Articles | Volume 21, issue 16
https://doi.org/10.5194/acp-21-12227-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-12227-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Measurement report: Saccharide composition in atmospheric fine particulate matter during spring at the remote sites of southwest China and estimates of source contributions
Zhenzhen Wang
Shanghai Key Laboratory of Atmospheric Particle Pollution and
Prevention (LAP3), Department of Environmental Science & Engineering,
Fudan Tyndall Centre, Fudan University, Shanghai 200438, China
Di Wu
Shanghai Key Laboratory of Atmospheric Particle Pollution and
Prevention (LAP3), Department of Environmental Science & Engineering,
Fudan Tyndall Centre, Fudan University, Shanghai 200438, China
Zhuoyu Li
Shanghai Key Laboratory of Atmospheric Particle Pollution and
Prevention (LAP3), Department of Environmental Science & Engineering,
Fudan Tyndall Centre, Fudan University, Shanghai 200438, China
Xiaona Shang
Shanghai Key Laboratory of Atmospheric Particle Pollution and
Prevention (LAP3), Department of Environmental Science & Engineering,
Fudan Tyndall Centre, Fudan University, Shanghai 200438, China
Qing Li
Shanghai Key Laboratory of Atmospheric Particle Pollution and
Prevention (LAP3), Department of Environmental Science & Engineering,
Fudan Tyndall Centre, Fudan University, Shanghai 200438, China
Xiang Li
Shanghai Key Laboratory of Atmospheric Particle Pollution and
Prevention (LAP3), Department of Environmental Science & Engineering,
Fudan Tyndall Centre, Fudan University, Shanghai 200438, China
Renjie Chen
Key Lab of Public Health Safety of the
Ministry of Education, NHC Key Laboratory of Health Technology Assessment, School of Public Health,
Fudan University, Shanghai 200032, China
Haidong Kan
Key Lab of Public Health Safety of the
Ministry of Education, NHC Key Laboratory of Health Technology Assessment, School of Public Health,
Fudan University, Shanghai 200032, China
Huiling Ouyang
IRDR International Center of Excellence on Risk Interconnectivity and
Governance on Weather/Climate Extremes Impact and Public Health, Institute
of Atmospheric Sciences, Fudan University, Shanghai 200438, China
Xu Tang
IRDR International Center of Excellence on Risk Interconnectivity and
Governance on Weather/Climate Extremes Impact and Public Health, Institute
of Atmospheric Sciences, Fudan University, Shanghai 200438, China
Shanghai Key Laboratory of Atmospheric Particle Pollution and
Prevention (LAP3), Department of Environmental Science & Engineering,
Fudan Tyndall Centre, Fudan University, Shanghai 200438, China
IRDR International Center of Excellence on Risk Interconnectivity and
Governance on Weather/Climate Extremes Impact and Public Health, Institute
of Atmospheric Sciences, Fudan University, Shanghai 200438, China
Related authors
Tao Wang, Yangyang Liu, Hanyun Cheng, Zhenzhen Wang, Hongbo Fu, Jianmin Chen, and Liwu Zhang
Atmos. Chem. Phys., 22, 13467–13493, https://doi.org/10.5194/acp-22-13467-2022, https://doi.org/10.5194/acp-22-13467-2022, 2022
Short summary
Short summary
This study compared the gas-phase, aqueous-phase, and heterogeneous SO2 oxidation pathways by combining laboratory work with a modelling study. The heterogeneous oxidation, particularly that induced by the dust surface drivers, presents positive implications for the removal of airborne SO2 and formation of sulfate aerosols. This work highlighted the atmospheric significance of heterogeneous oxidation and suggested a comparison model to evaluate the following heterogeneous laboratory research.
Qianqian Gao, Guochao Chen, Xiaohui Lu, Jianmin Chen, Hongliang Zhang, and Xiaofei Wang
EGUsphere, https://doi.org/10.5194/egusphere-2025-596, https://doi.org/10.5194/egusphere-2025-596, 2025
Short summary
Short summary
Numerous lakes are shrinking due to climate change and human activities, releasing pollutants from dried lakebeds as dust aerosols. The health risks remain unclear. Recently, Poyang and Dongting Lakes faced record droughts, exposing 99 % and 88 % of their areas. We show lakebed dust can raise PM10 to 637.5 μg/m³ and exceed non-carcinogenic (HQ=4.13) and Cr carcinogenic (~2.10×10⁻⁶) risk thresholds, posing growing health threats.
Qun He, Zhaowen Wang, Houfeng Liu, Pengju Xu, Rongbao Duan, Caihong Xu, Jianmin Chen, and Min Wei
Atmos. Chem. Phys., 24, 12775–12792, https://doi.org/10.5194/acp-24-12775-2024, https://doi.org/10.5194/acp-24-12775-2024, 2024
Short summary
Short summary
Coastal environments provide an ideal setting for investigating the intermixing of terrestrial and marine aerosols. Terrestrial air mass constituted a larger number of microbes from anthropogenic and soil emissions, whereas saprophytic and gut microbes were predominant in marine samples. Mixed air masses indicated a fusion of marine and terrestrial aerosols, characterized by alterations in the ratio of pathogenic and saprophytic microbes when compared to either terrestrial or marine samples.
Xiaoyi Zhang, Wanyun Xu, Weili Lin, Gen Zhang, Jinjian Geng, Li Zhou, Huarong Zhao, Sanxue Ren, Guangsheng Zhou, Jianmin Chen, and Xiaobin Xu
Atmos. Chem. Phys., 24, 12323–12340, https://doi.org/10.5194/acp-24-12323-2024, https://doi.org/10.5194/acp-24-12323-2024, 2024
Short summary
Short summary
Ozone (O3) deposition is a key process that removes surface O3, affecting air quality, ecosystems and climate change. We conducted O3 deposition measurement over a wheat canopy using a newly relaxed eddy accumulation flux system. Large variabilities in O3 deposition were detected, mainly determined by crop growth and modulated by various environmental factors. More O3 deposition observations over different surfaces are needed for exploring deposition mechanisms and model optimization.
Yichen Jiang, Su Shi, Xinyue Li, Chang Xu, Haidong Kan, Bo Hu, and Xia Meng
Earth Syst. Sci. Data, 16, 4655–4672, https://doi.org/10.5194/essd-16-4655-2024, https://doi.org/10.5194/essd-16-4655-2024, 2024
Short summary
Short summary
Limited ultraviolet (UV) measurements hindered further investigation of its health effects. This study used a machine learning algorithm to predict UV radiation with a daily and 10 km resolution of high accuracy in mainland China in 2005–2020. Then, uneven spatial distribution and population exposure risks as well as increased temporal trend of UV radiation were found in China. The long-term and high-quality UV dataset could further facilitate health-related research in the future.
Qianqian Gao, Shengqiang Zhu, Kaili Zhou, Jinghao Zhai, Shaodong Chen, Qihuang Wang, Shurong Wang, Jin Han, Xiaohui Lu, Hong Chen, Liwu Zhang, Lin Wang, Zimeng Wang, Xin Yang, Qi Ying, Hongliang Zhang, Jianmin Chen, and Xiaofei Wang
Atmos. Chem. Phys., 23, 13049–13060, https://doi.org/10.5194/acp-23-13049-2023, https://doi.org/10.5194/acp-23-13049-2023, 2023
Short summary
Short summary
Dust is a major source of atmospheric aerosols. Its chemical composition is often assumed to be similar to the parent soil. However, this assumption has not been rigorously verified. Dust aerosols are mainly generated by wind erosion, which may have some chemical selectivity. Mn, Cd and Pb were found to be highly enriched in fine-dust (PM2.5) aerosols. In addition, estimation of heavy metal emissions from dust generation by air quality models may have errors without using proper dust profiles.
Jianyan Lu, Sunling Gong, Jian Zhang, Jianmin Chen, Lei Zhang, and Chunhong Zhou
Atmos. Chem. Phys., 23, 8021–8037, https://doi.org/10.5194/acp-23-8021-2023, https://doi.org/10.5194/acp-23-8021-2023, 2023
Short summary
Short summary
WRF/CUACE was used to assess the cloud chemistry contribution in China. Firstly, the CUACE cloud chemistry scheme was found to reproduce well the cloud processing and consumption of H2O2, O3, and SO2, as well as the increase of sulfate. Secondly, during cloud availability in December under a heavy pollution episode, sulfate production increased 60–95 % and SO2 was reduced by over 80 %. This study provides a way to analyze the phenomenon of overestimation of SO2 in many chemical transport models.
Jinlong Ma, Shengqiang Zhu, Siyu Wang, Peng Wang, Jianmin Chen, and Hongliang Zhang
Atmos. Chem. Phys., 23, 4311–4325, https://doi.org/10.5194/acp-23-4311-2023, https://doi.org/10.5194/acp-23-4311-2023, 2023
Short summary
Short summary
An updated version of the CMAQ model with biogenic volatile organic compound (BVOC) emissions from MEGAN was applied to study the impacts of different land cover inputs on O3 and secondary organic aerosol (SOA) in China. The estimated BVOC emissions ranged from 25.42 to 37.39 Tg using different leaf area index (LAI) and land cover (LC) inputs. Those differences further induced differences of 4.8–6.9 ppb in O3 concentrations and differences of 5.3–8.4 µg m−3 in SOA concentrations in China.
Yiqun Lu, Yingge Ma, Dan Dan Huang, Shengrong Lou, Sheng'ao Jing, Yaqin Gao, Hongli Wang, Yanjun Zhang, Hui Chen, Yunhua Chang, Naiqiang Yan, Jianmin Chen, Christian George, Matthieu Riva, and Cheng Huang
Atmos. Chem. Phys., 23, 3233–3245, https://doi.org/10.5194/acp-23-3233-2023, https://doi.org/10.5194/acp-23-3233-2023, 2023
Short summary
Short summary
N-containing oxygenated organic molecules have been identified as important precursors of aerosol particles. We used an ultra-high-resolution mass spectrometer coupled with an online sample inlet to accurately measure their molecular composition, concentration level and variation patterns. We show their formation process and influencing factors in a Chinese megacity involving various volatile organic compound precursors and atmospheric oxidants, and we highlight the influence of PM2.5 episodes.
Yu Han, Tao Wang, Rui Li, Hongbo Fu, Yusen Duan, Song Gao, Liwu Zhang, and Jianmin Chen
Atmos. Chem. Phys., 23, 2877–2900, https://doi.org/10.5194/acp-23-2877-2023, https://doi.org/10.5194/acp-23-2877-2023, 2023
Short summary
Short summary
Limited knowledge is available on volatile organic compound (VOC) multi-site research of different land-use types at city level. This study performed a concurrent multi-site observation campaign on the three typical land-use types of Shanghai, East China. The results showed that concentrations, sources and ozone and secondary organic aerosol formation potentials of VOCs varied with the land-use types.
Jian-yan Lu, Sunling Gong, Chun-hong Zhou, Jian Zhang, Jian-min Chen, and Lei Zhang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-716, https://doi.org/10.5194/acp-2022-716, 2022
Revised manuscript not accepted
Short summary
Short summary
A regional online chemical weather model WRF/ CUACE was used to assess the contributions of cloud chemistry to the SO2 and sulfate levels in typical regions in China. The cloud chemistry scheme in CUACE was evaluated, and well reproduces the cloud chemistry processes. During cloud availability in a heavy pollution episode, the sulfate production increases 40–80 % and SO2 reduces over 80 %. This study provides a way to analyze the over-estimate phenomenon of SO2 in many chemical transport models.
Tao Wang, Yangyang Liu, Hanyun Cheng, Zhenzhen Wang, Hongbo Fu, Jianmin Chen, and Liwu Zhang
Atmos. Chem. Phys., 22, 13467–13493, https://doi.org/10.5194/acp-22-13467-2022, https://doi.org/10.5194/acp-22-13467-2022, 2022
Short summary
Short summary
This study compared the gas-phase, aqueous-phase, and heterogeneous SO2 oxidation pathways by combining laboratory work with a modelling study. The heterogeneous oxidation, particularly that induced by the dust surface drivers, presents positive implications for the removal of airborne SO2 and formation of sulfate aerosols. This work highlighted the atmospheric significance of heterogeneous oxidation and suggested a comparison model to evaluate the following heterogeneous laboratory research.
Chaoyang Xue, Can Ye, Jörg Kleffmann, Chenglong Zhang, Valéry Catoire, Fengxia Bao, Abdelwahid Mellouki, Likun Xue, Jianmin Chen, Keding Lu, Yong Zhao, Hengde Liu, Zhaoxin Guo, and Yujing Mu
Atmos. Chem. Phys., 22, 3149–3167, https://doi.org/10.5194/acp-22-3149-2022, https://doi.org/10.5194/acp-22-3149-2022, 2022
Short summary
Short summary
Summertime measurements of nitrous acid (HONO) and related parameters were conducted at the foot and the summit of Mt. Tai (1534 m above sea level). We proposed a rapid vertical air mass exchange between the foot and the summit level, which enhances the role of HONO in the oxidizing capacity of the upper boundary layer. Kinetics for aerosol-derived HONO sources were constrained. HONO formation from different paths was quantified and discussed.
Wei Sun, Yuzhen Fu, Guohua Zhang, Yuxiang Yang, Feng Jiang, Xiufeng Lian, Bin Jiang, Yuhong Liao, Xinhui Bi, Duohong Chen, Jianmin Chen, Xinming Wang, Jie Ou, Ping'an Peng, and Guoying Sheng
Atmos. Chem. Phys., 21, 16631–16644, https://doi.org/10.5194/acp-21-16631-2021, https://doi.org/10.5194/acp-21-16631-2021, 2021
Short summary
Short summary
We sampled cloud water at a remote mountain site and investigated the molecular characteristics. CHON and CHO are dominant in cloud water. No statistical difference in the oxidation state is observed between cloud water and interstitial PM2.5. Most of the formulas are aliphatic and olefinic species. CHON, with aromatic structures and organosulfates, are abundant, especially in nighttime samples. The in-cloud and multi-phase dark reactions likely contribute significantly.
Men Xia, Xiang Peng, Weihao Wang, Chuan Yu, Zhe Wang, Yee Jun Tham, Jianmin Chen, Hui Chen, Yujing Mu, Chenglong Zhang, Pengfei Liu, Likun Xue, Xinfeng Wang, Jian Gao, Hong Li, and Tao Wang
Atmos. Chem. Phys., 21, 15985–16000, https://doi.org/10.5194/acp-21-15985-2021, https://doi.org/10.5194/acp-21-15985-2021, 2021
Short summary
Short summary
ClNO2 is an important precursor of chlorine radical that affects photochemistry. However, its production and impact are not well understood. Our study presents field observations of ClNO2 at three sites in northern China. These observations provide new insights into nighttime processes that produce ClNO2 and the significant impact of ClNO2 on secondary pollutions during daytime. The results improve the understanding of photochemical pollution in the lower part of the atmosphere.
Letizia Abis, Carmen Kalalian, Bastien Lunardelli, Tao Wang, Liwu Zhang, Jianmin Chen, Sébastien Perrier, Benjamin Loubet, Raluca Ciuraru, and Christian George
Atmos. Chem. Phys., 21, 12613–12629, https://doi.org/10.5194/acp-21-12613-2021, https://doi.org/10.5194/acp-21-12613-2021, 2021
Short summary
Short summary
Biogenic volatile organic compound (BVOC) emissions from rapeseed leaf litter have been investigated by means of a controlled atmospheric simulation chamber. The diversity of emitted VOCs increased also in the presence of UV light irradiation. SOA formation was observed when leaf litter was exposed to both UV light and ozone, indicating a potential contribution to particle formation or growth at local scales.
Rui Li, Yilong Zhao, Hongbo Fu, Jianmin Chen, Meng Peng, and Chunying Wang
Atmos. Chem. Phys., 21, 8677–8692, https://doi.org/10.5194/acp-21-8677-2021, https://doi.org/10.5194/acp-21-8677-2021, 2021
Short summary
Short summary
Based on a random forest model, the strict lockdown measures significantly decreased primary components such as Cr (−67 %) and Fe (−61 %) in PM2.5 (p < 0.01), whereas the higher relative humidity (RH) and NH3 level and the lower air temperature (T) remarkably enhanced the production of secondary aerosol including SO42− (29 %), NO3− (29 %), and NH4+ (21 %) (p < 0.05). The natural experiment suggested that the NH3 emission should be strictly controlled.
Jinlong Ma, Juanyong Shen, Peng Wang, Shengqiang Zhu, Yu Wang, Pengfei Wang, Gehui Wang, Jianmin Chen, and Hongliang Zhang
Atmos. Chem. Phys., 21, 7343–7355, https://doi.org/10.5194/acp-21-7343-2021, https://doi.org/10.5194/acp-21-7343-2021, 2021
Short summary
Short summary
Due to the reduced anthropogenic emissions during the COVID-19 lockdown, mainly from the transportation and industrial sectors, PM2.5 decreased significantly in the whole Yangtze River Delta (YRD) and its major cities. However, the contributions and relative importance of different source sectors and regions changed differently, indicating that control strategies should be adjusted accordingly for further pollution control.
Saehee Lim, Meehye Lee, Paolo Laj, Sang-Woo Kim, Kang-Ho Ahn, Junsoo Gil, Xiaona Shang, Marco Zanatta, and Kyeong-Sik Kang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1247, https://doi.org/10.5194/acp-2020-1247, 2021
Preprint withdrawn
Short summary
Short summary
This study identifies the main drivers of the formation and transformation processes of submicron particles and highlights that the thick coating of rBC was a result of active conversion of hygroscopic inorganic salts leading to fine aerosol pollution. Consequently, we suggest BC particles as a key contributor to PM2.5 mass increase, which implies that BC reduction is an effective mitigation against haze pollution as well as climate change in Northeast Asia.
Xiaona Shang, Ling Li, Xinlian Zhang, Huihui Kang, Guodong Sui, Gehui Wang, Xingnan Ye, Hang Xiao, and Jianmin Chen
Atmos. Meas. Tech., 14, 1037–1045, https://doi.org/10.5194/amt-14-1037-2021, https://doi.org/10.5194/amt-14-1037-2021, 2021
Short summary
Short summary
Oxidative stress can be used to evaluate not only adverse health effects but also adverse ecological effects. However, little research uses eco-toxicological assay to assess the risks posed by particle matter to non-human biomes. One important reason might be that the concentration of toxic components of atmospheric particles is far below the high detection limit of eco-toxic measurement. To solve the rapid detection problem, we extended a VACES for ecotoxicity aerosol measurement.
Yujiao Zhu, Likun Xue, Jian Gao, Jianmin Chen, Hongyong Li, Yong Zhao, Zhaoxin Guo, Tianshu Chen, Liang Wen, Penggang Zheng, Ye Shan, Xinfeng Wang, Tao Wang, Xiaohong Yao, and Wenxing Wang
Atmos. Chem. Phys., 21, 1305–1323, https://doi.org/10.5194/acp-21-1305-2021, https://doi.org/10.5194/acp-21-1305-2021, 2021
Short summary
Short summary
This work investigates the long-term changes in new particle formation (NPF) events under reduced SO2 emissions at the summit of Mt. Tai during seven campaigns from 2007 to 2018. We found the NPF intensity increased 2- to 3-fold in 2018 compared to 2007. In contrast, the probability of new particles growing to CCN size largely decreased. Changes to biogenic VOCs and anthropogenic emissions are proposed to explain the distinct NPF characteristics.
Jiarong Li, Chao Zhu, Hui Chen, Defeng Zhao, Likun Xue, Xinfeng Wang, Hongyong Li, Pengfei Liu, Junfeng Liu, Chenglong Zhang, Yujing Mu, Wenjin Zhang, Luming Zhang, Hartmut Herrmann, Kai Li, Min Liu, and Jianmin Chen
Atmos. Chem. Phys., 20, 13735–13751, https://doi.org/10.5194/acp-20-13735-2020, https://doi.org/10.5194/acp-20-13735-2020, 2020
Short summary
Short summary
Based on a field study at Mt. Tai, China, the simultaneous variations of cloud microphysics, aerosol microphysics and their potential interactions during cloud life cycles were discussed. Results demonstrated that clouds on clean days were more susceptible to the concentrations of particle number, while clouds formed on polluted days might be more sensitive to meteorological parameters. Particles larger than 150 nm played important roles in forming cloud droplets with sizes of 5–10 μm.
Cited articles
ARL: (Air Resources Laboratory) of NOAA: HYSPLIT Model [data set], available at: http://ready. arl.noaa.gov/HYSPLIT.php, last access: 6
September 2020.
Bauer, H., Claeys, M., Vermeylen, R., Schueller, E., Weinke, G., Berger, A.,
and Puxbaum, H.: Arabitol and mannitol as tracers for the quantification of
airborne fungal spores, Atmos. Environ., 42, 588–593,
https://doi.org/10.1016/j.atmosenv.2007.10.013, 2008.
Bieleski, R. L.: Onset of phloem export from senescent petals of daylily,
Plant. Physiol., 109, 557–565, https://doi.org/10.1104/pp.109.2.557, 1995.
Burshtein, N., Lang-Yona, N., and Rudich, Y.: Ergosterol, arabitol and mannitol as tracers for biogenic aerosols in the eastern Mediterranean, Atmos. Chem. Phys., 11, 829–839, https://doi.org/10.5194/acp-11-829-2011, 2011.
Caseiro, A., Marr, I. L., Claeys, M., Kasper-Giebl, A., Puxbaum, H., and
Pio, C. A.: Determination of saccharides in atmospheric aerosol using
anion-exchange high-performance liquid chromatography and
pulsed-amperometric detection, J. Chromatogr. A, 1171, 37–45,
https://doi.org/10.1016/j.chroma.2007.09.038, 2007.
Chen, J., Kawamura, K., Liu, C. Q., and Fu, P. Q.: Long-term observations of
saccharides in remote marine aerosols from the western North Pacific: a
comparison between 1990-1993 and 2006-2009 periods, Atmos. Environ., 67,
448–458, https://doi.org/10.1016/j.atmosenv.2012.11.014, 2013.
Chen, J. M., Li, C. L., Ristovski, Z., Milic, A., Gu, Y. T., Islam, M. S., Wang,
S. X., Hao, J. M., Zhang, H. F., He, C. R., Guo, H., Fu, H. B., Miljevic, B.,
Morawska, L., Thai, P., Lam, Y. F., Pereira, G., Ding, A. J., Huang, X., and
Dumka, U. C.: A review of biomass burning: emissions and impacts on air
quality, health and climate in China, Sci. Total Environ., 579, 1000–1034,
https://doi.org/10.1016/j.scitotenv.2016.11.025, 2017.
Chen, Y. and Xie, S.: Characteristics and formation mechanism of a heavy
air pollution episode caused by biomass burning in Chengdu, Southwest China,
Sci. Total Environ., 473–474, 507–517, https://doi.org/10.1016/j.scitotenv.2013.12.069,
2014.
Cheng, Y., Engling, G., He, K.-B., Duan, F.-K., Ma, Y.-L., Du, Z.-Y., Liu, J.-M., Zheng, M., and Weber, R. J.: Biomass burning contribution to Beijing aerosol, Atmos. Chem. Phys., 13, 7765–7781, https://doi.org/10.5194/acp-13-7765-2013, 2013.
Chow, J. C., Watson, J. G., Chen, L. W. A., Chang, M. C. O., Robinson, N. F.,
Trimble, D., and Kohl, S.: The IMPROVE_A temperature protocol
for thermal/ optical carbon analysis: maintaining consistency with a
long-term database, J. Air Waste Manag., 57, 1014–1023,
https://doi.org/10.3155/1047-3289.57.9.1014, 2007.
Christner, B. C., Morris, C. E., Foreman, C. M., Cai, R., and Sands, D. C.:
Ubiquity of biological ice nucleators in snowfall, Science, 319, 1214,
https://doi.org/10.1126/science.1149757, 2008.
Claeys, M., Graham, B., Vas, G., Wang, W., Vermeylen, R., Pashynska, V.,
Cafmeyer, J., Guyon, P., Andreae, M. O., Artaxo, P., and Maenhaut, W.:
Formation of secondary organic aerosols through photooxidation of isoprene,
Science, 303, 1173–1176, https://doi.org/10.1126/science.1092805, 2004.
Després, V. R., Huffman, J. A., Burrows, S. M., Hoose, C., Safatov, A. S.,
Buryak, G., FroehlichNowoisky, J., Elbert, W., Andreae, M. O., Pöschl, U.,
and Jaenicke, R.: Primary biological aerosol particles in the atmosphere: a
review, Tellus B, 64, 1–58, https://doi.org/10.3402/tellusb.v64i0.15598, 2012.
Ding, X., Wang, X. M., Xie, Z. Q., Zhang, X., and Sun, L. G.: Impacts of
Siberian biomass burning on organic aerosols over the North Pacific Ocean
and the Arctic: Primary and secondary organic tracers, Environ. Sci.
Technol., 47, 3149–3157, https://doi.org/10.1021/es3037093, 2013.
Ding, X., He, Q. F., Shen, R. Q., Yu, Q. Q., Zhang, Y. Q., Xin, J. Y., Wen, T. X.,
and Wang, X. M.: Spatial and seasonal variations of isoprene secondary
organic aerosol in China: significant impact of biomass burning during
winter, Sci. Rep.-UK, 6, 20411, https://doi.org/10.1038/srep20411, 2016.
Draxler, R. R. and Hess, G. D.: An overview of the HYSPLIT-4 modelling
system for trajectories, dispersion and deposition, Aust.
Meteorol. Mag., 47, 295–308, 1998.
Elbert, W., Taylor, P. E., Andreae, M. O., and Pöschl, U.: Contribution of fungi to primary biogenic aerosols in the atmosphere: wet and dry discharged spores, carbohydrates, and inorganic ions, Atmos. Chem. Phys., 7, 4569–4588, https://doi.org/10.5194/acp-7-4569-2007, 2007.
Engling, G., Carrico, C. M., Kreindenweis, S. M., Collet, J. L., Day, D. E.,
Malm, W. C., Lincoln, E., Hao, W. M., Iinuma, Y., and Herrmann, H.:
Determination of levoglucosan in biomass combustion aerosol by
high-performance anion-exchange chromatography with pulsed amperometric
detection, Atmos. Environ., 40, S299–S311, https://doi.org/10.1016/j.atmosenv.2005.12.069,
2006.
Engling, G., Zhang, Y. N., Chan, C. Y., Sang, X. F., Lin, M., Ho, K. F., Li,
Y. S., Lin, C. Y., and Lee, J. J.: Characterization and sources of aerosol
particles over the southeastern Tibetan Plateau during the Southeast Asia
biomass-burning season, Tellus B, 63, 117–128, https://doi.org/10.1111/j.1600-0889.2010.00512.x, 2011.
Fabbri, D., Torri, C., Simoneit, B. R. T., Marynowski, L., Rushdi, A. I., and Fabiańska, M. J.: Levoglucosan and other cellulose and lignin markers in emissions from burning of Miocene lignites, Atmos. Environ., 43, 2286–2295, https://doi.org/10.1016/j.atmosenv.2009.01.030, 2009.
Fu, P. Q., Kawamura, K., and Barrie, L. A.: Photochemical and other sources
of organic compounds in the Canadian high Arctic aerosol pollution during
winter-spring, Environ. Sci. Technol., 43, 286–292, https://doi.org/10.1021/es803046q, 2009.
Fu, P. Q., Kawamura, K., Kobayashi, M., and Simoneit, B. R. T.: Seasonal
variations of sugars in atmospheric particulate matter from Gosan, Jeju
Island: significant contributions of airborne pollen and Asian dust in
spring, Atmos. Environ., 55, 234–239, https://doi.org/10.1016/j.atmosenv.2012.02.061, 2012.
Fu, P. Q., Kawamura, K., Chen, J., Charrière, B., and Sempéré, R.: Organic molecular composition of marine aerosols over the Arctic Ocean in summer: contributions of primary emission and secondary aerosol formation, Biogeosciences, 10, 653–667, https://doi.org/10.5194/bg-10-653-2013, 2013.
Fu, P. Q., Zhuang, G. S., Sun, Y. L., Wang, Q. Z., Chen, J., Ren, L.J.,
Yang, F., Wang, Z. F., Pan, X. L., Li, X. D., and Kawamura, K.: Molecular
markers of biomass burning, fungal spores and biogenic SOA in the Taklimakan
desert aerosols, Atmos. Environ., 130, 64–73, https://doi.org/10.1016/j.atmosenv.2015.10.087, 2016.
Fraser, M. P. and Lakshmanan, K.: Using levoglucosan as a molecular marker
for the long-range transport of biomass combustion aerosols, Environ. Sci.
Technol., 34, 4560–4564, https://doi.org/10.1021/es991229l, 2000.
Graham, B., Mayol-Bracero, O. L., Guyon, P., Robert, G. C., Decesari, S.,
Facchini, M. C., Artaxo, P., Maenhaut, W., P, K., and Andreae, M. O.:
Water-soluble organic compounds in biomass burning aerosols over Amazonia:
1. Characterization by NMR and GC-MS, J. Geophys. Res., 107, 8047, https://doi.org/10.1029/2001JD000336, 2002.
Graham, B., Guyon, P., Taylor, P. E., Artaxo, P., Maenhaut, W., Glovsky,
M. M., Flagan, R. C., and Andreae, M. O.: Organic compounds present in the
natural Amazonian aerosol: characterization by gas chromatography-mass
spectrometry, J. Geophys. Res.-Atmos., 108, 4766, https://doi.org/10.1029/2003JD003990, 2003.
Harrison, R. M., Beddows, D. C. S., Hu, L., and Yin, J.: Comparison of methods for evaluation of wood smoke and estimation of UK ambient concentrations, Atmos. Chem. Phys., 12, 8271–8283, https://doi.org/10.5194/acp-12-8271-2012, 2012.
Hennigan, C. J., Sullivan, A. P., Collett Jr., J. L., and Robinson, A. L.:
Levoglucosan stability in biomass burning particles exposed to hydroxyl
radicals, Geophys. Res. Lett., 37, L09806, https://doi.org/10.1029/2010GL043088, 2010.
Holden, A. S., Sullivan, A. P., Munchak, L. A., Kreidenweis, S. M., Schichtel,
B. A., Malm, W. C., and Collett Jr., J. L.: Determining contributions of
biomass burning and other sources to fine particle contemporary carbon in
the western United States, Atmos. Environ., 45, 1986–1993, https://doi.org/10.1016/j.atmosenv.2011.01.021, 2011.
Jacobson, M. C., Hansson, H. C., Noone, K. J., and Charlson, R. J.: Organic
atmospheric aerosols: review and state of science, Rev. Geophys., 38,
267–294, https://doi.org/10.1029/1998RG000045, 2000.
Jaenicke, R.: Abundance of cellular material and proteins in the atmosphere,
Science, 308, 73, https://doi.org/10.1126/science.1106335, 2005.
Jaenicke, R., Matthias-Maser, S., and Gruber, S.: Omnipresence of biological
material in the atmosphere, Environ. Chem., 4, 217–220, https://doi.org/10.1071/EN07021,
2007.
Jia, Y. L. and Fraser, M.: Characterization of saccharides in
size-fractionated ambient particulate matter and aerosol sources: the
contribution of primary biological aerosol particles (PBAPs) and soil to
ambient, Environ. Sci. Technol., 45, 930–936, https://doi.org/10.1021/es103104e, 2011.
Jia, Y. L., Bhat, S. G., and Fraser, M. P.: Characterization of saccharides and
other organic compounds in fine particles and the use of saccharides to
track primary biologically derived carbon sources, Atmos. Environ., 44,
724–732, https://doi.org/10.1016/j.atmosenv.2009.10.034, 2010.
Kalogridis, A. C., Popovicheva, O. B., Engling, G., Diapouli, E., Kawamura,
K., Tachibana, E., Ono, K., Kozlov, V. S., and Eleftheriadis, K.: Smoke
aerosol chemistry and aging of Siberian biomass burning emissions in a large
aerosol chamber, Atmos. Environ., 185, 15–28, https://doi.org/10.1016/j.atmosenv.2018.04.033, 2018.
Kang, M. J., Ren, L. J., Ren, H., Zhao, Y., Kawamura, K., Zhang, H. L., Wei
L. F., Sun. Y. L., Wang, Z. F., and Fu, P. Q.: Primary biogenic and
anthropogenic sources of organic aerosols in Beijing, China: Insights from
saccharides and n-alkanes, Environ. Pollut., 243, 1579–1587, https://doi.org/10.1016/j.envpol.2018.09.118, 2018.
Kleindienst, T. E., Jaoui, M., Lewandowski, M., Offenberg, J. H., Lewis, C.
W., Bhave, P. V., and Edney, E. O.: Estimates of the contributions of
biogenic and anthropogenic hydrocarbons to secondary organic aerosol at a
southeastern US location, Atmos. Environ., 41, 8288–8300, https://doi.org/10.1016/j.atmosenv.2007.06.045, 2007.
Lai, C. Y., Liu, Y. C., Ma, J. Z., Ma, Q. X., and He, H.: Degradation kinetics
of levoglucosan initiated by hydroxyl radical under different environmental
conditions, Atmos. Environ., 91, 32–39, https://doi.org/10.1016/j.atmosenv.2014.03.054,
2014.
Lee, D. D. and Seung, H. S.: Learning the parts of objects by non-negative
matrix factorization, Nature, 401, 788–791, 1999.
Lee, T., Sullivan, A. P., Mack, L., Jimenez, J. L., Kreidenweis, S. M.,
Onasch, T. B., Worsnop, D. R., Malm, W., Wold, C. E., and Hao, W. M.: Chemical
smoke marker emissions during flaming and smoldering phases of laboratory
open burning of wildland fuels, Aerosol Sci. Tech., 44, 1–5, https://doi.org/10.1080/02786826.2010.499884, 2010.
Li, Q. L., Wang, N. L., Barbante, C., Kang, S. C., Callegaro, A., Battistel,
D., Argiriadis, E., Wan, X., Yao, P., Pu, T., Wu, X. B., Han, Y., and Huai,
Y. P.: Biomass burning source identification through molecular markers in
cryoconites over the Tibetan Plateau, Environ. Pollut., 244, 209–217, https://doi.org/10.1016/j.envpol.2018.10.037, 2019.
Li, X., Chen, M. X., Le, H. P., Wang, F. W., Guo, Z. G., Iinuma, Y., Chen, J. M.,
and Herrmann, H.: Atmospheric outflow of PM2.5 saccharides from
megacity Shanghai to East China Sea: Impact of biological and biomass
burning sources, Atmos. Environ., 143, 1–14, https://doi.org/10.1016/j.atmosenv.2016.08.039,
2016a.
Li, X., Jiang, L., Hoa, L. P., Lyu, Y., Xu, T. T., Yang, X., Iinuma, Y., Chen,
J. M., and Herrmann, H.: Size distribution of particle-phase sugar and
nitrophenol tracers during severe urban haze episodes in Shanghai, Atmos.
Environ., 145, 115–127, https://doi.org/10.1016/j.atmosenv.2016.09.030, 2016b.
Liang, L. L., Engling, G., Duan, F. K., Cheng, Y., and He, K. B.:
Characteristics of 2-methyltetrols in ambient aerosol in Beijing, China,
Atmos. Environ., 59, 376–381, https://doi.org/10.1016/j.atmosenv.2012.05.052, 2012.
Liang, L., Engling, G., Cheng, Y., Duan, F. K., Du, Z. Y., and He, K. B.:
Rapid detection and quantification of fungal spores in the urban atmosphere
by flow cytometry, J. Aerosol Sci., 66, 179–186, https://doi.org/10.1016/j.jaerosci.2013.08.013, 2013a.
Liang, L. L., Engling, G., He, K. B., Du, Z. Y., Cheng, Y., and Duan, F. K.:
Evaluation of fungal spore characteristics in Beijing, China, based on
molecular tracer measurements, Environ. Res. Lett., 8, 014005, https://doi.org/10.1088/1748-9326/8/1/014005, 2013b.
Liang, L. L., Engling, G., Du, Z. Y., Cheng, Y., Duan, F. K., Liu, X. Y., and
He, K. B.: Seasonal variations and source estimation of saccharides in
atmospheric particulate matter in Beijing, China, Chemosphere, 150, 365–377, https://doi.org/10.1016/j.chemosphere.2016.02.002, 2016.
Medeiros, P. M., Conte, M. H., Weber, J. C., and Simoneit, B. R. T.: Sugars as
source indicators of biogenic organic carbon in aerosols collected above the
Howland Experimental Forest, Maine, Atmos. Environ., 40, 1694–1705, https://doi.org/10.1016/j.atmosenv.2005.11.001, 2006.
Miguel, A. G., Taylor, P. E., House, J., Glovsky, M. M., and Flagan, R. C.:
Meteorological influences on respirable fragment release from Chinese elm
pollen, Aerosol Sci. Tech., 40, 690–696, https://doi.org/10.1080/02786820600798869, 2006.
Miyazaki, Y., Fu, P. Q., Kawamura, K., Mizoguchi, Y., and Yamanoi, K.: Seasonal variations of stable carbon isotopic composition and biogenic tracer compounds of water-soluble organic aerosols in a deciduous forest, Atmos. Chem. Phys., 12, 1367–1376, https://doi.org/10.5194/acp-12-1367-2012, 2012.
Mochida, M., Kawamura, K., Fu, P. Q., and Takemura, T.: Seasonal variation of
levoglucosan in aerosols over the western North Pacific and its assessment
as a biomass-burning tracer, Atmos. Environ., 44, 3511–3518, https://doi.org/10.1016/j.atmosenv.2010.06.017, 2010.
NASA: EARTHDATA of NASA (National Aeronautics and Space Administration), Active
Fire Data [data set], available at: https://earthdata.nasa.gov/, last access: 3 September 2020.
Nishikawa, M., Hao, Q., and Morita, M.: Preparation and evaluation of
certified reference materials from Asian mineral dust, Global Environ. Res.,
4, 103–113, 2000.
Nolte, C. G., Schauer, J. J., Cass, G. R., and Simoneit, B. R. T.: Highly polar
organic compounds present in wood smoke and in the ambient atmosphere,
Environ. Sci. Technol., 35, 1912–1919, https://doi.org/10.1021/es001420r, 2001.
Nirmalkar, J., Deshmukh, D. K., Deb, M. K., Tsai, Y. I., and Sopajaree, K.:
Mass loading and episodic variation of molecular markers in PM2.5
aerosols over a rural area in eastern central India, Atmos. Environ., 117,
41–50, https://doi.org/10.1016/j.atmosenv.2015.07.003, 2015.
NOAA: Physical Sciences Laboratory (PSL) of NOAA (National Oceanic and Atmospheric
Administration): Gridded Climate Datasets [data set], available at: https://psl.noaa.gov/data/, last access: 8 September 2020.
Pashynska, V., Vermeylen, R., Vas, G., Maenhaut, W., and Claeys, M.:
Development of a gas chromatographic/ion trap mass spectrometric method for
the determination of levoglucosan and saccharidic compounds in atmospheric
aerosols, Application to urban aerosol, J. Mass Spectrom., 37, 1249–1257, https://doi.org/10.1002/jms.391, 2002.
Pietrogrande, M. C., Bacco, D., Visentin, M., Ferrari, S., and Casali, P.:
Polar organic marker compounds in atmospheric aerosol in the Po Valley
during the Supersito campaigns-Part 2: Seasonal variations of sugars, Atmos.
Environ., 97, 215–225, https://doi.org/10.1016/j.atmosenv.2014.07.056, 2014.
Puxbaum, H., Caseiro, A., Sánchez-Ochoa, A., Kasper-Giebl,
A., Claeys, M., Gelencsér, A., Legrand, M., Preunkert, S.,
and Pio, C.: Levoglucosan levels at background sites in Europe for assessing
the impact of biomass combustion on the European aerosol background, J.
Geophys. Res., 112, D23S05, https://doi.org/10.1029/2006JD008114, 2007.
Pöschl, U., Martin, S. T., Sinha, B., Chen, Q., Gunthe, S. S., Huffman, J. A.,
Borrmann, S., Farmer, D. K., Garland, R. M., Helas, G., Jimenez, J. L., King,
S. M., Manzi, A., Mikhailov, E., Pauliquevis, T., Petters, M. D., Prenni,
A. J., Roldin, P., Rose, D., Schneider, J., Su, H., Zorn, S. R., Artaxo, P.,
and Andreae, M.O.: Rainforest aerosols as biogenic nuclei of clouds and
precipitation in the Amazon, Science, 329, 1513–1516, https://doi.org/10.1126/science.1191056, 2010.
Reyes-Villegas, E., Bannan, T., Le Breton, M., Mehra, A., Priestley, M.,
Percival, C., Coe, H., and Allan, J. D.: Online chemical characterization of
food-cooking organic aerosols: Implications for source apportionment,
Environ. Sci. Technol., 52, 5308–5318, https://doi.org/10.1021/acs.est.7b06278, 2018.
Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., and Simoneit,
B. R. T.: Sources of fine organic aerosol. 4. Particulate abrasion products
from leaf surfaces of urban plants, Environ. Sci. Technol., 27,
2700–2711, 1993.
Rogge, W. F., Medeiros, P. M., and Simoneit, B. R. T.: Organic marker compounds
in surface soils of crop fields from the San Joaquin Valley fugitive dust
characterization study, Atmos. Environ., 41, 8183–8204, https://doi.org/10.1016/j.atmosenv.2007.06.030, 2007.
Rousseau, D. D., Schevin, P., Ferrier, J., Jolly, D., Andreasen, T.,
Ascanius, S. E., Hendriksen, S. E., and Poulsen, U.: Long-distance pollen
transport from North America to Greenland in spring, J. Geophys. Res., 113, G02013, https://doi.org/10.1029/2007JG000456, 2008.
Rybicki, M., Marynowski, L., and Simoneit, B. R. T.: Composition of organic
compounds from low-temperature burning of lignite and their application as
tracers in ambient air, Chemosphere, 249, 126087, https://doi.org/10.1016/j.chemosphere.2020.126087, 2020.
Samaké, A., Jaffrezo, J.-L., Favez, O., Weber, S., Jacob, V., Albinet, A., Riffault, V., Perdrix, E., Waked, A., Golly, B., Salameh, D., Chevrier, F., Oliveira, D. M., Bonnaire, N., Besombes, J.-L., Martins, J. M. F., Conil, S., Guillaud, G., Mesbah, B., Rocq, B., Robic, P.-Y., Hulin, A., Le Meur, S., Descheemaecker, M., Chretien, E., Marchand, N., and Uzu, G.: Polyols and glucose particulate species as tracers of primary biogenic organic aerosols at 28 French sites, Atmos. Chem. Phys., 19, 3357–3374, https://doi.org/10.5194/acp-19-3357-2019, 2019.
Samaké, A., Bonin, A., Jaffrezo, J.-L., Taberlet, P., Weber, S., Uzu, G., Jacob, V., Conil, S., and Martins, J. M. F.: High levels of primary biogenic organic aerosols are driven by only a few plant-associated microbial taxa, Atmos. Chem. Phys., 20, 5609–5628, https://doi.org/10.5194/acp-20-5609-2020, 2020.
Sang, X. F., Chan, C. Y., Engling, G., Chan, L. Y., Wang, X. M., Zhang, Y. N.,
Shi, S., Zhang, Z. S., Zhang, T., and Hu, M.: Levoglucosan enhancement in
ambient aerosol during springtime transport events of biomass burning smoke
to Southeast China, Tellus B, 63, 129–139, https://doi.org/10.1111/j.1600-0889.2010.00515.x, 2011.
Sang, X. F., Zhang, Z. S., Chan, C. Y., and Engling, G.: Source categories and
contribution of biomass smoke to organic aerosol over the southeastern
Tibetan Plateau, Atmos. Environ., 78, 113–123, https://doi.org/10.1016/j.atmosenv.2012.12.012, 2013.
Schkolnik, G., Falkovich, A.H., Rudich, Y., Maenhaut, W., and Artaxo, P.:
New analytical method for the determination of levoglucosan, polyhydroxy
compounds, and 2-methylerythritol and its application to smoke and rainwater
samples, Environ. Sci. Technol., 39, 2744–2752, https://doi.org/10.1021/es048363c, 2005.
Shang, X., Zhang, K., Meng, F., Wang, S., Lee, M., Suh, I., Kim, D., Jeon, K., Park, H., Wang, X., and Zhao, Y.: Characteristics and source apportionment of fine haze aerosol in Beijing during the winter of 2013, Atmos. Chem. Phys., 18, 2573–2584, https://doi.org/10.5194/acp-18-2573-2018, 2018.
Shen, R. R., Liu, Z. R., Liu, Y. S., Wang, L. L., Dong, L., Wang, Y. S., Wang, G. A., Bai, Y., and Li, X. R.: Typical polar organic aerosol tracers in PM2.5 over the North China Plain: Spatial distribution, seasonal variations, contribution and sources, Chemosphere, 209, 758–766, https://doi.org/10.1016/j.chemosphere.2018.06.133, 2018
Simoneit, B. R. T., Schauer, J. J., Nolte, C. G., Oros, D. R., Elias, V. O.,
Fraser, M. P., Rogge, W. F., and Cass, G. R.: Levoglucosan, a tracer for
cellulose in biomass burning and atmospheric particles, Atmos. Environ., 33,
173–182, https://doi.org/10.1016/S1352-2310(98)00145-9, 1999.
Simoneit, B. R. T., Elias, V. O., Kobayashi, M., Kawamura, K., Rushdi, A. I.,
Medeiros, P. M., Rogge, W. F., and Didyk, B. M.: Sugars-Dominant water-soluble
organic compounds in soils and characterization as tracers in atmospheric
particulate matter, Environ. Sci. Technol., 38, 5939–5949, https://doi.org/10.1021/es0403099, 2004.
Sullivan, A. P., May, A. A., Lee, T., McMeeking, G. R., Kreidenweis, S. M., Akagi, S. K., Yokelson, R. J., Urbanski, S. P., and Collett Jr., J. L.: Airborne characterization of smoke marker ratios from prescribed burning, Atmos. Chem. Phys., 14, 10535–10545, https://doi.org/10.5194/acp-14-10535-2014, 2014.
Tang, M., Gu, W., Ma, Q., Li, Y. J., Zhong, C., Li, S., Yin, X., Huang, R.-J., He, H., and Wang, X.: Water adsorption and hygroscopic growth of six anemophilous pollen species: the effect of temperature, Atmos. Chem. Phys., 19, 2247–2258, https://doi.org/10.5194/acp-19-2247-2019, 2019.
Tanoue, E. and Handa, N.: Monosaccharide composition of marine particles
and sediments from the Bering Sea and Northern North Pacific, Oceanol. Acta,
10, 91–99, 1987.
Tominaga, S., Matsumoto, K., Kaneyasu, N., Shigihara, A., Katono, K., and
Igawa, M.: Measurements of particulate sugars at urban and forested suburban
sites, Atmos. Environ., 45, 2335–2339, https://doi.org/10.1016/j.atmosenv.2010.09.056, 2011.
Tsai, Y. I., Wu, P. L., Hsu, Y. T., and Yang, C. R.: Anhydrosugar and sugar
alcohol organic markers associated with carboxylic acids in particulate
matter from incense burning, Atmos. Environ., 44, 3708–3718, https://doi.org/10.1016/j.atmosenv.2010.06.030, 2010.
Tsai, Y. I., Sopajaree, K., Chotruksa, A., Wu, H. C., and Kuo, S. S.: Source
indicators of biomass burning associated with inorganic salts and
carboxylates in dry season ambient aerosol in Chiang Mai Basin, Thailand,
Atmos. Environ., 78, 93–104, https://doi.org/10.1016/j.atmosenv.2012.09.040, 2013.
Wan, E. C. H. and Yu, J. Z.: Analysis of sugars and sugar polyols in atmospheric aerosols by chloride attachment in liquid chromatography/negative ion electrospray mass spectrometry, Environ. Sci. Technol., 41, 2459–2466, https://doi.org/10.1021/es062390g, 2007.
Wang, G., Chen, C., Li, J., Zhou, B., Xie, M., Hu, S., Kawamura, K., and
Chen, Y.: Molecular composition and size distribution of sugars,
sugar-alcohols and carboxylic acids in airborne particles during a severe
urban haze event caused by wheat straw burning, Atmos. Environ., 45,
2473–2479, https://doi.org/10.1016/j.atmosenv.2011.02.045, 2011.
Wang, Q. Q., Shao, M., Liu, Y., William, K., Paul, G., Li, X. H., Liu, Y. A.,
and Lu, S. H.: Impact of biomass burning on urban air quality estimated by
organic tracers: Guangzhou and Beijing as cases, Atmos. Environ., 41,
8380–8390, https://doi.org/10.1016/j.atmosenv.2007.06.048, 2007.
Wang, X., Shen, Z. X., Liu, F. B., Lu, D., Tao, J., Lei, Y. L., Zhang, Q.,
Zeng, Y. L., Xu, H. M., Wu, Y. F., Zhang, R. J., and Cao, J. J.: Saccharides
in summer and winter PM2.5 over Xi'an, Northwestern China: Sources, and
yearly variations of biomass burning contribution to PM2.5, Environ.
Res., 214, 410–417, https://doi.org/10.1016/j.atmosres.2018.08.024, 2018.
Womiloju, T. O., Miller, J. D., Mayer, P. M., and Brook, J. R.: Methods to
determine the biological composition of particulate matter collected from
outdoor air, Atmos. Environ., 37, 4335–4344, https://doi.org/10.1016/S1352-2310(03)00577-6,
2003.
Wu, J., Kong, S. F., Zeng, X., Cheng, Y., Yan, Q., Zheng, H., Yan, Y. Y.,
Zheng, S. R. Liu, D. T., Zhang, X. Y., Fu, P. Q., Wang, S. X., and Qi, S.
H.: First High-resolution emission inventory of levoglucosan for biomass
burning and non-biomass burning sources in China, Environ. Sci. Technol.,
55, 1497–1507, https://doi.org/10.1021/acs.est.0c06675, 2021.
Xiao, M. X., Wang, Q. Z., Qin, X. F., Yu, G. Y., and Deng, C. R.: Composition,
sources, and distribution of PM2.5 saccharides in a coastal urban site
of china, Atmosphere, 9, 274, https://doi.org/10.3390/atmos9070274, 2018.
Xie, Y. L., Hopke, P. K., Paatero, P., Barrie, L. A., and Li, S. M.:
Identification of source nature and seasonal variations of Arctic aerosol by
positive matrix factorization, J. Atmos. Sci., 56, 249–260, https://doi.org/10.1175/1520-0469(1999)056<0249:IOSNAS>2.0.CO;2, 1999.
Yan, C. Q., Zheng, M., Sullivan, A. P., Shen, G. F., Chen, Y. J., Wang, S. X., Zhao, B., Cai, S. Y., Desyaterik, Y., Li, X. Y., Zhou, T., Gustafsson, Ö., and Collett Jr., J. L.: Residential coal combustion as a source of levoglucosan in China, Environ. Sci. Technol., 52, 1665–1674, https://doi.org/10.1021/acs.est.7b05858, 2018.
Yan, C. Q., Sullivan, A. P., Cheng, Y., Zheng, M., Zhang, Y. H., Zhu, T.,
and Collett Jr., J. L.: Characterization of saccharides and associated usage
in determining biogenic and biomass burning aerosols in atmospheric fine
particulate matter in the North China Plain, Sci. Total Environ., 650,
2939–2950, https://doi.org/10.1016/j.scitotenv.2018.09.325, 2019.
Yang, Y., Chan, C. Y., Tao, J., Lin, M., Engling, G., Zhang, Z., Zhang, T.,
and Su, L.: Observation of elevated fungal tracers due to biomass burning in
the Sichuan Basin at Chengdu City, China, Sci. Total Environ., 431, 68–77, https://doi.org/10.1016/j.scitotenv.2012.05.033, 2012.
Yttri, K. E., Dye, C., and Kiss, G.: Ambient aerosol concentrations of sugars and sugar-alcohols at four different sites in Norway, Atmos. Chem. Phys., 7, 4267–4279, https://doi.org/10.5194/acp-7-4267-2007, 2007.
Yttri, K. E., Simpson, D., Nøjgaard, J. K., Kristensen, K., Genberg, J., Stenström, K., Swietlicki, E., Hillamo, R., Aurela, M., Bauer, H., Offenberg, J. H., Jaoui, M., Dye, C., Eckhardt, S., Burkhart, J. F., Stohl, A., and Glasius, M.: Source apportionment of the summer time carbonaceous aerosol at Nordic rural background sites, Atmos. Chem. Phys., 11, 13339–13357, https://doi.org/10.5194/acp-11-13339-2011, 2011.
Zhang, K., Shang, X. N., Herrmann, H., Meng, F., Mo, Z. Y., Chen, J. H., and
Lv, M. L.: Approaches for identifying PM2.5 source types and source
areas at a remote background site of South China in spring, Sci. Total
Environ., 691, 1320–1327, https://doi.org/10.1016/j.scitotenv.2019.07.178, 2019.
Zhang, T., Claeys, M., Cachier, H., Dong, S. P., Wang, W., Maenhaut, W., and
Liu, X. D.: Identification and estimation of the biomass burning contribution
to Beijing aerosol using levoglucosan as a molecular marker, Atmos.
Environ., 42, 7013–7021, https://doi.org/10.1016/j.atmosenv.2008.04.050, 2008.
Zhang, T., Engling, G., Chan, C. Y., Zhang, Y. N., Zhang, Z. S., Lin, M., Sang, X. F., Li, Y. D., and Li, Y. S.: Contribution of fungal spores to particulate matter in a tropical rainforest, Environ. Res. Lett., 5, 024010, https://doi.org/10.1088/1748-9326/5/2/024010, 2010.
Zhang, Y., Obrist, D., Zielinska, B., and Gertler, A.: Particulate emissions
from different types of biomass burning, Atmos. Environ., 72, 27–35, https://doi.org/10.1016/j.atmosenv.2013.02.026, 2013.
Zhang, Y. L., Wei, Q., Zhou, C. P., Ding, M. J., and Liu, L. S.: Spatial and
temporal variability in the net primary production of alpine grassland on
the Tibetan Plateau since 1982, J. Geogr. Sci., 24, 269–287, https://doi.org/10.1007/s11442-014-1087-1, 2014.
Zhang, Y. X., Shao, M., Zhang, Y. H., Zeng, L. M., He, L. Y., Zhu, B., Wei,
Y. J., and Zhu, X. L.: Source profiles of particulate organic matters emitted
from cereal straw burnings, J. Environ. Sci., 19, 167–175, https://doi.org/10.1016/S1001-0742(07)60027-8, 2007.
Zhu, C., Kawamura, K., and Kunwar, B.: Effect of biomass burning over the western North Pacific Rim: wintertime maxima of anhydrosugars in ambient aerosols from Okinawa, Atmos. Chem. Phys., 15, 1959–1973, https://doi.org/10.5194/acp-15-1959-2015, 2015.
Zhu, C. S., Cao, J. J., Tsai, C. J., Zhang, Z. S., and Tao, J.: Biomass burning
tracers in rural and urban ultrafine particles in Xi'an China, Atmos.
Pollution Res., 8, 614–618, https://doi.org/10.1016/j.apr.2016.12.011, 2017.
Zhu, Y., Yang, L., Chen, J., Wang, X., Xue, L., Sui, X., Wen, L., Xu, C.,
Yao, L., Zhang, J., Shao, M., Lu, S., and Wang, W.: Characteristics of
ambient volatile organic compounds and the influence of biomass burning at a
rural site in Northern China during summer 2013, Atmos. Environ., 124,
156–165, https://doi.org/10.1016/j.atmosenv.2015.08.097, 2016.
Short summary
This study firstly investigates the composition of sugars in the fine fraction of aerosol over three sites in southwest China. The result suggested no significant reduction in biomass burning emissions in southwest Yunnan Province to some extent. The result shown sheds light on the contributions of biomass burning and the characteristics of biogenic saccharides in these regions, which could be further applied to regional source apportionment models and global climate models.
This study firstly investigates the composition of sugars in the fine fraction of aerosol over...
Altmetrics
Final-revised paper
Preprint