Articles | Volume 20, issue 16
Atmos. Chem. Phys., 20, 9713–9723, 2020
https://doi.org/10.5194/acp-20-9713-2020
Atmos. Chem. Phys., 20, 9713–9723, 2020
https://doi.org/10.5194/acp-20-9713-2020

Research article 19 Aug 2020

Research article | 19 Aug 2020

New evidence for atmospheric mercury transformations in the marine boundary layer from stable mercury isotopes

Ben Yu et al.

Related authors

Speciated atmospheric mercury at Waliguan Global Atmospheric Watch station in the northeastern Tibetan Plateau: implication of dust related sources for particulate bound mercury
Hui Zhang, Xuewu Fu, Ben Yu, Baoxin Li, Peng Liu, Guoqing Zhang, Leiming Zhang, and Xinbin Feng
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-290,https://doi.org/10.5194/acp-2021-290, 2021
Revised manuscript under review for ACP
Short summary
Depletion of atmospheric gaseous elemental mercury by plant uptake at Mt. Changbai, Northeast China
Xuewu Fu, Wei Zhu, Hui Zhang, Jonas Sommar, Ben Yu, Xu Yang, Xun Wang, Che-Jen Lin, and Xinbin Feng
Atmos. Chem. Phys., 16, 12861–12873, https://doi.org/10.5194/acp-16-12861-2016,https://doi.org/10.5194/acp-16-12861-2016, 2016
Observations of atmospheric mercury in China: a critical review
X. W. Fu, H. Zhang, B. Yu, X. Wang, C.-J. Lin, and X. B. Feng
Atmos. Chem. Phys., 15, 9455–9476, https://doi.org/10.5194/acp-15-9455-2015,https://doi.org/10.5194/acp-15-9455-2015, 2015

Related subject area

Subject: Isotopes | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Methane (CH4) sources in Krakow, Poland: insights from isotope analysis
Malika Menoud, Carina van der Veen, Jaroslaw Necki, Jakub Bartyzel, Barbara Szénási, Mila Stanisavljević, Isabelle Pison, Philippe Bousquet, and Thomas Röckmann
Atmos. Chem. Phys., 21, 13167–13185, https://doi.org/10.5194/acp-21-13167-2021,https://doi.org/10.5194/acp-21-13167-2021, 2021
Short summary
Isotopic signatures of major methane sources in the coal seam gas fields and adjacent agricultural districts, Queensland, Australia
Xinyi Lu, Stephen J. Harris, Rebecca E. Fisher, James L. France, Euan G. Nisbet, David Lowry, Thomas Röckmann, Carina van der Veen, Malika Menoud, Stefan Schwietzke, and Bryce F. J. Kelly
Atmos. Chem. Phys., 21, 10527–10555, https://doi.org/10.5194/acp-21-10527-2021,https://doi.org/10.5194/acp-21-10527-2021, 2021
Short summary
Measurement report: Nitrogen isotopes (δ15N) and first quantification of oxygen isotope anomalies (Δ17O, δ18O) in atmospheric nitrogen dioxide
Sarah Albertin, Joël Savarino, Slimane Bekki, Albane Barbero, and Nicolas Caillon
Atmos. Chem. Phys., 21, 10477–10497, https://doi.org/10.5194/acp-21-10477-2021,https://doi.org/10.5194/acp-21-10477-2021, 2021
Short summary
Measurement report: Spatial variability of northern Iberian rainfall stable isotope values – investigating atmospheric controls on daily and monthly timescales
Ana Moreno, Miguel Iglesias, Cesar Azorin-Molina, Carlos Pérez-Mejías, Miguel Bartolomé, Carlos Sancho, Heather Stoll, Isabel Cacho, Jaime Frigola, Cinta Osácar, Arsenio Muñoz, Antonio Delgado-Huertas, Ileana Bladé, and Françoise Vimeux
Atmos. Chem. Phys., 21, 10159–10177, https://doi.org/10.5194/acp-21-10159-2021,https://doi.org/10.5194/acp-21-10159-2021, 2021
Short summary
Isotopic constraints on atmospheric sulfate formation pathways in the Mt. Everest region, southern Tibetan Plateau
Kun Wang, Shohei Hattori, Mang Lin, Sakiko Ishino, Becky Alexander, Kazuki Kamezaki, Naohiro Yoshida, and Shichang Kang
Atmos. Chem. Phys., 21, 8357–8376, https://doi.org/10.5194/acp-21-8357-2021,https://doi.org/10.5194/acp-21-8357-2021, 2021
Short summary

Cited articles

Barkay, T., Kroer, N., and Poulain, A. J.: Some like it cold: microbial transformations of mercury in polar regions, Polar Res., 30, 15469, https://doi.org/10.3402/polar.v30i0.15469, 2011. 
Baya, P. A., Gosselin, M., Lehnherr, I., St. Louis, V. L., and Hintelmann, H.: Determination of Monomethylmercury and Dimethylmercury in the Arctic Marine Boundary Layer, Environ. Sci. Technol., 49, 223–232, https://doi.org/10.1021/es502601z, 2015. 
Bergquist, B. A. and Blum, J. D.: Mass-dependent and -independent fractionation of hg isotopes by photoreduction in aquatic systems, Science, 318, 417–420, https://doi.org/10.1126/science.1148050, 2007. 
Blum, J. D. and Bergquist, B. A.: Reporting of variations in the natural isotopic composition of mercury, Anal. Bioanal. Chem., 388, 353–359, https://doi.org/10.1007/s00216-007-1236-9, 2007. 
Blum, J. D., Sherman, L. S., and Johnson, M. W.: Mercury Isotopes in Earth and Environmental Sciences, Annu. Rev. Earth Planet. Sc., 42, 249–269, https://doi.org/10.1146/annurev-earth-050212-124107, 2014. 
Download
Short summary
We found that Br atoms in the marine boundary layer are the most probable oxidizer that transform gaseous elemental mercury into gaseous oxidized mercury, according to the mercury isotopes in the total gaseous mercury. On the other hand, Br or Cl atoms are not the primary oxidizers that produced oxidized mercury on particles. This study showed that mercury isotopes can provide new evidence that help us to fully understand the transformations of atmospheric mercury.
Altmetrics
Final-revised paper
Preprint