Articles | Volume 20, issue 16
https://doi.org/10.5194/acp-20-9713-2020
https://doi.org/10.5194/acp-20-9713-2020
Research article
 | 
19 Aug 2020
Research article |  | 19 Aug 2020

New evidence for atmospheric mercury transformations in the marine boundary layer from stable mercury isotopes

Ben Yu, Lin Yang, Linlin Wang, Hongwei Liu, Cailing Xiao, Yong Liang, Qian Liu, Yongguang Yin, Ligang Hu, Jianbo Shi, and Guibin Jiang

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Ben Yu on behalf of the Authors (05 Jul 2020)  Author's response   Manuscript 
ED: Publish as is (11 Jul 2020) by Leiming Zhang
AR by Ben Yu on behalf of the Authors (13 Jul 2020)
Download
Short summary
We found that Br atoms in the marine boundary layer are the most probable oxidizer that transform gaseous elemental mercury into gaseous oxidized mercury, according to the mercury isotopes in the total gaseous mercury. On the other hand, Br or Cl atoms are not the primary oxidizers that produced oxidized mercury on particles. This study showed that mercury isotopes can provide new evidence that help us to fully understand the transformations of atmospheric mercury.
Altmetrics
Final-revised paper
Preprint