Articles | Volume 20, issue 16
https://doi.org/10.5194/acp-20-9713-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-9713-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
New evidence for atmospheric mercury transformations in the marine boundary layer from stable mercury isotopes
State Key Laboratory of Environmental Chemistry and Ecotoxicology,
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
School of Environment, Hangzhou Institute for Advanced Study,
University of Chinese Academy of Sciences, Hangzhou, 310000, China
Lin Yang
State Key Laboratory of Environmental Chemistry and Ecotoxicology,
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
Linlin Wang
State Key Laboratory of Environmental Chemistry and Ecotoxicology,
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
Institute of Environment and Health, Jianghan University, Wuhan
430056, China
Hongwei Liu
State Key Laboratory of Environmental Chemistry and Ecotoxicology,
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
Cailing Xiao
Institute of Environment and Health, Jianghan University, Wuhan
430056, China
Yong Liang
Institute of Environment and Health, Jianghan University, Wuhan
430056, China
State Key Laboratory of Environmental Chemistry and Ecotoxicology,
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
Yongguang Yin
State Key Laboratory of Environmental Chemistry and Ecotoxicology,
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
Ligang Hu
State Key Laboratory of Environmental Chemistry and Ecotoxicology,
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
Jianbo Shi
CORRESPONDING AUTHOR
State Key Laboratory of Environmental Chemistry and Ecotoxicology,
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
School of Environment, Hangzhou Institute for Advanced Study,
University of Chinese Academy of Sciences, Hangzhou, 310000, China
College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
Guibin Jiang
State Key Laboratory of Environmental Chemistry and Ecotoxicology,
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
School of Environment, Hangzhou Institute for Advanced Study,
University of Chinese Academy of Sciences, Hangzhou, 310000, China
College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
Related authors
Hui Zhang, Xuewu Fu, Ben Yu, Baoxin Li, Peng Liu, Guoqing Zhang, Leiming Zhang, and Xinbin Feng
Atmos. Chem. Phys., 21, 15847–15859, https://doi.org/10.5194/acp-21-15847-2021, https://doi.org/10.5194/acp-21-15847-2021, 2021
Short summary
Short summary
Our observations of speciated atmospheric mercury at the Waliguan GAW Baseline Observatory show that concentrations of gaseous elemental mercury (GEM) and particulate bound mercury (PBM) were elevated compared to the Northern Hemisphere background. We propose that the major sources of GEM and PBM were mainly related to anthropogenic emissions and desert dust sources. This study highlights that dust-related sources played an important role in the variations of PBM in the Tibetan Plateau.
Xuewu Fu, Wei Zhu, Hui Zhang, Jonas Sommar, Ben Yu, Xu Yang, Xun Wang, Che-Jen Lin, and Xinbin Feng
Atmos. Chem. Phys., 16, 12861–12873, https://doi.org/10.5194/acp-16-12861-2016, https://doi.org/10.5194/acp-16-12861-2016, 2016
X. W. Fu, H. Zhang, B. Yu, X. Wang, C.-J. Lin, and X. B. Feng
Atmos. Chem. Phys., 15, 9455–9476, https://doi.org/10.5194/acp-15-9455-2015, https://doi.org/10.5194/acp-15-9455-2015, 2015
Feifei Li, Shanshan Tang, Jitao Lv, Shiyang Yu, Xu Sun, Dong Cao, Yawei Wang, and Guibin Jiang
Atmos. Chem. Phys., 24, 8397–8411, https://doi.org/10.5194/acp-24-8397-2024, https://doi.org/10.5194/acp-24-8397-2024, 2024
Short summary
Short summary
Targeted derivatization and non-targeted analysis with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) were used to reveal the molecular composition of carbonyl molecules in PM2.5, and the important role of carbonyls in increasing the oxidative potential of organic aerosol was found in real samples.
Hui Zhang, Xuewu Fu, Ben Yu, Baoxin Li, Peng Liu, Guoqing Zhang, Leiming Zhang, and Xinbin Feng
Atmos. Chem. Phys., 21, 15847–15859, https://doi.org/10.5194/acp-21-15847-2021, https://doi.org/10.5194/acp-21-15847-2021, 2021
Short summary
Short summary
Our observations of speciated atmospheric mercury at the Waliguan GAW Baseline Observatory show that concentrations of gaseous elemental mercury (GEM) and particulate bound mercury (PBM) were elevated compared to the Northern Hemisphere background. We propose that the major sources of GEM and PBM were mainly related to anthropogenic emissions and desert dust sources. This study highlights that dust-related sources played an important role in the variations of PBM in the Tibetan Plateau.
Qiaorong Xie, Sihui Su, Jing Chen, Yuqing Dai, Siyao Yue, Hang Su, Haijie Tong, Wanyu Zhao, Lujie Ren, Yisheng Xu, Dong Cao, Ying Li, Yele Sun, Zifa Wang, Cong-Qiang Liu, Kimitaka Kawamura, Guibin Jiang, Yafang Cheng, and Pingqing Fu
Atmos. Chem. Phys., 21, 11453–11465, https://doi.org/10.5194/acp-21-11453-2021, https://doi.org/10.5194/acp-21-11453-2021, 2021
Short summary
Short summary
This study investigated the role of nighttime chemistry during Chinese New Year's Eve that enhances the formation of nitrooxy organosulfates in the aerosol phase. Results show that anthropogenic precursors, together with biogenic ones, considerably contribute to the formation of low-volatility nitrooxy OSs. Our study provides detailed molecular composition of firework-related aerosols, which gives new insights into the physicochemical properties and potential health effects of urban aerosols.
Qiaorong Xie, Sihui Su, Shuang Chen, Yisheng Xu, Dong Cao, Jing Chen, Lujie Ren, Siyao Yue, Wanyu Zhao, Yele Sun, Zifa Wang, Haijie Tong, Hang Su, Yafang Cheng, Kimitaka Kawamura, Guibin Jiang, Cong-Qiang Liu, and Pingqing Fu
Atmos. Chem. Phys., 20, 6803–6820, https://doi.org/10.5194/acp-20-6803-2020, https://doi.org/10.5194/acp-20-6803-2020, 2020
Short summary
Short summary
Current knowledge on firework-related organic aerosols is very limited. Here the detailed molecular composition of organics in urban aerosols was characterized using ultrahigh-resolution FT-ICR mass spectrometry. Our findings highlight that firework emission leads to a sharp increase in CHO, CHNO, and CHOS containing high-molecular-weight species, particularly aromatic-like substances, which affect the physicochemical properties such as the light absorption and health effects of urban aerosols.
Dawei Lu, Jihua Tan, Xuezhi Yang, Xu Sun, Qian Liu, and Guibin Jiang
Atmos. Chem. Phys., 19, 2861–2870, https://doi.org/10.5194/acp-19-2861-2019, https://doi.org/10.5194/acp-19-2861-2019, 2019
Short summary
Short summary
We investigated for the first time the role of Si during secondary formation process of PM2.5. We show the noncorrelation of Si with the secondary aerosol (SA) formation in Beijing, which reveals a new conservative tracer for aerosol chemistry. The SA contribution can be estimated by using Si as a single tracer instead of commonly used multiple chemical tracers. The correlation analysis of SA with the Si isotopic composition of PM2.5 can also reveal the sources of the precursors of SA.
Xuewu Fu, Wei Zhu, Hui Zhang, Jonas Sommar, Ben Yu, Xu Yang, Xun Wang, Che-Jen Lin, and Xinbin Feng
Atmos. Chem. Phys., 16, 12861–12873, https://doi.org/10.5194/acp-16-12861-2016, https://doi.org/10.5194/acp-16-12861-2016, 2016
X. W. Fu, H. Zhang, B. Yu, X. Wang, C.-J. Lin, and X. B. Feng
Atmos. Chem. Phys., 15, 9455–9476, https://doi.org/10.5194/acp-15-9455-2015, https://doi.org/10.5194/acp-15-9455-2015, 2015
Related subject area
Subject: Isotopes | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
A seasonal analysis of aerosol NO3− sources and NOx oxidation pathways in the Southern Ocean marine boundary layer
Nitrate chemistry in the northeast US – Part 1: Nitrogen isotope seasonality tracks nitrate formation chemistry
Nitrate chemistry in the northeast US – Part 2: Oxygen isotopes reveal differences in particulate and gas-phase formation
Photolytic modification of seasonal nitrate isotope cycles in East Antarctica
Atmospheric methane isotopes identify inventory knowledge gaps in the Surat Basin, Australia, coal seam gas and agricultural regions
Methane (CH4) sources in Krakow, Poland: insights from isotope analysis
Isotopic signatures of major methane sources in the coal seam gas fields and adjacent agricultural districts, Queensland, Australia
Measurement report: Nitrogen isotopes (δ15N) and first quantification of oxygen isotope anomalies (Δ17O, δ18O) in atmospheric nitrogen dioxide
Measurement report: Spatial variability of northern Iberian rainfall stable isotope values – investigating atmospheric controls on daily and monthly timescales
Isotopic constraints on atmospheric sulfate formation pathways in the Mt. Everest region, southern Tibetan Plateau
Baffin Bay sea ice extent and synoptic moisture transport drive water vapor isotope (δ18O, δ2H, and deuterium excess) variability in coastal northwest Greenland
The isotopic composition of atmospheric nitrous oxide observed at the high-altitude research station Jungfraujoch, Switzerland
Deposition, recycling, and archival of nitrate stable isotopes between the air–snow interface: comparison between Dronning Maud Land and Dome C, Antarctica
Oxygen and sulfur mass-independent isotopic signatures in black crusts: the complementary negative Δ33S reservoir of sulfate aerosols?
Atmospheric radiocarbon measurements to quantify CO2 emissions in the UK from 2014 to 2015
An improved estimate for the δ13C and δ18O signatures of carbon monoxide produced from atmospheric oxidation of volatile organic compounds
Seasonality in the Δ33S measured in urban aerosols highlights an additional oxidation pathway for atmospheric SO2
The Δ17O and δ18O values of atmospheric nitrates simultaneously collected downwind of anthropogenic sources – implications for polluted air masses
A very limited role of tropospheric chlorine as a sink of the greenhouse gas methane
Detection and variability of combustion-derived vapor in an urban basin
Stable sulfur isotope measurements to trace the fate of SO2 in the Athabasca oil sands region
Triple oxygen isotopes indicate urbanization affects sources of nitrate in wet and dry atmospheric deposition
Isotopic constraints on heterogeneous sulfate production in Beijing haze
Estimation of the fossil fuel component in atmospheric CO2 based on radiocarbon measurements at the Beromünster tall tower, Switzerland
Constraining N2O emissions since 1940 using firn air isotope measurements in both hemispheres
Seasonal variations of triple oxygen isotopic compositions of atmospheric sulfate, nitrate, and ozone at Dumont d'Urville, coastal Antarctica
Carbon isotopic signature of coal-derived methane emissions to the atmosphere: from coalification to alteration
Isotopic composition for source identification of mercury in atmospheric fine particles
Isotopic constraints on the role of hypohalous acids in sulfate aerosol formation in the remote marine boundary layer
In situ observations of the isotopic composition of methane at the Cabauw tall tower site
Oxygen isotope mass balance of atmospheric nitrate at Dome C, East Antarctica, during the OPALE campaign
Isotopic effects of nitrate photochemistry in snow: a field study at Dome C, Antarctica
Stable carbon isotope ratios of ambient secondary organic aerosols in Toronto
WAIS Divide ice core suggests sustained changes in the atmospheric formation pathways of sulfate and nitrate since the 19th century in the extratropical Southern Hemisphere
Stable carbon isotope ratios of toluene in the boundary layer and the lower free troposphere
Emission ratio and isotopic signatures of molecular hydrogen emissions from tropical biomass burning
Can the carbon isotopic composition of methane be reconstructed from multi-site firn air measurements?
Air–snow transfer of nitrate on the East Antarctic Plateau – Part 1: Isotopic evidence for a photolytically driven dynamic equilibrium in summer
Chemical characterization and stable carbon isotopic composition of particulate Polycyclic Aromatic Hydrocarbons issued from combustion of 10 Mediterranean woods
Quantification of the carbonaceous matter origin in submicron marine aerosol by 13C and 14C isotope analysis
Temporal and spatial variability of the stable isotopic composition of atmospheric molecular hydrogen: observations at six EUROHYDROS stations
Continuous isotopic composition measurements of tropospheric CO2 at Jungfraujoch (3580 m a.s.l.), Switzerland: real-time observation of regional pollution events
Anthropogenic imprints on nitrogen and oxygen isotopic composition of precipitation nitrate in a nitrogen-polluted city in southern China
Analysis of 13C and 18O isotope data of CO2 in CARIBIC aircraft samples as tracers of upper troposphere/lower stratosphere mixing and the global carbon cycle
Tracing the fate of atmospheric nitrate deposited onto a forest ecosystem in Eastern Asia using Δ17O
Photolysis imprint in the nitrate stable isotope signal in snow and atmosphere of East Antarctica and implications for reactive nitrogen cycling
Sources and transport of Δ14C in CO2 within the Mexico City Basin and vicinity
Jessica M. Burger, Emily Joyce, Meredith G. Hastings, Kurt A. M. Spence, and Katye E. Altieri
Atmos. Chem. Phys., 23, 5605–5622, https://doi.org/10.5194/acp-23-5605-2023, https://doi.org/10.5194/acp-23-5605-2023, 2023
Short summary
Short summary
A seasonal analysis of the nitrogen isotopes of atmospheric nitrate over the remote Southern Ocean reveals that similar natural NOx sources dominate in spring and summer, while winter is representative of background-level conditions. The oxygen isotopes suggest that similar oxidation pathways involving more ozone occur in spring and winter, while the hydroxyl radical is the main oxidant in summer. This work helps to constrain NOx cycling and oxidant budgets in a data-sparse remote marine region.
Claire Bekker, Wendell W. Walters, Lee T. Murray, and Meredith G. Hastings
Atmos. Chem. Phys., 23, 4185–4201, https://doi.org/10.5194/acp-23-4185-2023, https://doi.org/10.5194/acp-23-4185-2023, 2023
Short summary
Short summary
Nitrate is a critical component of the atmosphere that degrades air quality and ecosystem health. We have investigated the nitrogen isotope compositions of nitrate from deposition samples collected across the northeastern United States. Spatiotemporal variability in the nitrogen isotope compositions was found to track with nitrate formation chemistry. Our results highlight that nitrogen isotope compositions may be a robust tool for improving model representation of nitrate chemistry.
Heejeong Kim, Wendell W. Walters, Claire Bekker, Lee T. Murray, and Meredith G. Hastings
Atmos. Chem. Phys., 23, 4203–4219, https://doi.org/10.5194/acp-23-4203-2023, https://doi.org/10.5194/acp-23-4203-2023, 2023
Short summary
Short summary
Atmospheric nitrate has an important impact on human and ecosystem health. We evaluated atmospheric nitrate formation pathways in the northeastern US utilizing oxygen isotope compositions, which indicated a significant difference between the phases of nitrate (i.e., gas vs. particle). Comparing the observations with model simulations indicated that N2O5 hydrolysis chemistry was overpredicted. Our study has important implications for improving atmospheric chemistry model representation.
Pete D. Akers, Joël Savarino, Nicolas Caillon, Olivier Magand, and Emmanuel Le Meur
Atmos. Chem. Phys., 22, 15637–15657, https://doi.org/10.5194/acp-22-15637-2022, https://doi.org/10.5194/acp-22-15637-2022, 2022
Short summary
Short summary
Nitrate isotopes in Antarctic ice do not preserve the seasonal isotopic cycles of the atmosphere, which limits their use to study the past. We studied nitrate along an 850 km Antarctic transect to learn how these cycles are changed by sunlight-driven chemistry in the snow. Our findings suggest that the snow accumulation rate and other environmental signals can be extracted from nitrate with the right sampling and analytical approaches.
Bryce F. J. Kelly, Xinyi Lu, Stephen J. Harris, Bruno G. Neininger, Jorg M. Hacker, Stefan Schwietzke, Rebecca E. Fisher, James L. France, Euan G. Nisbet, David Lowry, Carina van der Veen, Malika Menoud, and Thomas Röckmann
Atmos. Chem. Phys., 22, 15527–15558, https://doi.org/10.5194/acp-22-15527-2022, https://doi.org/10.5194/acp-22-15527-2022, 2022
Short summary
Short summary
This study explores using the composition of methane of in-flight atmospheric air samples for greenhouse gas inventory verification. The air samples were collected above one of the largest coal seam gas production regions in the world. Adjacent to these gas fields are coal mines, Australia's largest cattle feedlot, and over 1 million grazing cattle. The results are also used to identify methane mitigation opportunities.
Malika Menoud, Carina van der Veen, Jaroslaw Necki, Jakub Bartyzel, Barbara Szénási, Mila Stanisavljević, Isabelle Pison, Philippe Bousquet, and Thomas Röckmann
Atmos. Chem. Phys., 21, 13167–13185, https://doi.org/10.5194/acp-21-13167-2021, https://doi.org/10.5194/acp-21-13167-2021, 2021
Short summary
Short summary
Using measurements of methane isotopes in ambient air and a 3D atmospheric transport model, in Krakow, Poland, we mainly detected fossil-fuel-related sources, coming from coal mining in Silesia and from the use of natural gas in the city. Emission inventories report large emissions from coal mine activity in Silesia, which is in agreement with our measurements. However, methane sources in the urban area of Krakow related to the use of fossil fuels might be underestimated in the inventories.
Xinyi Lu, Stephen J. Harris, Rebecca E. Fisher, James L. France, Euan G. Nisbet, David Lowry, Thomas Röckmann, Carina van der Veen, Malika Menoud, Stefan Schwietzke, and Bryce F. J. Kelly
Atmos. Chem. Phys., 21, 10527–10555, https://doi.org/10.5194/acp-21-10527-2021, https://doi.org/10.5194/acp-21-10527-2021, 2021
Short summary
Short summary
Many coal seam gas (CSG) facilities in the Surat Basin, Australia, are adjacent to other sources of methane, including agricultural, urban, and natural seeps. This makes it challenging to estimate the amount of methane being emitted into the atmosphere from CSG facilities. This research demonstrates that measurements of the carbon and hydrogen stable isotopic composition of methane can distinguish between and apportion methane emissions from CSG facilities, cattle, and many other sources.
Sarah Albertin, Joël Savarino, Slimane Bekki, Albane Barbero, and Nicolas Caillon
Atmos. Chem. Phys., 21, 10477–10497, https://doi.org/10.5194/acp-21-10477-2021, https://doi.org/10.5194/acp-21-10477-2021, 2021
Short summary
Short summary
We report an efficient method to collect atmospheric NO2 adapted for multi-isotopic analysis and present the first NO2 triple oxygen and double nitrogen isotope measurements. Atmospheric samplings carried out in Grenoble, France, highlight the NO2 isotopic signature sensitivity to the local NOx emissions and chemical regimes. These preliminary results are very promising for using the combination of Δ17O and δ15N of NO2 as a probe of the atmospheric NOx emissions and chemistry.
Ana Moreno, Miguel Iglesias, Cesar Azorin-Molina, Carlos Pérez-Mejías, Miguel Bartolomé, Carlos Sancho, Heather Stoll, Isabel Cacho, Jaime Frigola, Cinta Osácar, Arsenio Muñoz, Antonio Delgado-Huertas, Ileana Bladé, and Françoise Vimeux
Atmos. Chem. Phys., 21, 10159–10177, https://doi.org/10.5194/acp-21-10159-2021, https://doi.org/10.5194/acp-21-10159-2021, 2021
Short summary
Short summary
We present a large and unique dataset of the rainfall isotopic composition at seven sites from northern Iberia to characterize their variability at daily and monthly timescales and to assess the role of climate and geographic factors in the modulation of δ18O values. We found that the origin, moisture uptake along the trajectory and type of precipitation play a key role. These results will help to improve the interpretation of δ18O paleorecords from lacustrine carbonates or speleothems.
Kun Wang, Shohei Hattori, Mang Lin, Sakiko Ishino, Becky Alexander, Kazuki Kamezaki, Naohiro Yoshida, and Shichang Kang
Atmos. Chem. Phys., 21, 8357–8376, https://doi.org/10.5194/acp-21-8357-2021, https://doi.org/10.5194/acp-21-8357-2021, 2021
Short summary
Short summary
Sulfate aerosols play an important climatic role and exert adverse effects on the ecological environment and human health. In this study, we present the triple oxygen isotopic composition of sulfate from the Mt. Everest region, southern Tibetan Plateau, and decipher the formation mechanisms of atmospheric sulfate in this pristine environment. The results indicate the important role of the S(IV) + O3 pathway in atmospheric sulfate formation promoted by conditions of high cloud water pH.
Pete D. Akers, Ben G. Kopec, Kyle S. Mattingly, Eric S. Klein, Douglas Causey, and Jeffrey M. Welker
Atmos. Chem. Phys., 20, 13929–13955, https://doi.org/10.5194/acp-20-13929-2020, https://doi.org/10.5194/acp-20-13929-2020, 2020
Short summary
Short summary
Water vapor isotopes recorded for 2 years in coastal northern Greenland largely reflect changes in sea ice cover, with distinct values when Baffin Bay is ice covered in winter vs. open in summer. Resulting changes in moisture transport, surface winds, and air temperature also modify the isotopes. Local glacial ice may thus preserve past changes in the Baffin Bay sea ice extent, and this will help us better understand how the Arctic environment and water cycle responds to global climate change.
Longfei Yu, Eliza Harris, Stephan Henne, Sarah Eggleston, Martin Steinbacher, Lukas Emmenegger, Christoph Zellweger, and Joachim Mohn
Atmos. Chem. Phys., 20, 6495–6519, https://doi.org/10.5194/acp-20-6495-2020, https://doi.org/10.5194/acp-20-6495-2020, 2020
Short summary
Short summary
We observed the isotopic composition of nitrous oxide in the unpolluted air at Jungfraujoch for 5 years. Our results indicate a clear seasonal pattern in the isotopic composition, corresponding with that in atmospheric nitrous oxide levels. This is most likely due to temporal variations in both emission processes and air mass sources for Jungfraujoch. Our findings are of importance to global nitrous oxide modelling and to better understanding of long-term trends in atmospheric nitrous oxide.
V. Holly L. Winton, Alison Ming, Nicolas Caillon, Lisa Hauge, Anna E. Jones, Joel Savarino, Xin Yang, and Markus M. Frey
Atmos. Chem. Phys., 20, 5861–5885, https://doi.org/10.5194/acp-20-5861-2020, https://doi.org/10.5194/acp-20-5861-2020, 2020
Short summary
Short summary
The transfer of the nitrogen stable isotopic composition in nitrate between the air and snow at low accumulation sites in Antarctica leaves an UV imprint in the snow. Quantifying how nitrate isotope values change allows us to interpret longer ice core records. Based on nitrate observations and modelling at Kohnen, East Antarctica, the dominant factors controlling the nitrate isotope signature in deep snow layers are the depth of light penetration into the snowpack and the snow accumulation rate.
Isabelle Genot, David Au Yang, Erwan Martin, Pierre Cartigny, Erwann Legendre, and Marc De Rafelis
Atmos. Chem. Phys., 20, 4255–4273, https://doi.org/10.5194/acp-20-4255-2020, https://doi.org/10.5194/acp-20-4255-2020, 2020
Short summary
Short summary
Given their critical impact on radiative forcing, sulfate aerosols have been extensively studied using their isotope signatures (δ34S, ∆33S, ∆36S, δ18O, and ∆17O). A striking observation is that ∆33S > 0 ‰, implying a missing reservoir in the sulfur cycle. Here, we measured ∆33S < 0 ‰ in black crust sulfates (i.e., formed on carbonate walls) that must therefore result from distinct chemical pathway(s) compared to sulfate aerosols, and they may well represent this complementary reservoir.
Angelina Wenger, Katherine Pugsley, Simon O'Doherty, Matt Rigby, Alistair J. Manning, Mark F. Lunt, and Emily D. White
Atmos. Chem. Phys., 19, 14057–14070, https://doi.org/10.5194/acp-19-14057-2019, https://doi.org/10.5194/acp-19-14057-2019, 2019
Short summary
Short summary
We present 14CO2 observations at a background site in Ireland and a tall tower site in the UK. These data have been used to calculate the contribution of fossil fuel sources to atmospheric CO2 mole fractions from the UK and Ireland. 14CO2 emissions from nuclear industry sites in the UK cause a higher uncertainty in the results compared to observations in other locations. The observed ffCO2 at the site was not significantly different from simulated values based on the bottom-up inventory.
Isaac J. Vimont, Jocelyn C. Turnbull, Vasilii V. Petrenko, Philip F. Place, Colm Sweeney, Natasha Miles, Scott Richardson, Bruce H. Vaughn, and James W. C. White
Atmos. Chem. Phys., 19, 8547–8562, https://doi.org/10.5194/acp-19-8547-2019, https://doi.org/10.5194/acp-19-8547-2019, 2019
Short summary
Short summary
Stable isotopes of Carbon Monoxide (CO) and radiocarbon carbon dioxide were measured over three summers at Indianapolis, Indiana, US, and for 1 year at a site thought to be strongly influenced by CO from oxidized volatile organic compounds (VOCs) in South Carolina, US. The Indianapolis results were used to provide an estimate of the carbon and oxygen isotopic signatures of CO produced from oxidized VOCs. This updated estimate agrees well with the data from South Carolina during the summer.
David Au Yang, Pierre Cartigny, Karine Desboeufs, and David Widory
Atmos. Chem. Phys., 19, 3779–3796, https://doi.org/10.5194/acp-19-3779-2019, https://doi.org/10.5194/acp-19-3779-2019, 2019
Short summary
Short summary
Sulfates present in urban aerosols collected worldwide usually exhibit 33S-anomalies whose origin remains unclear. Besides, the sulfate concentration is not very well modelled nowadays, which, coupled with the isotopic composition anomaly on the 33S, would highlight the presence of at least an additional oxidation pathway, different from O2+TMI, O3, OH, H2O2 and NO2. We suggest here the implication of two other possible oxidation pathways.
Martine M. Savard, Amanda S. Cole, Robert Vet, and Anna Smirnoff
Atmos. Chem. Phys., 18, 10373–10389, https://doi.org/10.5194/acp-18-10373-2018, https://doi.org/10.5194/acp-18-10373-2018, 2018
Short summary
Short summary
Improving air quality requires understanding of the atmospheric processes transforming nitrous oxides emitted by human activities into nitrates, an N form that may degrade natural ecosystems. Isotopes (∆17O, δ18O) are characterized in separate wet, particulate and gaseous nitrates for the first time. The gas ranges are distinct from those of the other nitrates, and the plume dynamics emerge as crucial in interpreting the results, which unravel key processes behind the distribution of nitrates.
Sergey Gromov, Carl A. M. Brenninkmeijer, and Patrick Jöckel
Atmos. Chem. Phys., 18, 9831–9843, https://doi.org/10.5194/acp-18-9831-2018, https://doi.org/10.5194/acp-18-9831-2018, 2018
Short summary
Short summary
Using the observational data on 13C (CO) and 13C (CH4) from the extra-tropical Southern Hemisphere (ETSH) and EMAC model we (1) provide an independent, observation-based evaluation of Cl atom concentration variations in the ETSH throughout 1994–2000, (2) show that the role of tropospheric Cl as a sink of CH4 is seriously overestimated in the literature, (3) demonstrate that the 13C/12C ratio of CO is a sensitive indicator for the isotopic composition of reacted CH4 and therefore for its sources.
Richard P. Fiorella, Ryan Bares, John C. Lin, James R. Ehleringer, and Gabriel J. Bowen
Atmos. Chem. Phys., 18, 8529–8547, https://doi.org/10.5194/acp-18-8529-2018, https://doi.org/10.5194/acp-18-8529-2018, 2018
Short summary
Short summary
Fossil fuel combustion produces water; where fossil fuel combustion is concentrated in urban areas, this humidity source may represent ~ 10 % of total humidity. In turn, this water vapor addition may alter urban meteorology, though the contribution of combustion vapor is difficult to measure. Using stable water isotopes, we estimate that up to 16 % of urban humidity may arise from combustion when the atmosphere is stable during winter, and develop recommendations for application in other cities.
Neda Amiri, Roya Ghahreman, Ofelia Rempillo, Travis W. Tokarek, Charles A. Odame-Ankrah, Hans D. Osthoff, and Ann-Lise Norman
Atmos. Chem. Phys., 18, 7757–7780, https://doi.org/10.5194/acp-18-7757-2018, https://doi.org/10.5194/acp-18-7757-2018, 2018
David M. Nelson, Urumu Tsunogai, Dong Ding, Takuya Ohyama, Daisuke D. Komatsu, Fumiko Nakagawa, Izumi Noguchi, and Takashi Yamaguchi
Atmos. Chem. Phys., 18, 6381–6392, https://doi.org/10.5194/acp-18-6381-2018, https://doi.org/10.5194/acp-18-6381-2018, 2018
Short summary
Short summary
Atmospheric nitrate may be produced locally and/or come from upwind regions. To address this issue we measured oxygen and nitrogen isotopes of wet and dry nitrate deposition at nearby urban and rural sites. Our results suggest that, relative to nitrate in wet deposition in urban environments and wet and dry deposition in rural environments, nitrate in dry deposition in urban environments results from local NOx emissions more so than wet deposition, which is transported longer distances.
Pengzhen He, Becky Alexander, Lei Geng, Xiyuan Chi, Shidong Fan, Haicong Zhan, Hui Kang, Guangjie Zheng, Yafang Cheng, Hang Su, Cheng Liu, and Zhouqing Xie
Atmos. Chem. Phys., 18, 5515–5528, https://doi.org/10.5194/acp-18-5515-2018, https://doi.org/10.5194/acp-18-5515-2018, 2018
Short summary
Short summary
We use observations of the oxygen isotopic composition of sulfate aerosol as a fingerprint to quantify various sulfate formation mechanisms during pollution events in Beijing, China. We found that heterogeneous reactions on aerosols dominated sulfate production in general; however, in-cloud reactions would dominate haze sulfate production when cloud liquid water content was high. The findings also suggest the heterogeneity of aerosol acidity should be parameterized in models.
Tesfaye A. Berhanu, Sönke Szidat, Dominik Brunner, Ece Satar, Rüdiger Schanda, Peter Nyfeler, Michael Battaglia, Martin Steinbacher, Samuel Hammer, and Markus Leuenberger
Atmos. Chem. Phys., 17, 10753–10766, https://doi.org/10.5194/acp-17-10753-2017, https://doi.org/10.5194/acp-17-10753-2017, 2017
Short summary
Short summary
Fossil fuel CO2 is the major contributor of anthropogenic CO2 in the atmosphere, and accurate quantification is essential to better understand the carbon cycle. Such accurate quantification can be conducted based on radiocarbon measurements. In this study, we present radiocarbon measurements from a tall tower site in Switzerland. From these measurements, we have observed seasonally varying fossil fuel CO2 contributions and a biospheric CO2 component that varies diurnally and seasonally.
Markella Prokopiou, Patricia Martinerie, Célia J. Sapart, Emmanuel Witrant, Guillaume Monteil, Kentaro Ishijima, Sophie Bernard, Jan Kaiser, Ingeborg Levin, Thomas Blunier, David Etheridge, Ed Dlugokencky, Roderik S. W. van de Wal, and Thomas Röckmann
Atmos. Chem. Phys., 17, 4539–4564, https://doi.org/10.5194/acp-17-4539-2017, https://doi.org/10.5194/acp-17-4539-2017, 2017
Short summary
Short summary
Nitrous oxide is the third most important anthropogenic greenhouse gas with an increasing mole fraction. To understand its natural and anthropogenic sources
we employ isotope measurements. Results show that while the N2O mole fraction increases, its heavy isotope content decreases. The isotopic changes observed underline the dominance of agricultural emissions especially at the early part of the record, whereas in the later decades the contribution from other anthropogenic sources increases.
Sakiko Ishino, Shohei Hattori, Joel Savarino, Bruno Jourdain, Susanne Preunkert, Michel Legrand, Nicolas Caillon, Albane Barbero, Kota Kuribayashi, and Naohiro Yoshida
Atmos. Chem. Phys., 17, 3713–3727, https://doi.org/10.5194/acp-17-3713-2017, https://doi.org/10.5194/acp-17-3713-2017, 2017
Short summary
Short summary
We show the first simultaneous observations of triple oxygen isotopic compositions of atmospheric sulfate, nitrate, and ozone at Dumont d'Urville, coastal Antarctica. The contrasting seasonal trends between oxygen isotopes of ozone and those of sulfate and nitrate indicate that these signatures in sulfate and nitrate are mainly controlled by changes in oxidation chemistry. We also discuss the specific oxidation chemistry induced by the unique phenomena at the site.
Giulia Zazzeri, Dave Lowry, Rebecca E. Fisher, James L. France, Mathias Lanoisellé, Bryce F. J. Kelly, Jaroslaw M. Necki, Charlotte P. Iverach, Elisa Ginty, Miroslaw Zimnoch, Alina Jasek, and Euan G. Nisbet
Atmos. Chem. Phys., 16, 13669–13680, https://doi.org/10.5194/acp-16-13669-2016, https://doi.org/10.5194/acp-16-13669-2016, 2016
Short summary
Short summary
Methane emissions estimates from the coal sector are highly uncertain. Precise δ13C isotopic signatures of methane sources can be used in atmospheric models for a methane budget assessment. Emissions from both underground and opencast coal mines in the UK, Australia and Poland were sampled and isotopically characterised using high-precision measurements of δ13C values. Representative isotopic signatures were provided, taking into account specific ranks of coal and mine type.
Qiang Huang, Jiubin Chen, Weilin Huang, Pingqing Fu, Benjamin Guinot, Xinbin Feng, Lihai Shang, Zhuhong Wang, Zhongwei Wang, Shengliu Yuan, Hongming Cai, Lianfang Wei, and Ben Yu
Atmos. Chem. Phys., 16, 11773–11786, https://doi.org/10.5194/acp-16-11773-2016, https://doi.org/10.5194/acp-16-11773-2016, 2016
Short summary
Short summary
Atmospheric airborne mercury is of particular concern because, once inhaled, both Hg and its vectors might have adverse effects on human beings. In this study, we attempted to identify the sources of PM2.5-Hg in Beijing, China, using Hg isotopic composition. Large range and seasonal variations in both mass-dependent and mass-independent fractionations of Hg isotopes in haze particles demonstrate the usefulness of Hg isotopes for directly tracing the sources and its vectors in the atmosphere.
Qianjie Chen, Lei Geng, Johan A. Schmidt, Zhouqing Xie, Hui Kang, Jordi Dachs, Jihong Cole-Dai, Andrew J. Schauer, Madeline G. Camp, and Becky Alexander
Atmos. Chem. Phys., 16, 11433–11450, https://doi.org/10.5194/acp-16-11433-2016, https://doi.org/10.5194/acp-16-11433-2016, 2016
Short summary
Short summary
The formation mechanisms of sulfate in the marine boundary layer are not well understood, which could result in large uncertainties in aerosol radiative forcing. We measure the oxygen isotopic composition (Δ17O) of sulfate collected in the MBL and analyze with a global transport model. Our results suggest that 33–50 % of MBL sulfate is formed via oxidation of S(IV) by hypohalous acids HOBr / HOCl in the aqueous phase, and the daily-mean HOBr/HOCl concentrations are on the order of 0.01–0.1 ppt.
Thomas Röckmann, Simon Eyer, Carina van der Veen, Maria E. Popa, Béla Tuzson, Guillaume Monteil, Sander Houweling, Eliza Harris, Dominik Brunner, Hubertus Fischer, Giulia Zazzeri, David Lowry, Euan G. Nisbet, Willi A. Brand, Jaroslav M. Necki, Lukas Emmenegger, and Joachim Mohn
Atmos. Chem. Phys., 16, 10469–10487, https://doi.org/10.5194/acp-16-10469-2016, https://doi.org/10.5194/acp-16-10469-2016, 2016
Short summary
Short summary
A dual isotope ratio mass spectrometric system (IRMS) and a quantum cascade laser absorption spectroscopy (QCLAS)-based technique were deployed at the Cabauw experimental site for atmospheric research (CESAR) in the Netherlands and performed in situ, high-frequency (approx. hourly) measurements for a period of more than 5 months, yielding a combined dataset with more than 2500 measurements of both δ13C and δD.
Joël Savarino, William C. Vicars, Michel Legrand, Suzanne Preunkert, Bruno Jourdain, Markus M. Frey, Alexandre Kukui, Nicolas Caillon, and Jaime Gil Roca
Atmos. Chem. Phys., 16, 2659–2673, https://doi.org/10.5194/acp-16-2659-2016, https://doi.org/10.5194/acp-16-2659-2016, 2016
Short summary
Short summary
Atmospheric nitrate is collected on the East Antarctic ice sheet. Nitrogen and oxygen stable isotopes and concentrations of nitrate are measured. Using a box model, we show that there is s systematic discrepancy between observations and model results. We suggest that this discrepancy probably results from unknown NOx chemistry above the Antarctic ice sheet. However, possible misconception in the stable isotope mass balance is not completely excluded.
T. A. Berhanu, J. Savarino, J. Erbland, W. C. Vicars, S. Preunkert, J. F. Martins, and M. S. Johnson
Atmos. Chem. Phys., 15, 11243–11256, https://doi.org/10.5194/acp-15-11243-2015, https://doi.org/10.5194/acp-15-11243-2015, 2015
Short summary
Short summary
In this field study at Dome C, Antarctica, we investigated the effect of solar UV photolysis on the stable isotopes of nitrate in snow via comparison of two identical snow pits while exposing only one to solar UV. From the difference between the average isotopic fractionations calculated for each pit, we determined a purely photolytic nitrogen isotopic fractionation of -55.8‰, in good agreement with what has been recently determined in a laboratory study.
M. Saccon, A. Kornilova, L. Huang, S. Moukhtar, and J. Rudolph
Atmos. Chem. Phys., 15, 10825–10838, https://doi.org/10.5194/acp-15-10825-2015, https://doi.org/10.5194/acp-15-10825-2015, 2015
E. D. Sofen, B. Alexander, E. J. Steig, M. H. Thiemens, S. A. Kunasek, H. M. Amos, A. J. Schauer, M. G. Hastings, J. Bautista, T. L. Jackson, L. E. Vogel, J. R. McConnell, D. R. Pasteris, and E. S. Saltzman
Atmos. Chem. Phys., 14, 5749–5769, https://doi.org/10.5194/acp-14-5749-2014, https://doi.org/10.5194/acp-14-5749-2014, 2014
J. Wintel, E. Hösen, R. Koppmann, M. Krebsbach, A. Hofzumahaus, and F. Rohrer
Atmos. Chem. Phys., 13, 11059–11071, https://doi.org/10.5194/acp-13-11059-2013, https://doi.org/10.5194/acp-13-11059-2013, 2013
F. A. Haumann, A. M. Batenburg, G. Pieterse, C. Gerbig, M. C. Krol, and T. Röckmann
Atmos. Chem. Phys., 13, 9401–9413, https://doi.org/10.5194/acp-13-9401-2013, https://doi.org/10.5194/acp-13-9401-2013, 2013
C. J. Sapart, P. Martinerie, E. Witrant, J. Chappellaz, R. S. W. van de Wal, P. Sperlich, C. van der Veen, S. Bernard, W. T. Sturges, T. Blunier, J. Schwander, D. Etheridge, and T. Röckmann
Atmos. Chem. Phys., 13, 6993–7005, https://doi.org/10.5194/acp-13-6993-2013, https://doi.org/10.5194/acp-13-6993-2013, 2013
J. Erbland, W. C. Vicars, J. Savarino, S. Morin, M. M. Frey, D. Frosini, E. Vince, and J. M. F. Martins
Atmos. Chem. Phys., 13, 6403–6419, https://doi.org/10.5194/acp-13-6403-2013, https://doi.org/10.5194/acp-13-6403-2013, 2013
A. Guillon, K. Le Ménach, P.-M. Flaud, N. Marchand, H. Budzinski, and E. Villenave
Atmos. Chem. Phys., 13, 2703–2719, https://doi.org/10.5194/acp-13-2703-2013, https://doi.org/10.5194/acp-13-2703-2013, 2013
D. Ceburnis, A. Garbaras, S. Szidat, M. Rinaldi, S. Fahrni, N. Perron, L. Wacker, S. Leinert, V. Remeikis, M. C. Facchini, A. S. H. Prevot, S. G. Jennings, M. Ramonet, and C. D. O'Dowd
Atmos. Chem. Phys., 11, 8593–8606, https://doi.org/10.5194/acp-11-8593-2011, https://doi.org/10.5194/acp-11-8593-2011, 2011
A. M. Batenburg, S. Walter, G. Pieterse, I. Levin, M. Schmidt, A. Jordan, S. Hammer, C. Yver, and T. Röckmann
Atmos. Chem. Phys., 11, 6985–6999, https://doi.org/10.5194/acp-11-6985-2011, https://doi.org/10.5194/acp-11-6985-2011, 2011
B. Tuzson, S. Henne, D. Brunner, M. Steinbacher, J. Mohn, B. Buchmann, and L. Emmenegger
Atmos. Chem. Phys., 11, 1685–1696, https://doi.org/10.5194/acp-11-1685-2011, https://doi.org/10.5194/acp-11-1685-2011, 2011
Y. T. Fang, K. Koba, X. M. Wang, D. Z. Wen, J. Li, Y. Takebayashi, X. Y. Liu, and M. Yoh
Atmos. Chem. Phys., 11, 1313–1325, https://doi.org/10.5194/acp-11-1313-2011, https://doi.org/10.5194/acp-11-1313-2011, 2011
S. S. Assonov, C. A. M. Brenninkmeijer, T. J. Schuck, and P. Taylor
Atmos. Chem. Phys., 10, 8575–8599, https://doi.org/10.5194/acp-10-8575-2010, https://doi.org/10.5194/acp-10-8575-2010, 2010
U. Tsunogai, D. D. Komatsu, S. Daita, G. A. Kazemi, F. Nakagawa, I. Noguchi, and J. Zhang
Atmos. Chem. Phys., 10, 1809–1820, https://doi.org/10.5194/acp-10-1809-2010, https://doi.org/10.5194/acp-10-1809-2010, 2010
M. M. Frey, J. Savarino, S. Morin, J. Erbland, and J. M. F. Martins
Atmos. Chem. Phys., 9, 8681–8696, https://doi.org/10.5194/acp-9-8681-2009, https://doi.org/10.5194/acp-9-8681-2009, 2009
S. A. Vay, S. C. Tyler, Y. Choi, D. R. Blake, N. J. Blake, G. W. Sachse, G. S. Diskin, and H. B. Singh
Atmos. Chem. Phys., 9, 4973–4985, https://doi.org/10.5194/acp-9-4973-2009, https://doi.org/10.5194/acp-9-4973-2009, 2009
Cited articles
Barkay, T., Kroer, N., and Poulain, A. J.: Some like it cold: microbial
transformations of mercury in polar regions, Polar Res., 30, 15469,
https://doi.org/10.3402/polar.v30i0.15469, 2011.
Baya, P. A., Gosselin, M., Lehnherr, I., St. Louis, V. L., and Hintelmann,
H.: Determination of Monomethylmercury and Dimethylmercury in the Arctic
Marine Boundary Layer, Environ. Sci. Technol., 49, 223–232,
https://doi.org/10.1021/es502601z, 2015.
Bergquist, B. A. and Blum, J. D.: Mass-dependent and -independent
fractionation of hg isotopes by photoreduction in aquatic systems, Science,
318, 417–420, https://doi.org/10.1126/science.1148050, 2007.
Blum, J. D. and Bergquist, B. A.: Reporting of variations in the natural
isotopic composition of mercury, Anal. Bioanal. Chem.,
388, 353–359, https://doi.org/10.1007/s00216-007-1236-9, 2007.
Blum, J. D., Sherman, L. S., and Johnson, M. W.: Mercury Isotopes in Earth
and Environmental Sciences, Annu. Rev. Earth Planet. Sc.,
42, 249–269, https://doi.org/10.1146/annurev-earth-050212-124107, 2014.
Cantrell, C. A.: Technical Note: Review of methods for linear least-squares fitting of data and application to atmospheric chemistry problems, Atmos. Chem. Phys., 8, 5477–5487, https://doi.org/10.5194/acp-8-5477-2008, 2008.
Chen, J. B., Hintelmann, H., Feng, X. B., and Dimock, B.: Unusual
fractionation of both odd and even mercury isotopes in precipitation from
Peterborough, ON, Canada, Geochim. Cosmochim. Ac., 90, 33–46,
https://doi.org/10.1016/j.gca.2012.05.005, 2012.
Ci, Z., Zhang, X., and Wang, Z.: Elemental mercury in coastal seawater of
Yellow Sea, China: Temporal variation and air–sea exchange, Atmos.
Environ., 45, 183–190, https://doi.org/10.1016/j.atmosenv.2010.09.025,
2011a.
Ci, Z., Zhang, X., Wang, Z., and Wang, C.: Mass balance of mercury for the
Yellow Sea downwind and downstream of East Asia: the preliminary results,
uncertainties and future research priorities, Biogeochemistry, 118, 243–255,
https://doi.org/10.1007/s10533-013-9925-2, 2014.
Ci, Z., Wang, C., Wang, Z., and Zhang, X.: Elemental mercury (Hg(0)) in air
and surface waters of the Yellow Sea during late spring and late fall 2012:
Concentration, spatial-temporal distribution and air/sea flux, Chemosphere,
119, 199–208, https://doi.org/10.1016/j.chemosphere.2014.05.064, 2015.
Ci, Z. J., Zhang, X. S., Wang, Z. W., and Niu, Z. C.: Atmospheric gaseous
elemental mercury (GEM) over a coastal/rural site downwind of East China:
Temporal variation and long-range transport, Atmos. Environ., 45,
2480–2487, https://doi.org/10.1016/j.atmosenv.2011.02.043, 2011b.
Das, R., Wang, X., Khezri, B., Webster, R. D., Sikdar, P. K., and Datta, S.:
Mercury isotopes of atmospheric particle bound mercury for source
apportionment study in urban Kolkata, India, Elementa, 4, 000098, https://doi.org/10.12952/journal.elementa.000098,
2016.
De Simone, F., Gencarelli, C., Hedgecock, I., and Pirrone, N.: Global
atmospheric cycle of mercury: a model study on the impact of oxidation
mechanisms, Environ. Sci. Pollut. R., 21, 4110–4123,
https://doi.org/10.1007/s11356-013-2451-x, 2013.
Demers, J. D., Blum, J. D., and Zak, D. R.: Mercury isotopes in a forested
ecosystem: Implications for air-surface exchange dynamics and the global
mercury cycle, Global Biogeochem. Cy., 27, 222–238,
https://doi.org/10.1002/Gbc.20021, 2013.
Demers, J. D., Sherman, L. S., Blum, J. D., Marsik, F. J., and Dvonch, J.
T.: Coupling atmospheric mercury isotope ratios and meteorology to identify
sources of mercury impacting a coastal urban-industrial region near
Pensacola, Florida, USA, Global Biogeochem. Cy., 29, 1689–1705,
https://doi.org/10.1002/2015GB005146, 2015.
Enrico, M., Roux, G. L., Marusczak, N., Heimbürger, L.-E., Claustres,
A., Fu, X., Sun, R., and Sonke, J. E.: Atmospheric Mercury Transfer to Peat
Bogs Dominated by Gaseous Elemental Mercury Dry Deposition, Environ.
Sci. Technol., 50, 2405–2412,
https://doi.org/10.1021/acs.est.5b06058, 2016.
Estrade, N., Carignan, J., Sonke, J. E., and Donard, O. F.: Mercury isotope
fractionation during liquid–vapor evaporation experiments, Geochim.
Cosmochim. Ac., 73, 2693–2711, https://doi.org/10.1016/j.gca.2009.01.024,
2009.
Estrade, N., Carignan, J., Sonke, J. E., and Donard, O. F.: Measuring Hg
Isotopes in Bio-Geo-Environmental Reference Materials, Geostand.
Geoanal. Res., 34, 79–93,
https://doi.org/10.1111/j.1751-908X.2009.00040.x, 2010.
Feng, X., Lu, J. Y., Grègoire, D. C., Hao, Y., Banic, C. M., and
Schroeder, W. H.: Analysis of inorganic mercury species associated with
airborne particulate matter/aerosols: method development, Anal.
Bioanal. Chem., 380, 683–689,
https://doi.org/10.1007/s00216-004-2803-y, 2004.
Fu, X., Marusczak, N., Wang, X., Gheusi, F., and Sonke, J. E.: Isotopic
Composition of Gaseous Elemental Mercury in the Free Troposphere of the Pic
du Midi Observatory, France, Environ. Sci. Technol., 50,
5641–5650, https://doi.org/10.1021/acs.est.6b00033, 2016.
Fu, X., Yang, X., Tan, Q., Ming, L., Lin, T., Lin, C.-J., Li, X., and Feng,
X.: Isotopic Composition of Gaseous Elemental Mercury in the Marine Boundary
Layer of East China Sea, J. Geophys. Res.-Atmos., 123,
7656–7669, https://doi.org/10.1029/2018jd028671, 2018.
Fu, X., Zhang, H., Feng, X., Tan, Q., Ming, L., Liu, C., and Zhang, L.:
Domestic and Transboundary Sources of Atmospheric Particulate Bound Mercury
in Remote Areas of China: Evidence from Mercury Isotopes, Environ.
Sci. Technol., 53, 1947–1957,
https://doi.org/10.1021/acs.est.8b06736, 2019a.
Fu, X., Zhang, H., Liu, C., Zhang, H., Lin, C.-J., and Feng, X.: Significant
Seasonal Variations in Isotopic Composition of Atmospheric Total Gaseous
Mercury at Forest Sites in China Caused by Vegetation and Mercury Sources,
Environ. Sci. Technol., 53, 13748–13756,
https://doi.org/10.1021/acs.est.9b05016, 2019b.
Fu, X. W., Feng, X. B., Zhang, G., Xu, W. H., Li, X. D., Yao, H., Liang, P.,
Li, J., Sommar, J., Yin, R. S., and Liu, N.: Mercury in the marine boundary
layer and seawater of the South China Sea: Concentrations, sea/air flux, and
implication for land outflow, J. Geophys. Res.-Atmos.,
115, D06303, https://doi.org/10.1029/2009jd012958, 2010.
Fu, X. W., Heimburger, L. E., and Sonke, J. E.: Collection of atmospheric
gaseous mercury for stable isotope analysis using iodine- and
chlorine-impregnated activated carbon traps, J. Anal. Atom.
Spectrom., 29, 841–852, https://doi.org/10.1039/C3ja50356a, 2014.
Fu, X. W., Zhang, H., Yu, B., Wang, X., Lin, C.-J., and Feng, X. B.: Observations of atmospheric mercury in China: a critical review, Atmos. Chem. Phys., 15, 9455–9476, https://doi.org/10.5194/acp-15-9455-2015, 2015.
Geng, H., Yin, R., and Li, X.: An optimized protocol for high precision
measurement of Hg isotopic compositions in samples with low concentrations
of Hg using MC-ICP-MS, J. Anal. Atom. Spectrom., 33,
1932–1940, https://doi.org/10.1039/C8JA00255J, 2018.
Gratz, L. E., Keeler, G. J., Blum, J. D., and Sherman, L. S.: Isotopic
composition and fractionation of mercury in Great Lakes precipitation and
ambient air, Environ. Sci. Technol., 44, 7764–7770,
https://doi.org/10.1021/es100383w, 2010.
Hedgecock, I. M. and Pirrone, N.: Mercury and photochemistry in the marine
boundary layer-modelling studies suggest the in situ production of reactive
gas phase mercury, Atmos. Environ., 35, 3055–3062,
https://doi.org/10.1016/S1352-2310(01)00109-1, 2001.
Hedgecock, I. M. and Pirrone, N.: Chasing quicksilver: Modeling the
atmospheric lifetime of Hg0 (g) in the marine boundary layer at various
latitudes, Environ. Sci. Technol., 38, 69–76,
https://doi.org/10.1021/es034623z, 2004.
Holmes, C. D., Jacob, D. J., Mason, R. P., and Jaffe, D. A.: Sources and
deposition of reactive gaseous mercury in the marine atmosphere, Atmos.
Environ., 43, 2278–2285, https://doi.org/10.1016/j.atmosenv.2009.01.051,
2009.
Holmes, C. D., Jacob, D. J., Corbitt, E. S., Mao, J., Yang, X., Talbot, R., and Slemr, F.: Global atmospheric model for mercury including oxidation by bromine atoms, Atmos. Chem. Phys., 10, 12037–12057, https://doi.org/10.5194/acp-10-12037-2010, 2010.
Horowitz, H. M., Jacob, D. J., Zhang, Y., Dibble, T. S., Slemr, F., Amos, H. M., Schmidt, J. A., Corbitt, E. S., Marais, E. A., and Sunderland, E. M.: A new mechanism for atmospheric mercury redox chemistry: implications for the global mercury budget, Atmos. Chem. Phys., 17, 6353–6371, https://doi.org/10.5194/acp-17-6353-2017, 2017.
Huang, Q., Liu, Y., Chen, J., Feng, X., Huang, W., Yuan, S., Cai, H., and
Fu, X.: An improved dual-stage protocol to pre-concentrate mercury from
airborne particles for precise isotopic measurement, J. Anal.
Atom. Spectrom., 30, 957–966, https://doi.org/10.1039/c4ja00438h, 2015.
Huang, Q., Chen, J., Huang, W., Fu, P., Guinot, B., Feng, X., Shang, L., Wang, Z., Wang, Z., Yuan, S., Cai, H., Wei, L., and Yu, B.: Isotopic composition for source identification of mercury in atmospheric fine particles, Atmos. Chem. Phys., 16, 11773–11786, https://doi.org/10.5194/acp-16-11773-2016, 2016.
Koster van Groos, P. G., Esser, B. K., Williams, R. W., and Hunt, J. R.:
Isotope effect of mercury diffusion in air, Environ. Sci. Technol., 48, 227–233, https://doi.org/10.1021/es4033666, 2014.
Laurier, F. J., Mason, R. P., Whalin, L., and Kato, S.: Reactive gaseous
mercury formation in the North Pacific Ocean's marine boundary layer: A
potential role of halogen chemistry, J. Geophys. Res.-Atmos., 108, 4529, https://doi.org/10.1029/2003JD003625, 2003.
Lin, C. J. and Pehkonen, S. O.: The chemistry of atmospheric mercury: a
review, Atmos. Environ., 33, 2067–2079,
https://doi.org/10.1016/S1352-2310(98)00387-2, 1999.
Obrist, D., Tas, E., Peleg, M., Matveev, V., Faïn, X., Asaf, D., and
Luria, M.: Bromine-induced oxidation of mercury in the mid-latitude
atmosphere, Nat. Geosci., 4, 22–26, https://doi.org/10.1038/ngeo1018,
2011.
Peleg, M., Tas, E., Obrist, D., Matveev, V., Moore, C., Gabay, M., and
Luria, M.: Observational Evidence for Involvement of Nitrate Radicals in
Nighttime Oxidation of Mercury, Environ. Sci. Technol., 49, 14008–14018,
https://doi.org/10.1021/acs.est.5b03894, 2015.
Rolison, J. M., Landing, W. M., Luke, W., Cohen, M., and Salters, V. J. M.:
Isotopic composition of species-specific atmospheric Hg in a coastal
environment, Chem. Geol., 336, 37–49,
https://doi.org/10.1016/j.chemgeo.2012.10.007, 2013.
Rolph, G., Stein, A., and Stunder, B.: Real-time Environmental Applications
and Display sYstem: READY, Environ. Modell. Softw., 95,
210–228, https://doi.org/10.1016/j.envsoft.2017.06.025, 2017.
Schauble, E. A.: Role of nuclear volume in driving equilibrium stable
isotope fractionation of mercury, thallium, and other very heavy elements,
Geochim. Cosmochim. Ac., 71, 2170–2189,
https://doi.org/10.1016/j.gca.2007.02.004, 2007.
Schroeder, W. H. and Munthe, J.: Atmospheric mercury – an overview,
Atmos. Environ., 32, 809–822,
https://doi.org/10.1016/S1352-2310(97)00293-8, 1998.
Sprovieri, F., Hedgecock, I. M., and Pirrone, N.: An investigation of the origins of reactive gaseous mercury in the Mediterranean marine boundary layer, Atmos. Chem. Phys., 10, 3985–3997, https://doi.org/10.5194/acp-10-3985-2010, 2010.
Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D.,
and Ngan, F.: NOAA's HYSPLIT Atmospheric Transport and Dispersion Modeling
System, B. Am. Meteorol. Soc., 96, 2059–2077,
https://doi.org/10.1175/BAMS-D-14-00110.1, 2015.
Sun, G., Sommar, J., Feng, X., Lin, C.-J., Ge, M., Wang, W., Yin, R., Fu,
X., and Shang, L.: Mass-Dependent and -Independent Fractionation of Mercury
Isotope during Gas-Phase Oxidation of Elemental Mercury Vapor by Atomic Cl
and Br, Environ. Sci. Technol., 50, 9232–9241,
https://doi.org/10.1021/acs.est.6b01668, 2016.
Sun, R., Enrico, M., Heimbürger, L.-E., Scott, C., and Sonke, J. E.: A
double-stage tube furnace–acid-trapping protocol for the pre-concentration
of mercury from solid samples for isotopic analysis, Anal.
Bioanal. Chem., 405, 6771–6781,
https://doi.org/10.1007/s00216-013-7152-2, 2013.
Sun, R., Sonke, J. E., Heimbürger, L.-E., Belkin, H. E., Liu, G., Shome,
D., Cukrowska, E., Liousse, C., Pokrovsky, O. S., and Streets, D. G.:
Mercury Stable Isotope Signatures of World Coal Deposits and Historical Coal
Combustion Emissions, Environ. Sci. Technol., 48, 7660–7668,
https://doi.org/10.1021/es501208a, 2014.
Timonen, H., Ambrose, J. L., and Jaffe, D. A.: Oxidation of elemental Hg in anthropogenic and marine airmasses, Atmos. Chem. Phys., 13, 2827–2836, https://doi.org/10.5194/acp-13-2827-2013, 2013.
UN Environment: Global Mercury Assessment 2018, UN Environment Programme, Chemicals and Health Branch Geneva, Switzerland, available at: https://www.unenvironment.org/resources/publication/global-mercury-assessment-2018, last access: 10 April 2019.
Wang, C., Ci, Z., Wang, Z., Zhang, X., and Guo, J.: Speciated atmospheric
mercury in the marine boundary layer of the Bohai Sea and Yellow Sea,
Atmos. Environ., 131, 360–370,
https://doi.org/10.1016/j.atmosenv.2016.02.021, 2016a.
Wang, C., Wang, Z., Ci, Z., Zhang, X., and Tang, X.: Spatial-temporal
distributions of gaseous element mercury and particulate mercury in the
Asian marine boundary layer, Atmos. Environ., 126, 107–116,
https://doi.org/10.1016/j.atmosenv.2015.11.036, 2016b.
Wang, Z., Chen, J., Feng, X., Hintelmann, H., Yuan, S., Cai, H., Huang, Q.,
Wang, S., and Wang, F.: Mass-dependent and mass-independent fractionation of
mercury isotopes in precipitation from Guiyang, SW China, C. R.
Geosci., 347, 358–367, https://doi.org/10.1016/j.crte.2015.02.006, 2015.
Weiss-Penzias, P., Jaffe, D. A., McClintick, A., Prestbo, E. M., and Landis,
M. S.: Gaseous Elemental Mercury in the Marine Boundary Layer:? Evidence for
Rapid Removal in Anthropogenic Pollution, Environ. Sci. Technol., 37, 3755–3763, https://doi.org/10.1021/es0341081, 2003.
Xu, H., Sonke, J. E., Guinot, B., Fu, X., Sun, R., Lanzanova, A., Candaudap,
F., Shen, Z., and Cao, J.: Seasonal and Annual Variations in Atmospheric Hg
and Pb Isotopes in Xi'an, China, Environ. Sci. Technol., 51,
3759–3766, https://doi.org/10.1021/acs.est.6b06145, 2017.
Ye, Z., Mao, H., Lin, C.-J., and Kim, S. Y.: Investigation of processes controlling summertime gaseous elemental mercury oxidation at midlatitudinal marine, coastal, and inland sites, Atmos. Chem. Phys., 16, 8461–8478, https://doi.org/10.5194/acp-16-8461-2016, 2016.
Yin, R., Feng, X., Foucher, D., Shi, W., Zhao, Z., and Wang, J.: High
precision determination of mercury isotope ratios using online mercury vapor
generation system coupled with multicollector inductively coupled
plasma-mass spectrometer, Chinese J. Anal. Chem., 38,
929–934, https://doi.org/10.1016/S1872-2040(09)60055-4, 2010.
Yin, R., Feng, X., and Meng, B.: Stable mercury isotope variation in rice
plants (Oryza sativa L.) from the Wanshan mercury mining district, SW China,
Environ. Sci. Technol., 47, 2238–2245, https://doi.org/10.1021/es304302a, 2013.
Yu, B., Fu, X., Yin, R., Zhang, H., Wang, X., Lin, C.-J., Wu, C., Zhang, Y.,
He, N., Fu, P., Wang, Z., Shang, L., Sommar, J., Sonke, J. E., Maurice, L.,
Guinot, B., and Feng, X.: Isotopic Composition of Atmospheric Mercury in
China: New Evidence for Sources and Transformation Processes in Air and in
Vegetation, Environ. Sci. Technol., 50, 9262–9269,
https://doi.org/10.1021/acs.est.6b01782, 2016.
Yu, B., Yang, L., Wang, L., Liu, H., Xiao, C., Liang, Y., Liu, Q., Yin, Y., Hu, L., Shi, J., and Jiang, G.: New evidence for atmospheric mercury transformations in the marine boundary layer, Zenodo, https://doi.org/10.5281/zenodo.3748831, 2020a.
Yu, B., Yang, L., Wang, L., Liu, H., Xiao, C., Liang, Y., Liu, Q., Yin, Y., Hu, L., Shi, J., and Jiang, G.: New evidence for atmospheric mercury transformations in the marine boundary layer-Part II, Zenodo, https://doi.org/10.5281/zenodo.3871222, 2020b.
Yuan, S., Chen, J., Cai, H., Yuan, W., Wang, Z., Huang, Q., Liu, Y., and Wu,
X.: Sequential samples reveal significant variation of mercury isotope
ratios during single rainfall events, Sci. Total Environ., 624,
133–144, https://doi.org/10.1016/j.scitotenv.2017.12.082, 2018.
Zheng, W., Foucher, D., and Hintelmann, H.: Mercury isotope fractionation
during volatilization of Hg(0) from solution into the gas phase, J.
Anal. Atom. Spectrom., 22, 1097–1104,
https://doi.org/10.1039/B705677j, 2007.
Zheng, W. and Hintelmann, H.: Mercury isotope fractionation during
photoreduction in natural water is controlled by its Hg/DOC ratio,
Geochim. Cosmochim. Ac., 73, 6704–6715,
https://doi.org/10.1016/j.gca.2009.08.016, 2009.
Zheng, W. and Hintelmann, H.: Isotope fractionation of mercury during its
photochemical reduction by low-molecular-weight organic compounds,
J. Phys. Chem. A, 114, 4246–4253,
https://doi.org/10.1021/jp9111348, 2010.
Short summary
We found that Br atoms in the marine boundary layer are the most probable oxidizer that transform gaseous elemental mercury into gaseous oxidized mercury, according to the mercury isotopes in the total gaseous mercury. On the other hand, Br or Cl atoms are not the primary oxidizers that produced oxidized mercury on particles. This study showed that mercury isotopes can provide new evidence that help us to fully understand the transformations of atmospheric mercury.
We found that Br atoms in the marine boundary layer are the most probable oxidizer that...
Altmetrics
Final-revised paper
Preprint