang, Wei Deng, Hua Fang, Xu Yu, Cheng Wu, Bin Yuan, Shan Huang, Min Shao, Xiaofeng Huang, Lingyan He, Young Ro Lee, L. Gregory Huey, Francesco Canonaco, Andre S. H. Prevot, and Xinming Wang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-575, https://doi.org/10.5194/acp-2022-575, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
To investigate the impact of aging processes on the organic aerosols (OA), we conducted a comprehensive field study at a continental remote site using on-line mass spectrometers. The results show that OA in the Chinese outflows was strongly influenced by upwind anthropogenic emissions. The aging processes can significantly decrease the OA volatility and result in a varied viscosity of OA under different circumstances, signifying the complex physiochemistry properties of OA in the aged plumes.
Changqin Yin, Jianming Xu, Wei Gao, Liang Pan, Yixuan Gu, Qingyan Fu, and Fan Yang
EGUsphere, https://doi.org/10.5194/egusphere-2022-782, https://doi.org/10.5194/egusphere-2022-782, 2022
Short summary
Short summary
The PM2.5 at the top of 632 m high Shanghai Tower were found higher than surface from June to October as results of unexpected larger PM2.5 levels during early to middle afternoon at Shanghai Tower. We suppose the significant chemical production of secondary species existed in mid-upper planetary boundary layer. In addition, we found high nitrate concentration at the tower site for both daytime and nighttime winter, implying efficient gas-phase and heterogeneous formation.
Zhiqiang Zhang, Yele Sun, Chun Chen, Bo You, Aodong Du, Weiqi Xu, Yan Li, Zhijie Li, Lu Lei, Wei Zhou, Jiaxing Sun, Yanmei Qiu, Lianfang Wei, Pingqing Fu, and Zifa Wang
Atmos. Chem. Phys., 22, 10409–10423, https://doi.org/10.5194/acp-22-10409-2022, https://doi.org/10.5194/acp-22-10409-2022, 2022
Short summary
Short summary
We present a comprehensive characterization of water-soluble organic aerosol and the first mass spectral characterization of water-insoluble organic aerosol in the cold season in Beijing by integrating online and offline aerosol mass spectrometer measurements. WSOA comprised dominantly secondary OA and showed large changes during the transition season from autumn to winter. WIOA was characterized by prominent hydrocarbon ions series, low oxidation states, and significant day–night differences.
Constance K. Segakweng, Pieter G. van Zyl, Cathy Liousse, Johan P. Beukes, Jan-Stefan Swartz, Eric Gardrat, Maria Dias-Alves, Brigitte Language, Roelof P. Burger, and Stuart J. Piketh
Atmos. Chem. Phys., 22, 10291–10317, https://doi.org/10.5194/acp-22-10291-2022, https://doi.org/10.5194/acp-22-10291-2022, 2022
Short summary
Short summary
A detailed size-resolved assessment of the chemical characteristics of outdoor and indoor aerosols collected in low-income urban settlements in South Africa indicated the significance of household combustion for cooking and space heating – an important source of pollutants in the developing world – to atmospheric chemical composition. The regional impact of industrial sources in the highly industrialised and densely populated north-eastern interior of South Africa was also evident.
Jing Duan, Ru-Jin Huang, Yifang Gu, Chunshui Lin, Haobin Zhong, Wei Xu, Quan Liu, Yan You, Jurgita Ovadnevaite, Darius Ceburnis, Thorsten Hoffmann, and Colin O'Dowd
Atmos. Chem. Phys., 22, 10139–10153, https://doi.org/10.5194/acp-22-10139-2022, https://doi.org/10.5194/acp-22-10139-2022, 2022
Short summary
Short summary
Biomass-burning-influenced oxygenated organic aerosol (OOA-BB), formed from the photochemical oxidation and aging of biomass burning OA (BBOA), was resolved in urban Xi’an. The aqueous-phase processed oxygenated OA (aq-OOA) concentration was more dependent on secondary inorganic aerosol (SIA) content and aerosol liquid water content (ALWC). The increased aq-OOA contribution during SIA-enhanced periods likely reflects OA evolution due to the addition of alcohol or peroxide groups
Zhier Bao, Xinyi Zhang, Qing Li, Jiawei Zhou, Guangming Shi, Li Zhou, Fumo Yang, Shaodong Xie, Dan Zhang, Chongzhi Zhai, Zhenliang Li, Chao Peng, and Yang Chen
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-477, https://doi.org/10.5194/acp-2022-477, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
We characterised no-refractory fine particulate matter (PM2.5) during winter in Sichuan Basin (SCB), southwest China. The factors driving severe aerosol pollution were revealed, highlighting the importance of rapid nitrate formation and intensive biomass burning. Nitrate was primarily formed through gas-phase oxidation during daytime and aqueous-phase oxidation during nighttime. Controlling nitrate and biomass burning will benefit the mitigation of haze formation in SCB.
Fabio Giardi, Silvia Nava, Giulia Calzolai, Giulia Pazzi, Massimo Chiari, Andrea Faggi, Bianca Patrizia Andreini, Chiara Collaveri, Elena Franchi, Guido Nincheri, Alessandra Amore, Silvia Becagli, Mirko Severi, Rita Traversi, and Franco Lucarelli
Atmos. Chem. Phys., 22, 9987–10005, https://doi.org/10.5194/acp-22-9987-2022, https://doi.org/10.5194/acp-22-9987-2022, 2022
Short summary
Short summary
The restriction measures adopted to contain the COVID-19 virus offered a unique opportunity to study urban particulate emissions in the near absence of traffic, which is one of the main emission sources in the urban environment. However, the drastic decrease in this source of particulate matter during the months of national lockdown did not lead to an equal decrease in the total particulate load. This is due to the inverse behavior shown by different sources, especially secondary sources.
Yutong Liang, Christos Stamatis, Edward C. Fortner, Rebecca A. Wernis, Paul Van Rooy, Francesca Majluf, Tara I. Yacovitch, Conner Daube, Scott C. Herndon, Nathan M. Kreisberg, Kelley C. Barsanti, and Allen H. Goldstein
Atmos. Chem. Phys., 22, 9877–9893, https://doi.org/10.5194/acp-22-9877-2022, https://doi.org/10.5194/acp-22-9877-2022, 2022
Short summary
Short summary
This article reports the measurements of organic compounds emitted from western US wildfires. We identified and quantified 240 particle-phase compounds and 72 gas-phase compounds emitted in wildfire and related the emissions to the modified combustion efficiency. Higher emissions of diterpenoids and monoterpenes were observed, likely due to distillation from unburned heated vegetation. Our results can benefit future source apportionment and modeling studies as well as exposure assessments.
Guohua Zhang, Xiaodong Hu, Wei Sun, Yuxiang Yang, Ziyong Guo, Yuzhen Fu, Haichao Wang, Shengzhen Zhou, Lei Li, Mingjin Tang, Zongbo Shi, Duohong Chen, Xinhui Bi, and Xinming Wang
Atmos. Chem. Phys., 22, 9571–9582, https://doi.org/10.5194/acp-22-9571-2022, https://doi.org/10.5194/acp-22-9571-2022, 2022
Short summary
Short summary
We show a significant enhancement of nitrate mass fraction in cloud water and relative intensity of nitrate in the cloud residual particles and highlight that hydrolysis of N2O5 serves as the critical route for the in-cloud formation of nitrate, even during the daytime. Given that N2O5 hydrolysis acts as a major sink of NOx in the atmosphere, further model updates may improve our understanding about the processes contributing to nitrate production in cloud and the cycling of odd nitrogen.
Kohei Sakata, Minako Kurisu, Yasuo Takeichi, Aya Sakaguchi, Hiroshi Tanimoto, Yusuke Tamenori, Atsushi Matsuki, and Yoshio Takahashi
Atmos. Chem. Phys., 22, 9461–9482, https://doi.org/10.5194/acp-22-9461-2022, https://doi.org/10.5194/acp-22-9461-2022, 2022
Short summary
Short summary
Iron (Fe) species in size-fractionated aerosol particles collected in the western Pacific Ocean were determined to identify factors controlling fractional Fe solubility. We found that labile Fe was mainly present in submicron aerosol particles, and the Fe species were ferric organic complexes combined with humic-like substances (Fe(III)-HULIS). The Fe(III)-HULIS was formed by atmospheric processes. Thus, atmospheric processes play a significant role in controlling Fe solubility.
Haobin Zhong, Ru-Jin Huang, Chunshui Lin, Wei Xu, Jing Duan, Yifang Gu, Wei Huang, Haiyan Ni, Chongshu Zhu, Yan You, Yunfei Wu, Renjian Zhang, Jurgita Ovadnevaite, Darius Ceburnis, and Colin D. O'Dowd
Atmos. Chem. Phys., 22, 9513–9524, https://doi.org/10.5194/acp-22-9513-2022, https://doi.org/10.5194/acp-22-9513-2022, 2022
Short summary
Short summary
To investigate the physico-chemical properties of aerosol transported from major pollution regions in China, observations were conducted ~200 m above the ground at the junction location of the two key pollution areas. We found that the formation efficiency, oxidation state and production rate of secondary aerosol were different in the transport sectors from different pollution regions, and they were largely enhanced by the regional long-distance transport.
Chunlin Zou, Tao Cao, Meiju Li, Jianzhong Song, Bin Jiang, Wanglu Jia, Jun Li, Xiang Ding, Zhiqiang Yu, Gan Zhang, and Ping’an Peng
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-464, https://doi.org/10.5194/acp-2022-464, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
In this study, PM2.5 samples were obtained during a winter haze event in Guangzhou, China, and light absorption and molecular composition of HULIS were investigated by UV-vis spectrophotometry and ultrahigh-resolution mass spectrometry. The findings obtained present some differences from the results reported in other regions of China and significantly enhanced our understanding of HULIS evolution during haze bloom-decay process in the subtropic region of South China.
Silvia Becagli, Elena Barbaro, Simone Bonamano, Laura Caiazzo, Alcide di Sarra, Matteo Feltracco, Paolo Grigioni, Jost Heintzenberg, Luigi Lazzara, Michel Legrand, Alice Madonia, Marco Marcelli, Chiara Melillo, Daniela Meloni, Caterina Nuccio, Giandomenico Pace, Ki-Tae Park, Suzanne Preunkert, Mirko Severi, Marco Vecchiato, Roberta Zangrando, and Rita Traversi
Atmos. Chem. Phys., 22, 9245–9263, https://doi.org/10.5194/acp-22-9245-2022, https://doi.org/10.5194/acp-22-9245-2022, 2022
Short summary
Short summary
Measurements of phytoplanktonic dimethylsulfide and its oxidation products in the Antarctic atmosphere allow us to understand the role of the oceanic (sea ice melting, Chl α and dimethylsulfoniopropionate) and atmospheric (wind direction and speed, humidity, solar radiation and transport processes) factors in the biogenic aerosol formation, concentration and characteristic ratio between components in an Antarctic coastal site facing the polynya of the Ross Sea.
Zezhen Cheng, Megan Morgenstern, Bo Zhang, Matthew Fraund, Nurun Nahar Lata, Rhenton Brimberry, Matthew A. Marcus, Lynn Mazzoleni, Paulo Fialho, Silvia Henning, Birgit Wehner, Claudio Mazzoleni, and Swarup China
Atmos. Chem. Phys., 22, 9033–9057, https://doi.org/10.5194/acp-22-9033-2022, https://doi.org/10.5194/acp-22-9033-2022, 2022
Short summary
Short summary
We observed a high abundance of liquid and internally mixed particles in samples collected in the North Atlantic free troposphere during summer. We also found several solid and semisolid particles for different emission sources and transport patterns. Our results suggest that considering the mixing state, emission source, and transport patterns of particles is necessary to estimate their phase state in the free troposphere, which is critical for predicting their effects on climate.
Marco Wietzoreck, Marios Kyprianou, Benjamin A. Musa Bandowe, Siddika Celik, John N. Crowley, Frank Drewnick, Philipp Eger, Nils Friedrich, Minas Iakovides, Petr Kukučka, Jan Kuta, Barbora Nežiková, Petra Pokorná, Petra Přibylová, Roman Prokeš, Roland Rohloff, Ivan Tadic, Sebastian Tauer, Jake Wilson, Hartwig Harder, Jos Lelieveld, Ulrich Pöschl, Euripides G. Stephanou, and Gerhard Lammel
Atmos. Chem. Phys., 22, 8739–8766, https://doi.org/10.5194/acp-22-8739-2022, https://doi.org/10.5194/acp-22-8739-2022, 2022
Short summary
Short summary
A unique dataset of concentrations and sources of polycyclic aromatic hydrocarbons (PAHs) and their alkylated, oxygenated and nitrated derivatives, in total 74 individual species, in the marine atmosphere is presented. Exposure to these substances poses a major health risk. We found very low concentrations over the Arabian Sea, while both local and long-range-transported pollution caused elevated levels over the Mediterranean Sea and the Arabian Gulf.
Lucille Joanna Borlaza, Samuël Weber, Anouk Marsal, Gaëlle Uzu, Véronique Jacob, Jean-Luc Besombes, Mélodie Chatain, Sébastien Conil, and Jean-Luc Jaffrezo
Atmos. Chem. Phys., 22, 8701–8723, https://doi.org/10.5194/acp-22-8701-2022, https://doi.org/10.5194/acp-22-8701-2022, 2022
Short summary
Short summary
A 9-year dataset of the chemical and oxidative potential (OP) of PM10 was investigated at a rural background site. Extensive source apportionment led to identification of differences in source impacts between mass and OP, underlining the importance of PM redox activity when considering health effects. The influence of mixing and ageing processes was also tackled. Traffic contributions have decreased here over the years, attributed to regulations limiting vehicular emissions in bigger cities.
Baoshuang Liu, Yanyang Wang, He Meng, Qili Dai, Liuli Diao, Jianhui Wu, Laiyuan Shi, Jing Wang, Yufen Zhang, and Yinchang Feng
Atmos. Chem. Phys., 22, 8597–8615, https://doi.org/10.5194/acp-22-8597-2022, https://doi.org/10.5194/acp-22-8597-2022, 2022
Short summary
Short summary
Understanding effectiveness of air pollution regulatory measures is critical for control policy. Machine learning and dispersion-normalized approaches were applied to decouple meteorologically deduced variations in Qingdao, China. Most pollutant concentrations decreased substantially after the Clean Air Action Plan. The largest emission reduction was from coal combustion and steel-related smelting. Qingdao is at risk of increased emissions from increased vehicular population and ozone pollution.
Lady Mateus-Fontecha, Angela Vargas-Burbano, Rodrigo Jimenez, Nestor Y. Rojas, German Rueda-Saa, Dominik van Pinxteren, Manuela van Pinxteren, Khanneh Wadinga Fomba, and Hartmut Herrmann
Atmos. Chem. Phys., 22, 8473–8495, https://doi.org/10.5194/acp-22-8473-2022, https://doi.org/10.5194/acp-22-8473-2022, 2022
Short summary
Short summary
This study reports the chemical composition of regionally representative PM2.5 in an area densely populated and substantially industrialized, located in the inter-Andean valley, with the highest sugarcane yield in the world and where sugarcane is burned and harvested year round. We found that sugarcane burning is not portrayed as a distinguishable sample composition component. Instead, the composition analysis revealed multiple associations among sugarcane burning components and other sources.
Jie Tian, Qiyuan Wang, Huikun Liu, Yongyong Ma, Suixin Liu, Yong Zhang, Weikang Ran, Yongming Han, and Junji Cao
Atmos. Chem. Phys., 22, 8369–8384, https://doi.org/10.5194/acp-22-8369-2022, https://doi.org/10.5194/acp-22-8369-2022, 2022
Short summary
Short summary
We investigated aerosol optical properties and the direct radiative effect (DRE) at an urban site in China before and during the COVID-19 lockdown. The total light extinction coefficient (bext) decreased under emission control measures; however, bext from biomass burning increased due to the undiminished need for residential cooking and heating. Biomass burning, rather than traffic-related emissions, became the largest positive effect contributor to aerosol DRE in the lockdown.
Shijie Cui, Dan Dan Huang, Yangzhou Wu, Junfeng Wang, Fuzhen Shen, Jiukun Xian, Yunjiang Zhang, Hongli Wang, Cheng Huang, Hong Liao, and Xinlei Ge
Atmos. Chem. Phys., 22, 8073–8096, https://doi.org/10.5194/acp-22-8073-2022, https://doi.org/10.5194/acp-22-8073-2022, 2022
Short summary
Short summary
Refractory black carbon (rBC) aerosols are important to air quality and climate change. rBC can mix with many other species, which can significantly change its properties and impacts. We used a specific set of techniques to exclusively characterize rBC-containing (rBCc) particles in Shanghai. We elucidated their composition, sources and size distributions and factors that affect their properties. Our findings are very valuable for advancing the understanding of BC and controlling BC pollution.
Youwei Hong, Xinbei Xu, Dan Liao, Taotao Liu, Xiaoting Ji, Ke Xu, Chunyang Liao, Ting Wang, Chunshui Lin, and Jinsheng Chen
Atmos. Chem. Phys., 22, 7827–7841, https://doi.org/10.5194/acp-22-7827-2022, https://doi.org/10.5194/acp-22-7827-2022, 2022
Short summary
Short summary
Secondary organic aerosol (SOA) simulation remains uncertain, due to the unknown SOA formation mechanisms. Aerosol samples with a 4 h time resolution were collected, along with online measurements of aerosol chemical compositions and meteorological parameters. We found that anthropogenic emissions, atmospheric oxidation capacity and halogen chemistry have significant effects on the formation of biogenic SOA (BSOA). The findings of this study are helpful to better explore the missed SOA sources.
Varun Kumar, Stamatios Giannoukos, Sophie L. Haslett, Yandong Tong, Atinderpal Singh, Amelie Bertrand, Chuan Ping Lee, Dongyu S. Wang, Deepika Bhattu, Giulia Stefenelli, Jay S. Dave, Joseph V. Puthussery, Lu Qi, Pawan Vats, Pragati Rai, Roberto Casotto, Rangu Satish, Suneeti Mishra, Veronika Pospisilova, Claudia Mohr, David M. Bell, Dilip Ganguly, Vishal Verma, Neeraj Rastogi, Urs Baltensperger, Sachchida N. Tripathi, André S. H. Prévôt, and Jay G. Slowik
Atmos. Chem. Phys., 22, 7739–7761, https://doi.org/10.5194/acp-22-7739-2022, https://doi.org/10.5194/acp-22-7739-2022, 2022
Short summary
Short summary
Here we present source apportionment results from the first field deployment in Delhi of an extractive electrospray ionization time-of-flight mass spectrometer (EESI-TOF). The EESI-TOF is a recently developed instrument capable of providing uniquely detailed online chemical characterization of organic aerosol (OA), in particular the secondary OA (SOA) fraction. Here, we are able to apportion not only primary OA but also SOA to specific sources, which is performed for the first time in Delhi.
Jiaxing Sun, Yele Sun, Conghui Xie, Weiqi Xu, Chun Chen, Zhe Wang, Lei Li, Xubing Du, Fugui Huang, Yan Li, Zhijie Li, Xiaole Pan, Nan Ma, Wanyun Xu, Pingqing Fu, and Zifa Wang
Atmos. Chem. Phys., 22, 7619–7630, https://doi.org/10.5194/acp-22-7619-2022, https://doi.org/10.5194/acp-22-7619-2022, 2022
Short summary
Short summary
We analyzed the chemical composition and mixing state of BC-containing particles at urban and rural sites in winter in the North China Plain and evaluated their impact on light absorption enhancement. BC was dominantly mixed with organic carbon, nitrate, and sulfate, and the mixing state evolved significantly as a function of relative humidity (RH) at both sites. The absorption enhancement depended strongly on coated secondary inorganic aerosol and was up to ~1.3–1.4 during aging processes.
Cited articles
Alastuey, A., Querol, X., Castillo, S., Escudero, M., Avila, A., Cuevas, E., Torres, C., Romero, P., Exposito, F., and Garcia, O.: Characterisation of TSP and PM2.5 at Izaña and Sta. Cruz de Tenerife (Canary Islands, Spain) during a Saharan Dust Episode (July 2002), Atmospheric Environment, 39, 4715–4728, https://doi.org/10.1016/j.atmosenv.2005.04.018, 2005.
Alves, C., Vicente, A., Pio, C., Kiss, G., Hoffer, A., Decesari, S.,
Prevôt, A. S. H., Minguillón, M. C., Querol, X., Hillamo, R.,
Spindler, G., and Swietlicki, E.: Organic compounds in aerosols from
selected European sites – Biogenic versus anthropogenic sources,
Atmos. Environ., 59, 243–255,
https://doi.org/10.1016/j.atmosenv.2012.06.013, 2012.
Ambrose, J. L., Reidmiller, D. R., and Jaffe, D. A.: Causes of high O3 in
the lower free troposphere over the Pacific Northwest as observed at the Mt.
Bachelor Observatory, Atmos. Environ., 45, 5302–5315,
https://doi.org/10.1016/j.atmosenv.2011.06.056, 2011.
Amodio, M., Catino, S., Dambruoso, P. R., de Gennaro, G., Di Gilio, A.,
Giungato, P., Laiola, E., Marzocca, A., Mazzone, A., Sardaro, A., and
Tutino, M.: Atmospheric Deposition: Sampling Procedures, Analytical Methods,
and Main Recent Findings from the Scientific Literature, Adv. Meteorol., 2014, 1–27, https://doi.org/10.1155/2014/161730, 2014.
Arimoto, R., Kim, Y. J., Kim, Y. P., Quinn, P. K., Bates, T. S., Anderson,
T. L., Gong, S., Uno, I., Chin, M., Huebert, B. J., Clarke, A. D.,
Shinozuka, Y., Weber, R. J., Anderson, J. R., Guazzotti, S. A., Sullivan, R.
C., Sodeman, D. A., Prather, K. A., and Sokolik, I. N.: Characterization of
Asian Dust during ACE-Asia, Global Planet. Change, 52, 23–56,
https://doi.org/10.1016/j.gloplacha.2006.02.013, 2006.
Astitha, M., Kallos, G., Spyrou, C., O'Hirok, W., Lelieveld, J., and Denier van der Gon, H. A. C.: Modelling the chemically aged and mixed aerosols over the eastern central Atlantic Ocean – potential impacts, Atmos. Chem. Phys., 10, 5797–5822, https://doi.org/10.5194/acp-10-5797-2010, 2010.
Baker, K. and Scheff, P.: Photochemical model performance for PM2.5 sulfate,
nitrate, ammonium, and precursor species SO2, HNO3, and NH3 at background
monitor locations in the central and eastern United States, Atmos. Environ., 41, 6185–6195, https://doi.org/10.1016/j.atmosenv.2007.04.006,
2007.
Bauer, H., Schueller, E., Weinke, G., Berger, A., Hitzenberger, R., Marr, I.
L., and Puxbaum, H.: Significant contributions of fungal spores to the
organic carbon and to the aerosol mass balance of the urban atmospheric
aerosol, Atmos. Environ., 42, 5542–5549,
https://doi.org/10.1016/j.atmosenv.2008.03.019, 2008.
Bei, N., Zhao, L., Wu, J., Li, X., Feng, T., and Li, G.: Impacts of sea-land
and mountain-valley circulations on the air pollution in
Beijing-Tianjin-Hebei (BTH): A case study, Environ. Pollut., 234,
429–438, https://doi.org/10.1016/j.envpol.2017.11.066, 2018.
Benchrif, A., Guinot, B., Bounakhla, M., Cachier, H., Damnati, B., and
Baghdad, B.: Aerosols in Northern Morocco: Input pathways and their chemical
fingerprint, Atmos. Environ., 174, 140–147,
https://doi.org/10.1016/j.atmosenv.2017.11.047, 2018.
Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore,
A. M., Li, Q., Liu, H. Y., Mickley, L. J., and Schultz, M. G.: Global
modeling of tropospheric chemistry with assimilated meteorology: Model
description and evaluation, J. Geophys. Res., 106, 23073–23095,
https://doi.org/10.1029/2001JD000807, 2001.
Birmili, W., Allen, A. G., Bary, F., and Harrison, R. M.: Trace Metal Concentrations and Water Solubility in Size-Fractionated Atmospheric Particles and Influence of Road Traffic, Environ. Sci. Technol., 40, 1144–1153, https://doi.org/10.1021/es0486925, 2006.
Bourcier, L., Sellegri, K., Chausse, P., Pichon, J. M., and Laj, P.:
Seasonal variation of water-soluble inorganic components in aerosol
size-segregated at the puy de Dôme station (1,465 m a.s.l.), France, J.
Atmos. Chem., 69, 47–66, https://doi.org/10.1007/s10874-012-9229-2, 2012.
Bove, M. C., Brotto, P., Cassola, F., Cuccia, E., Massabò, D., Mazzino,
A., Piazzalunga, A., and Prati, P.: An integrated PM2.5 source apportionment study: Positive Matrix Factorisation vs. the chemical transport model CAMx, Atmos. Environ., 94, 274–286,
https://doi.org/10.1016/j.atmosenv.2014.05.039, 2014.
Buchunde, P., Safai, P. D., Mukherjee, S., Leena, P. P., Siingh, D., Meena, G. S., and Pandithurai, G.: Characterisation of particulate matter at a high-altitude site in southwest India: Impact of dust episodes, J. Earth Syst. Sci., 128, 237, https://doi.org/10.1007/s12040-019-1265-8, 2019.
Campbell, J. F. E., Fletcher, W. J., Joannin, S., Hughes, P. D., Rhanem, M.,
and Zielhofer, C.: Environmental Drivers of Holocene Forest Development in
the Middle Atlas, Morocco, Front. Ecol. Evol., 5, 113,
https://doi.org/10.3389/fevo.2017.00113, 2017.
Carter, W., Cockeriii, D., Fitz, D., Malkina, I., Bumiller, K., Sauer, C., Pisano, J., Bufalino, C., and Song, C.: A new environmental chamber for evaluation of gas-phase chemical mechanisms and secondary aerosol formation, Atmos. Environ., 39, 7768–7788, https://doi.org/10.1016/j.atmosenv.2005.08.040, 2005.
Cavalli, F., Viana, M., Yttri, K. E., Genberg, J., and Putaud, J.-P.: Toward a standardised thermal-optical protocol for measuring atmospheric organic and elemental carbon: the EUSAAR protocol, Atmos. Meas. Tech., 3, 79–89, https://doi.org/10.5194/amt-3-79-2010, 2010.
Cesari, D., Contini, D., Genga, A., Siciliano, M., Elefante, C., Baglivi,
F., and Daniele, L.: Analysis of raw soils and their re-suspended PM10
fractions: Characterisation of source profiles and enrichment factors,
Appl. Geochem., 27, 1238–1246,
https://doi.org/10.1016/j.apgeochem.2012.02.029, 2012.
Chatterjee, A., Adak, A., Singh, A. K., Srivastava, M. K., Ghosh, S. K.,
Tiwari, S., Devara, P. C. S., and Raha, S.: Aerosol Chemistry over a High
Altitude Station at Northeastern Himalayas, India, PLoS ONE, 5, e11122,
https://doi.org/10.1371/journal.pone.0011122, 2010.
Chiapello, I., Bergametti, G., Chatenet, B., Bousquet, P., Dulac, F., and
Soares, E. S.: Origins of African dust transported over the northeastern
tropical Atlantic, J. Geophys. Res., 102, 13701–13709,
https://doi.org/10.1029/97JD00259, 1997.
Chu, A. K. M., Kwok, R. C. W., and Yu, K. N.: Study of pollution dispersion
in urban areas using Computational Fluid Dynamics (CFD) and Geographic
Information System (GIS), Environ. Modell. Softw., 20,
273–277, https://doi.org/10.1016/j.envsoft.2004.05.007, 2005.
Cincinelli, A., Bubba, M. D., Martellini, T., Gambaro, A., and Lepri, L.:
Gas-particle concentration and distribution of n-alkanes and polycyclic
aromatic hydrocarbons in the atmosphere of Prato (Italy), Chemosphere, 68,
472–478, https://doi.org/10.1016/j.chemosphere.2006.12.089, 2007.
Clegg, S. L., Brimblecombe, P., and Wexler, A. S.: Thermodynamic Model of
the System H NH SO NO H2O at Tropospheric Temperatures, J. Phys. Chem. A, 102, 2137–2154, https://doi.org/10.1021/jp973042r, 1998.
Contini, D., Genga, A., Cesari, D., Siciliano, M., Donateo, A., Bove, M. C.,
and Guascito, M. R.: Characterisation and source apportionment of PM10 in an urban background site in Lecce, Atmos. Res., 95, 40–54,
https://doi.org/10.1016/j.atmosres.2009.07.010, 2010.
Contini, D., Belosi, F., Gambaro, A., Cesari, D., Stortini, A. M., and Bove, M. C.: Comparison of PM10 concentrations and metal content in three different sites of the Venice Lagoon: An analysis of possible aerosol sources, Journal of Environmental Sciences, 24, 1954–1965, https://doi.org/10.1016/S1001-0742(11)61027-9, 2012.
Contini, D., Cesari, D., Donateo, A., Chirizzi, D., and Belosi, F.:
Characterization of PM10 and PM2.5 and Their Metals Content in Different Typologies of Sites in South-Eastern Italy, Atmosphere, 5, 435–453, https://doi.org/10.3390/atmos5020435, 2014.
Cozic, J., Verheggen, B., Weingartner, E., Crosier, J., Bower, K. N., Flynn, M., Coe, H., Henning, S., Steinbacher, M., Henne, S., Collaud Coen, M., Petzold, A., and Baltensperger, U.: Chemical composition of free tropospheric aerosol for PM1 and coarse mode at the high alpine site Jungfraujoch, Atmos. Chem. Phys., 8, 407–423, https://doi.org/10.5194/acp-8-407-2008, 2008.
Decesari, S., Facchini, M. C., Carbone, C., Giulianelli, L., Rinaldi, M., Finessi, E., Fuzzi, S., Marinoni, A., Cristofanelli, P., Duchi, R., Bonasoni, P., Vuillermoz, E., Cozic, J., Jaffrezo, J. L., and Laj, P.: Chemical composition of PM10 and PM1 at the high-altitude Himalayan station Nepal Climate Observatory-Pyramid (NCO-P) (5079 m a.s.l.), Atmos. Chem. Phys., 10, 4583–4596, https://doi.org/10.5194/acp-10-4583-2010, 2010.
Desboeufs, K. V. and Cautenet, G.: Transport and mixing zone of desert dust and sulphate over Tropical Africa and the Atlantic Ocean region, Atmos. Chem. Phys. Discuss., 5, 5615–5644, https://doi.org/10.5194/acpd-5-5615-2005, 2005.
Ding, K., Liu, J., Ding, A., Liu, Q., Zhao, T. L., Shi, J., Han, Y., Wang, H., and Jiang, F.: Uplifting of carbon monoxide from biomass burning and anthropogenic sources to the free troposphere in East Asia, Atmos. Chem. Phys., 15, 2843–2866, https://doi.org/10.5194/acp-15-2843-2015, 2015.
Draxler, R. and Hess, G.: Description of the HYSPLIT4 modeling system, NOAA
Technical Memorandum, ERL, ARL-224, 24, 2004.
Du, Y., Xu, X., Chu, M., Guo, Y., and Wang, J.: Air particulate matter and
cardiovascular disease: the epidemiological, biomedical and clinical
evidence, J. Thorac. Dis., 8, 12, https://doi.org/10.3978/j.issn.2072-1439.2015.11.37 2016.
Falkovich, A. H., Ganor, E., Levin, Z., Formenti, P., and Rudich, Y.:
Chemical and mineralogical analysis of individual mineral dust particles, J.
Geophys. Res., 106, 18029–18036, https://doi.org/10.1029/2000JD900430,
2001.
Fiore, A. M., Dentener, F. J., Wild, O., Cuvelier, C., Schultz, M. G., Hess, P., Textor, C., Schulz, M., Doherty, R. M., Horowitz, L. W., MacKenzie, I. A., Sanderson, M. G., Shindell, D. T., Stevenson, D. S., Szopa, S., Van Dingenen, R., Zeng, G., Atherton, C., Bergmann, D., Bey, I., Carmichael, G., Collins, W. J., Duncan, B. N., Faluvegi, G., Folberth, G., Gauss, M., Gong, S., Hauglustaine, D., Holloway, T., Isaksen, I. S. A., Jacob, D. J., Jonson, J. E., Kaminski, J. W., Keating, T. J., Lupu, A., Marmer, E., Montanaro, V., Park, R. J., Pitari, G., Pringle, K. J., Pyle, J. A., Schroeder, S., Vivanco, M. G., Wind, P., Wojcik, G., Wu, S., and Zuber, A.: Multimodel estimates of intercontinental source-receptor relationships for ozone pollution, J. Geophys. Res., 114, D04301, https://doi.org/10.1029/2008JD010816, 2009.
Fomba, K. W., Müller, K., van Pinxteren, D., and Herrmann, H.: Aerosol size-resolved trace metal composition in remote northern tropical Atlantic marine environment: case study Cape Verde islands, Atmos. Chem. Phys., 13, 4801–4814, https://doi.org/10.5194/acp-13-4801-2013, 2013.
Fomba, K. W., Müller, K., van Pinxteren, D., Poulain, L., van Pinxteren, M., and Herrmann, H.: Long-term chemical characterization of tropical and marine aerosols at the Cape Verde Atmospheric Observatory (CVAO) from 2007 to 2011, Atmos. Chem. Phys., 14, 8883–8904, https://doi.org/10.5194/acp-14-8883-2014, 2014.
Fomba, K. W., Deabji, N., Barcha, S. E. I., Ouchen, I., Elbaramoussi, E. M., El Moursli, R. C., Harnafi, M., El Hajjaji, S., Mellouki, A., and Herrmann, H.: Application of TXRF in monitoring trace metals in particulate matter and cloud water, Atmos. Meas. Tech., 13, 4773–4790, https://doi.org/10.5194/amt-13-4773-2020, 2020.
Formenti, P., Caquineau, S., Desboeufs, K., Klaver, A., Chevaillier, S., Journet, E., and Rajot, J. L.: Mapping the physico-chemical properties of mineral dust in western Africa: mineralogical composition, Atmos. Chem. Phys., 14, 10663–10686, https://doi.org/10.5194/acp-14-10663-2014, 2014.
Fu, P., Kawamura, K., Kobayashi, M., and Simoneit, B. R. T.: Seasonal
variations of sugars in atmospheric particulate matter from Gosan, Jeju
Island: Significant contributions of airborne pollen and Asian dust in
spring, Atmos. Environ., 55, 234–239,
https://doi.org/10.1016/j.atmosenv.2012.02.061, 2012.
Gangoiti, G., Alonso, L., Navazo, M., García, J. A., and Millán, M.
M.: North African soil dust and European pollution transport to America
during the warm season: Hidden links shown by a passive tracer simulation:
European pollution transport to America, J. Geophys. Res., 111, D10109,
https://doi.org/10.1029/2005JD005941, 2006.
García, M. I., Rodríguez, S., and Alastuey, A.: Impact of North America on the aerosol composition in the North Atlantic free troposphere, Atmos. Chem. Phys., 17, 7387–7404, https://doi.org/10.5194/acp-17-7387-2017, 2017.
Gherboudj, I., Naseema Beegum, S., and Ghedira, H.: Identifying natural dust source regions over the Middle-East and North-Africa: Estimation of dust emission potential, Earth-Science Reviews, 165, 342–355, https://doi.org/10.1016/j.earscirev.2016.12.010, 2017.
Gilge, S., Plass-Duelmer, C., Fricke, W., Kaiser, A., Ries, L., Buchmann, B., and Steinbacher, M.: Ozone, carbon monoxide and nitrogen oxides time series at four alpine GAW mountain stations in central Europe, Atmos. Chem. Phys., 10, 12295–12316, https://doi.org/10.5194/acp-10-12295-2010, 2010.
Glaccum, R. A. and Prospero, J. M.: Saharan aerosols over the tropical North
Atlantic – Mineralogy, Mar. Geol., 37, 295–321,
https://doi.org/10.1016/0025-3227(80)90107-3, 1980.
Glasius, M., Hansen, A. M. K., Claeys, M., Henzing, J. S., Jedynska, A. D.,
Kasper-Giebl, A., Kistler, M., Kristensen, K., Martinsson, J., Maenhaut, W.,
Nøjgaard, J. K., Spindler, G., Stenström, K. E., Swietlicki, E.,
Szidat, S., Simpson, D., and Yttri, K. E.: Composition and sources of
carbonaceous aerosols in Northern Europe during winter, Atmos. Environ., 173, 127–141, https://doi.org/10.1016/j.atmosenv.2017.11.005, 2018.
Guinot, B., Cachier, H., Sciare, J., Tong, Y., Xin, W., and Jianhua, Y.: Beijing aerosol: Atmospheric interactions and new trends, J. Geophys. Res., 112, D14314, https://doi.org/10.1029/2006JD008195, 2007.
Hien, P. D., Bac, V. T., Tham, H. C., Nhan, D. D., and Vinh, L. D.: Influence
of meteorological conditions on PM2.5 and PM2.5−10 concentrations during the monsoon season in Hanoi, Vietnam, 12, 3473–3484,
https://doi.org/10.1016/S1352-2310(02)00295-9, 2002.
Holst, J., Mayer, H., and Holst, T.: Effect of meteorological exchange
conditions on PM10 concentration, Meteorol. Z., 17, 273–282,
https://doi.org/10.1127/0941-2948/2008/0283, 2008.
Iinuma, Y., Brüggemann, E., Gnauk, T., Müller, K., Andreae, M. O.,
Helas, G., Parmar, R., and Herrmann, H.: Source characterization of biomass
burning particles: The combustion of selected European conifers, African
hardwood, savanna grass, and German and Indonesian peat, J. Geophys. Res.,
112, D08209, https://doi.org/10.1029/2006JD007120, 2007.
Iinuma, Y., Engling, G., Puxbaum, H., and Herrmann, H.: A highly resolved
anion-exchange chromatographic method for determination of saccharidic
tracers for biomass combustion and primary bio-particles in atmospheric
aerosol, Atmos. Environ., 43, 1367–1371,
https://doi.org/10.1016/j.atmosenv.2008.11.020, 2009.
Inchaouh, M.: state of ambient air quality in marrakech city (morocco) over
the period 2009–2012, Int. J. Geomate, 12, 99–106, 2017.
Jaenicke, R.: Abundance of Cellular Material and Proteins in the Atmosphere, Science, 308, 73–73, https://doi.org/10.1126/science.1106335, 2005.
Jonson, J. E., Stohl, A., Fiore, A. M., Hess, P., Szopa, S., Wild, O., Zeng, G., Dentener, F. J., Lupu, A., Schultz, M. G., Duncan, B. N., Sudo, K., Wind, P., Schulz, M., Marmer, E., Cuvelier, C., Keating, T., Zuber, A., Valdebenito, A., Dorokhov, V., De Backer, H., Davies, J., Chen, G. H., Johnson, B., Tarasick, D. W., Stübi, R., Newchurch, M. J., von der Gathen, P., Steinbrecht, W., and Claude, H.: A multi-model analysis of vertical ozone profiles, Atmos. Chem. Phys., 10, 5759–5783, https://doi.org/10.5194/acp-10-5759-2010, 2010.
Kalderon-Asael, B., Erel, Y., Sandler, A., and Dayan, U.: Mineralogical and
chemical characterization of suspended atmospheric particles over the east
Mediterranean based on synoptic-scale circulation patterns, Atmos. Environ., 43, 3963–3970, https://doi.org/10.1016/j.atmosenv.2009.03.057, 2009.
Kandler, K., Schütz, L., Deutscher, C., Ebert, M., Hofmann, H.,
Jäckel, S., Jaenicke, R., Knippertz, P., Lieke, K., Massling, A.,
Petzold, A., Schladitz, A., Weinzierl, B., Wiedensohler, A., Zorn, S., and
Weinbruch1, S.: Size distribution, mass concentration, chemical and
mineralogical composition and derived optical parameters of the boundary
layer aerosol at Tinfou, Morocco, during SAMUM 2006, Tellus B, 61, 32–50,
https://doi.org/10.1111/j.1600-0889.2008.00385.x, 2009.
Kavouras, I. G.: Particle size distribution of organic primary and secondary
aerosol constituents in urban, background marine, and forest atmosphere, J.
Geophys. Res., 107, 4069, https://doi.org/10.1029/2000JD000278, 2002.
Khan, B., Stenchikov, G., Weinzierl, B., Kalenderski, S., and Osipov, S.:
Dust plume formation in the free troposphere and aerosol size distribution
during the Saharan Mineral Dust Experiment in North Africa, Tellus B, 67, 27170, https://doi.org/10.3402/tellusb.v67.27170, 2015.
Khedidji, S., Müller, K., Rabhi, L., Spindler, G., Fomba, K. W.,
van Pinxteren, D., Yassaa, N., and Herrmann, H.: Chemical Characterization
of Marine Aerosols in a South Mediterranean Coastal Area Located in Bou
Ismaïl, Algeria, Aerosol Air Qual. Res., 20, 2448–2473,
https://doi.org/10.4209/aaqr.2019.09.0458, 2020.
Khrissi, S., Bejjit, L., Haddad, M., Falguères, C., Ait Lyazidi, S., and
El Amraoui, M.: Study of marbles from Middle Atlas (Morocco): elemental,
mineralogical and structural analysis, IOP Conf. Ser.-Mat. Sci.,
353, 012013, https://doi.org/10.1088/1757-899X/353/1/012013, 2018.
King, M. D., Menzel, W. P., Kaufman, Y. J., Tanre, D., Gao, B.-C., Platnick,
S., Ackerman, S. A., Remer, L. A., Pincus, R., and Hubanks, P. A.: Cloud and
aerosol properties, precipitable water, and profiles of temperature and
water vapor from MODIS, IEEE T. Geosci. Remote, 41, 442–458,
https://doi.org/10.1109/TGRS.2002.808226, 2003.
Koçak, M., Theodosi, C., Zarmpas, P., Séguret, M. J. M., Herut, B.,
Kallos, G., Mihalopoulos, N., Kubilay, N., and Nimmo, M.: Influence of
mineral dust transport on the chemical composition and physical properties
of the Eastern Mediterranean aerosol, Atmos. Environ., 57, 266–277,
https://doi.org/10.1016/j.atmosenv.2012.04.006, 2012.
Krueger, B. J., Grassian, V. H., Cowin, J. P., and Laskin, A.: Heterogeneous
chemistry of individual mineral dust particles from different dust source
regions: the importance of particle mineralogy, Atmos. Environ., 38,
6253–6261, https://doi.org/10.1016/j.atmosenv.2004.07.010, 2004.
Kumar, A., Wu, S., Weise, M. F., Honrath, R., Owen, R. C., Helmig, D., Kramer, L., Val Martin, M., and Li, Q.: Free-troposphere ozone and carbon monoxide over the North Atlantic for 2001–2011, Atmos. Chem. Phys., 13, 12537–12547, https://doi.org/10.5194/acp-13-12537-2013, 2013.
Lang, M. N., Gohm, A., and Wagner, J. S.: The impact of embedded valleys on daytime pollution transport over a mountain range, Atmos. Chem. Phys., 15, 11981–11998, https://doi.org/10.5194/acp-15-11981-2015, 2015.
Leena, P. P., Vijayakumar, K., Anilkumar, V., and Pandithurai, G.: Analysing
temporal variability of particulate matter and possible contributing factors
over Mahabaleshwar, a high-altitude station in Western Ghats, India, J. Atmos. Sol.-Terr. Phy., 164, 105–115, https://doi.org/10.1016/j.jastp.2017.08.013, 2017.
Leng, C., Zhang, Q., Tao, J., Zhang, H., Zhang, D., Xu, C., Li, X., Kong, L., Cheng, T., Zhang, R., Yang, X., Chen, J., Qiao, L., Lou, S., Wang, H., and Chen, C.: Impacts of new particle formation on aerosol cloud condensation nuclei (CCN) activity in Shanghai: case study, Atmos. Chem. Phys., 14, 11353–11365, https://doi.org/10.5194/acp-14-11353-2014, 2014.
Liang, Q., Jaeglé, L., Jaffe, D. A., Weiss-Penzias, P., Heckman, A., and
Snow, J. A.: Long-range transport of Asian pollution to the northeast
Pacific: Seasonal variations and transport pathways of carbon monoxide:
transport pathways to the northeast pacific, J. Geophys. Res., 109, D23S07,
https://doi.org/10.1029/2003JD004402, 2004.
Liu, J., Russell, L. M., Lee, A. K. Y., McKinney, K. A., Surratt, J. D., and
Ziemann, P. J.: Observational evidence for pollution-influenced selective
uptake contributing to biogenic secondary organic aerosols in the
southeastern U.S.: Evidence for Selective Uptake of bSOA, Geophys. Res.
Lett., 44, 8056–8064, https://doi.org/10.1002/2017GL074665, 2017.
Logan, J. A., Staehelin, J., Megretskaia, I. A., Cammas, J.-P., Thouret, V., Claude, H., De Backer, H., Steinbacher, M., Scheel, H.-E., Stübi, R., Fröhlich, M., and Derwent, R.: Changes in ozone over Europe: Analysis of ozone measurements from sondes, regular aircraft (MOZAIC) and alpine surface sites: CHANGES IN OZONE OVER EUROPE, J. Geophys. Res., 117, 0148–0227, https://doi.org/10.1029/2011JD016952, 2012.
Lugauer, M., Baltensperger, U., Furger, M., Gaggeler, H. W., Jost, D. T., Schwikowski, M., and Wanner, H.: Aerosol transport to the high Alpine sites Jungfraujoch (3454 m asl) and Colle Gnifetti (4452 m asl), Tellus B, 50, 76–92, https://doi.org/10.1034/j.1600-0889.1998.00006.x, 1998.
Maenhaut, W., Raes, N., Chi, X., Cafmeyer, J., Wang, W., and Salma, I.:
Chemical composition and mass closure for fine and coarse aerosols at a
kerbside in Budapest, Hungary, in spring 2002, X-Ray Spectrom., 34, 290–296,
https://doi.org/10.1002/xrs.820, 2005.
Marenco, F., Bonasoni, P., Calzolari, F., Ceriani, M., Chiari, M.,
Cristofanelli, P., D'Alessandro, A., Fermo, P., Lucarelli, F., Mazzei, F.,
Nava, S., Piazzalunga, A., Prati, P., Valli, G., and Vecchi, R.:
Characterization of atmospheric aerosols at Monte Cimone, Italy, during
summer 2004: Source apportionment and transport mechanisms, J. Geophys.
Res., 111, D24202, https://doi.org/10.1029/2006JD007145, 2006.
Mazzei, F., D'Alessandro, A., Lucarelli, F., Nava, S., Prati, P., Valli, G.,
and Vecchi, R.: Characterization of particulate matter sources in an urban
environment, Sci. Total Environ., 401, 81–89,
https://doi.org/10.1016/j.scitotenv.2008.03.008, 2008.
McInnes, L. M., Covert, D. S., Quinn, P. K., and Germani, M. S.:
Measurements of chloride depletion and sulfur enrichment in individual
seasalt particles collected from the remote marine boundary layer, J. Geophys. Res., 99, 8257–8268, https://doi.org/10.1029/93JD03453, 1994.
Minguillón, M. C., Querol, X., Alastuey, A., Monfort, E., and Miró,
J. V.: PM sources in a highly industrialised area in the process of
implementing PM abatement technology, Quantification and evolution, J. Environ. Monitor., 9, 1071–1081, https://doi.org/10.1039/B705474B, 2007.
Mukherjee, S., Singla, V., Meena, G. S., Aslam, M. Y., Safai, P. D., Buchunde, P., Vasudevan, A. K., Jena, C. K., Ghude, S. D., Dani, K., and Pandithurai, G.: Sub micron aerosol variability and its ageing process at a high altitude site in India: Impact of meteorological conditions, Environ. Pollut., 265, 115019, https://doi.org/10.1016/j.envpol.2020.115019, 2020.
Mounir, S., Saoud, N., Charroud, M., Mounir, K., and Choukrad, J.: The
Middle Atlas Geological karsts forms: Towards Geosites characterization, Oil
Gas Sci. Technol., 74, 17, https://doi.org/10.2516/ogst/2018089, 2019.
Müller, K.: Determination of aldehydes and ketones in the atmosphere –
A comparative long time study at an urban and a rural site in Eastern
Germany, Chemosphere, 35, 2093–2106,
https://doi.org/10.1016/S0045-6535(97)00267-1, 1997.
Müller, L., Reinnig, M.-C., Naumann, K. H., Saathoff, H., Mentel, T. F., Donahue, N. M., and Hoffmann, T.: Formation of 3-methyl-1,2,3-butanetricarboxylic acid via gas phase oxidation of pinonic acid – a mass spectrometric study of SOA aging, Atmos. Chem. Phys., 12, 1483–1496, https://doi.org/10.5194/acp-12-1483-2012, 2012.
Nair, V. S., Moorthy, K. K., Alappattu, D. P., Kunhikrishnan, P. K., George,
S., Nair, P. R., Babu, S. S., Abish, B., Satheesh, S. K., Tripathi, S. N.,
Niranjan, K., Madhavan, B. L., Srikant, V., Dutt, C. B. S., Badarinath, K.
V. S., and Reddy, R. R.: Wintertime aerosol characteristics over the
Indo-Gangetic Plain (IGP): Impacts of local boundary layer processes and
long-range transport: winter aerosols over indo-gangetic plain, J. Geophys.
Res., 112, D13205, https://doi.org/10.1029/2006JD008099, 2007.
Nerriere, É., Guegan, H., Bordigoni, B., Hautemaniere, A., Momas, I.,
Ladner, J., Target, A., Lameloise, P., Delmas, V., Personnaz, M.-B.,
Koutrakis, P., and Zmirou-Navier, D.: Spatial heterogeneity of personal
exposure to airborne metals in French urban areas, Sci. Total
Environ., 373, 49–56, https://doi.org/10.1016/j.scitotenv.2006.10.042,
2007.
Neusüss, C., Pelzing, M., Plewka, A., and Herrmann, H.: A new analytical
approach for size-resolved speciation of organic compounds in atmospheric
aerosol particles: Methods and first results, J. Geophys. Res., 105,
4513–4527, https://doi.org/10.1029/1999JD901038, 2000.
Okada, K. and Kai, K.: Atmospheric mineral particles collected at Qira in
the Taklamakan Desert, China, Atmos. Environ., 38, 6927–6935,
https://doi.org/10.1016/j.atmosenv.2004.03.078, 2004.
Okamoto, S. and Tanimoto, H.: A review of atmospheric chemistry observations at mountain sites, Prog. Earth Planet. Sci., 3, 34, https://doi.org/10.1186/s40645-016-0109-2, 2016.
Pacyna, E. G., Pacyna, J. M., Fudala, J., Strzelecka-Jastrzab, E.,
Hlawiczka, S., Panasiuk, D., Nitter, S., Pregger, T., Pfeiffer, H., and
Friedrich, R.: Current and future emissions of selected heavy metals to the
atmosphere from anthropogenic sources in Europe, Atmos. Environ.,
41, 8557–8566, https://doi.org/10.1016/j.atmosenv.2007.07.040, 2007.
Pandolfi, M., Gonzalez-Castanedo, Y., Alastuey, A., Pey, J., Querol, X., and de La Rosa, J. D.: Source apportionment to PM10 and PM2.5 at multiple sites in the Bay of Gibraltar (S Spain) by PMF: estimate of shipping emission, 7662, 2009.
Pandolfi, M., Gonzalez-Castanedo, Y., Alastuey, A., de la Rosa, J. D.,
Mantilla, E., de la Campa, A. S., Querol, X., Pey, J., Amato, F., and
Moreno, T.: Source apportionment of PM10 and PM2.5 at multiple sites in the strait of Gibraltar by PMF: impact of shipping emissions, Environ. Sci. Pollut. Res., 18, 260–269, https://doi.org/10.1007/s11356-010-0373-4, 2011.
Perrino, C., Catrambone, M., Dalla Torre, S., Rantica, E., Sargolini, T.,
and Canepari, S.: Seasonal variations in the chemical composition of
particulate matter: a case study in the Po Valley, Part I: macro-components
and mass closure, Environ. Sci. Pollut. Res., 21, 3999–4009,
https://doi.org/10.1007/s11356-013-2067-1, 2014.
Pietrogrande, M. C., Mercuriali, M., Perrone, M. G., Ferrero, L., Sangiorgi,
G., and Bolzacchini, E.: Distribution of n-Alkanes in the Northern Italy
Aerosols: Data Handling of GC-MS Signals for Homologous Series
Characterization, Environ. Sci. Technol., 44, 4232–4240,
https://doi.org/10.1021/es1001242, 2010.
Pietrogrande, M. C., Abbaszade, G., Schnelle-Kreis, J., Bacco, D.,
Mercuriali, M., and Zimmermann, R.: Seasonal variation and source estimation
of organic compounds in urban aerosol of Augsburg, Germany, Environ.
Pollut., 159, 1861–1868, https://doi.org/10.1016/j.envpol.2011.03.023,
2011.
Pio, C. A., Alves, C. A., and Duarte, A. C.: Identification, abundance and
origin of atmospheric organic particulate matter in a Portuguese rural area,
Atmos. Environ., 35, 1365–1375,
https://doi.org/10.1016/S1352-2310(00)00391-5, 2001.
Pope, C. A., Cohen, A. J., and Burnett, R. T.: Cardiovascular Disease and
Fine Particulate Matter: Lessons and Limitations of an Integrated
Exposure – Response Approach, Circ. Res., 122, 1645–1647,
https://doi.org/10.1161/circresaha.118.312956, 2018.
Prodi, F., Belosi, F., Contini, D., Santachiara, G., Matteo, L. D., Gambaro,
A., Donateo, A., and Cesari, D.: Aerosol fine fraction in the Venice Lagoon:
Particle composition and sources, Atmos. Res., 10, 141–150,
https://doi.org/10.1016/j.atmosres.2008.09.020, 2009.
Querol, X., Alastuey, A., Ruiz, C. R., Artiñano, B., Hansson, H. C.,
Harrison, R. M., Buringh, E., ten Brink, H. M., Lutz, M., Bruckmann, P.,
Straehl, P., and Schneider, J.: Speciation and origin of PM10 and PM2.5 in selected European cities, Atmos. Environ., 38, 6547–6555,
https://doi.org/10.1016/j.atmosenv.2004.08.037, 2004.
Ricciardelli, I., Bacco, D., Rinaldi, M., Bonafè, G., Scotto, F.,
Trentini, A., Bertacci, G., Ugolini, P., Zigola, C., Rovere, F., Maccone,
C., Pironi, C., and Poluzzi, V.: A three-year investigation of daily PM2.5 main chemical components in four sites: the routine measurement program of the Supersito Project (Po Valley, Italy), Atmos. Environ., 152,
418–430, https://doi.org/10.1016/j.atmosenv.2016.12.052, 2017.
Rodríguez, S., Alastuey, A., Alonso-Pérez, S., Querol, X., Cuevas, E., Abreu-Afonso, J., Viana, M., Pérez, N., Pandolfi, M., and de la Rosa, J.: Transport of desert dust mixed with North African industrial pollutants in the subtropical Saharan Air Layer, Atmos. Chem. Phys., 11, 6663–6685, https://doi.org/10.5194/acp-11-6663-2011, 2011.
Royaume du Maroc: Plan national de lutte contre le réchauffement
climatique, Ministère de l'Énergie, des Mines, de l'Eau et de
l'Environnement, (Département de l’Environnement), Rabat, 35 p., 2009.
Ryder, C. L., Marenco, F., Brooke, J. K., Estelles, V., Cotton, R., Formenti, P., McQuaid, J. B., Price, H. C., Liu, D., Ausset, P., Rosenberg, P. D., Taylor, J. W., Choularton, T., Bower, K., Coe, H., Gallagher, M., Crosier, J., Lloyd, G., Highwood, E. J., and Murray, B. J.: Coarse-mode mineral dust size distributions, composition and optical properties from AER-D aircraft measurements over the tropical eastern Atlantic, Atmos. Chem. Phys., 18, 17225–17257, https://doi.org/10.5194/acp-18-17225-2018, 2018.
Sarkar, S., Chauhan, A., Kumar, R., and Singh, R. P.: Impact of Deadly Dust
Storms (May 2018) on Air Quality, Meteorological, and Atmospheric Parameters
Over the Northern Parts of India, GeoHealth, 3, 67–80,
https://doi.org/10.1029/2018GH000170, 2019.
Satheesh, S. K. and Krishna Moorthy, K.: Radiative effects of natural
aerosols: A review, Atmos. Environ., 39, 2089–2110,
https://doi.org/10.1016/j.atmosenv.2004.12.029, 2005.
Schepanski, K., Mallet, M., Heinold, B., and Ulrich, M.: North African dust transport toward the western Mediterranean basin: atmospheric controls on dust source activation and transport pathways during June–July 2013, Atmos. Chem. Phys., 16, 14147–14168, https://doi.org/10.5194/acp-16-14147-2016, 2016.
Schladitz, A., Müller, T., Kaaden, N., Massling, A., Kandler, K., Ebert, M., Weinbruch, S., Deutscher, C., and Wiedensohler, A.: In situ measurements of optical properties at Tinfou (Morocco) during the Saharan Mineral Dust Experiment SAMUM 2006, Tellus B, 61, 64–78, https://doi.org/10.1111/j.1600-0889.2008.00397.x, 2009.
Sharma, S. K., Choudhary, N., Kotnala, G., Das, D., Mukherjee, S., Ghosh,
A., Vijayan, N., Rai, A., Chatterjee, A., and Mandal, T. K.: Wintertime
carbonaceous species and trace metals in PM10 in Darjeeling: A high altitude town in the eastern Himalayas, Urban Climate, 34, 100668,
https://doi.org/10.1016/j.uclim.2020.100668, 2020.
Song, Q., Christiani, D., Wang, X., and Ren, J.: The Global Contribution
of Outdoor Air Pollution to the Incidence, Prevalence, Mortality and
Hospital Admission for Chronic Obstructive Pulmonary Disease: A Systematic
Review and Meta-Analysis, Ind. J. Env. Res. Pub. He., 11, 11822–11832,
https://doi.org/10.3390/ijerph111111822, 2014.
Spindler, G., Gnauk, T., Grüner, A., Iinuma, Y., Müller, K.,
Scheinhardt, S., and Herrmann, H.: Size-segregated characterization of PM10 at the EMEP site Melpitz (Germany) using a five-stage impactor: a six year study, J. Atmos. Chem., 69, 127–157,
https://doi.org/10.1007/s10874-012-9233-6, 2012.
Squizzato, S., Masiol, M., Brunelli, A., Pistollato, S., Tarabotti, E., Rampazzo, G., and Pavoni, B.: Factors determining the formation of secondary inorganic aerosol: a case study in the Po Valley (Italy), Atmos. Chem. Phys., 13, 1927–1939, https://doi.org/10.5194/acp-13-1927-2013, 2013.
Tahri, M., Bounakhla, M., Zghaïd, M., Benchrif, A., Zahry, F., Noack,
Y., and Benyaïch, F.: TXRF characterization and source identification
by positive matrix factorization of airborne particulate matter sampled in
Kenitra City (Morocco): TXRF characterization and source identification in
Kenitra City, Morocco, X-Ray Spectrom., 42, 284–289, https://doi.org/10.1002/xrs.2484, 2013.
Tahri, M., Benchrif, A., Bounakhla, M., Benyaich, F., and Noack, Y.:
Seasonal variation and risk assessment of PM2.5 and PM2.5–10 in the ambient air of Kenitra, Morocco, Environ. Sci.-Proc. Imp., 19, 1427–1436, https://doi.org/10.1039/C7EM00286F, 2017.
Turpin, B. J. and Lim, H.-J.: Species Contributions to PM2.5 Mass
Concentrations: Revisiting Common Assumptions for Estimating Organic Mass,
Aerosol Sci. Technol., 35, 602–610,
https://doi.org/10.1080/02786820119445, 2001.
Van Pinxteren, D., Brüggemann, E., Gnauk, T., Müller, K., Thiel, C.,
and Herrmann, H.: A GIS based approach to back trajectory analysis for the
source apportionment of aerosol constituents and its first application, J.
Atmos. Chem., 67, 1–28, https://doi.org/10.1007/s10874-011-9199-9, 2010.
Van Pinxteren, M., Fiedler, B., van Pinxteren, D., Iinuma, Y., Körtzinger, A., and Herrmann, H.: Chemical characterization of sub-micrometer aerosol particles in the tropical Atlantic Ocean: marine and biomass burning influences, J. Atmos. Chem., 72, 105–125, https://doi.org/10.1007/s10874-015-9307-3, 2015.
Veselovskii, I., Goloub, P., Podvin, T., Bovchaliuk, V., Derimian, Y., Augustin, P., Fourmentin, M., Tanre, D., Korenskiy, M., Whiteman, D. N., Diallo, A., Ndiaye, T., Kolgotin, A., and Dubovik, O.: Retrieval of optical and physical properties of African dust from multiwavelength Raman lidar measurements during the SHADOW campaign in Senegal, Atmos. Chem. Phys., 16, 7013–7028, https://doi.org/10.5194/acp-16-7013-2016, 2016.
Viana, M., Pandolfi, M., Minguillón, M. C., Querol, X., Alastuey, A., Monfort, E., and Celades, I.: Inter-comparison of receptor models for PM source apportionment: Case study in an industrial area, Atmos. Environ., 42, 3820–3832, https://doi.org/10.1016/j.atmosenv.2007.12.056, 2008.
Wang, Y. Q., Zhang, X. Y., Sun, J. Y., Zhang, X. C., Che, H. Z., and Li, Y.: Spatial and temporal variations of the concentrations of PM10, PM2.5 and PM1 in China, Atmos. Chem. Phys., 15, 13585–13598, https://doi.org/10.5194/acp-15-13585-2015, 2015.
Wedepohl, K. H.: The composition of the continental crust, Geochim. Cosmochim. Ac., 59, 1217–1232, https://doi.org/10.1016/0016-7037(95)00038-2, 1995.
Weiss-Penzias, P., Jaffe, D. A., Swartzendruber, P., Dennison, J. B., Chand,
D., Hafner, W., and Prestbo, E.: Observations of Asian air pollution in the
free troposphere at Mount Bachelor Observatory during the spring of 2004:
observations at Mount Bachelor Observatory, J. Geophys. Res., 111, D10304,
https://doi.org/10.1029/2005JD006522, 2006.
Yttri, K. E., Simpson, D., Bergström, R., Kiss, G., Szidat, S., Ceburnis, D., Eckhardt, S., Hueglin, C., Nøjgaard, J. K., Perrino, C., Pisso, I., Prevot, A. S. H., Putaud, J.-P., Spindler, G., Vana, M., Zhang, Y.-L., and Aas, W.: The EMEP Intensive Measurement Period campaign, 2008–2009: characterizing carbonaceous aerosol at nine rural sites in Europe, Atmos. Chem. Phys., 19, 4211–4233, https://doi.org/10.5194/acp-19-4211-2019, 2019.
Zhang, J. M., Wang, T., Ding, A. J., Zhou, X. H., Xue, L. K., Poon, C. N.,
Wu, W. S., Gao, J., Zuo, H. C., Chen, J. M., Zhang, X. C., and Fan, S. J.:
Continuous measurement of peroxyacetyl nitrate (PAN) in suburban and remote
areas of western China, Atmos. Environ., 43, 228–237,
https://doi.org/10.1016/j.atmosenv.2008.09.070, 2009.
Zhao, Z., Cao, J., Shen, Z., Xu, B., Zhu, C., Chen, L.-W. A., Su, X., Liu,
S., Han, Y., Wang, G., and Ho, K.: Aerosol particles at a high-altitude site
on the Southeast Tibetan Plateau, China: Implications for pollution
transport from South Asia: AEROSOL PARTICLES IN SOUTHEAST TP, J. Geophys.
Res.-Atmos., 118, 11360–11375, https://doi.org/10.1002/jgrd.50599, 2013.
Short summary
Mountain and high-altitude sites provide representative data for the lower free troposphere, various pathways for aerosol interactions, and changing boundary layer heights useful in understanding atmospheric composition. However, only few studies exist in African regions despite diversity in both natural and anthropogenic emissions. This study provides detailed atmospheric studies in the northern African high-altitude region.
Mountain and high-altitude sites provide representative data for the lower free troposphere,...
Altmetrics
Final-revised paper
Preprint