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Abstract. Marine boundary layer (MBL) is the largest transport place and reaction vessel of atmospheric
mercury (Hg). The transformations of atmospheric Hg in MBL are crucial for the global transport and
deposition of Hg. Herein, Hg isotopic compositions of total gaseous mercury (TGM) and particulate
bound Hg (PBM) collected during three cruises to Chinese seas in summer and winter were measured to
reveal the transformation processes of atmospheric Hg in the MBL. Unlike the observation results at
inland sites, isotopic compositions of TGM in MBL were affected not only by mixing continental
emissions, but also largely by the oxidation of Hg? primarily derived by Br atoms. A*°*Hg values of TGM
were significantly positively correlated with air temperature in summer, indicating that processes
inducing positive mass independent fractionation of odd isotopes in TGM could be more active at low
temperatures, while the relative processes might be weak in winter. In contrast, the positive A***Hg and
high ratios of A%*Hg/A?*’Hg in PBM indicated that alternative oxidants other than Br or Cl atoms played
a major role in the formation of Hg(ll) in PBM, likely following the nuclear volume effect. Our results
suggested the importance of local Hg environmental behaviours caused by an abundance of highly
reactive species, and provided new evidence for understanding the complicated transformations of

atmospheric Hg in the MBL.
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1 Introduction

The transport and deposition of atmospheric mercury (Hg) are largely attributed to the
transformations among three species, including gaseous elemental Hg (GEM), gaseous oxidized Hg
(GOM), and particle-bound Hg (PBM), because of the different resident times and migration abilities of
them in atmosphere (Schroeder and Munthe, 1998). Thus, the transformations of atmospheric Hg is
crucial to the global cycling of Hg. The marine boundary layer (MBL) is the largest transport area and
reaction vessel for atmospheric Hg on Earth. It accepts 3400 Mg/yr Hg from ocean via evasion and
deposits 3800 Mg/yr Hg into the ocean (UNEP, 2019). Due to the presence of high relative humidity
(RH), abundant sunshine and atmospheric oxidants, transformations between three species of
atmospheric Hg have been suggested to occur frequently in the MBL (Hedgecock and Pirrone,
2001;Hedgecock and Pirrone, 2004;Laurier et al., 2003;Sprovieri et al., 2010;Wang et al., 2016a;Weiss-
Penzias et al., 2003). Sampling in the MBL provides an opportunity to study atmospheric Hg
transformations, e.g., the scavenging of GEM or the generation of GOM (Hedgecock and Pirrone,
2001;Hedgecock and Pirrone, 2004;Laurier et al., 2003;Sprovieri et al., 2010;Weiss-Penzias et al.,
2003;De Simone et al., 2013;Holmes et al., 2010;Peleg et al., 2015), occurring outside of the influences
of continental emissions. Although oxidizers in the atmosphere, including ozone, hydroxyl radicals,
nitrate radicals, and halogens (Lin and Pehkonen, 1999;De Simone et al., 2013;Holmes et al., 2010;Peleg
et al., 2015;Timonen et al., 2013;Ye et al., 2016;Holmes et al., 2009) have been suggested, the
contributions from multiple redox processes of atmospheric Hg in the MBL have not been clarified. The
mechanisms of the atmospheric Hg transformations in the MBL are also poorly understood.

Compared to other marine studies performed globally, elevated GEM concentrations in the MBL
have been observed in areas of Chinese seas by both coastal and cruise-based observations (Fu et al.,
2010;Wang et al., 2016a;Wang et al., 2016b;Ci et al., 2015;Ci et al., 2011a;Ci et al., 2014;Ci et al., 2011b).
Such observations indicated that anthropogenic emissions from Chinese continental areas impact
atmospheric Hg in the MBL. However, the transformations of atmospheric Hg in MBL are rarely
investigated in these studies.

Stable Hg isotopic method has been utilized to trace the sources and environmental processes of
atmospheric Hg. A ternary system employing mass dependent fractionation (MDF, reported as §2°2Hg),

the mass independent fractionation (MIF) of odd isotopes (odd-MIF, reported as A Hg and A?°Hg),
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and the mass independent fractionation of even isotopes (even-MIF, reported as A?°°Hg), could offer
diagnostic information on the source contributions and historical environmental processes of atmospheric
Hg. In the troposphere, atmospheric Hg isotopes fractionate during the mixing of plumes with various
isotopic compositions, and also during physical processes including volatilization from and dissolution
in droplets (Estrade et al., 2009), diffusion (Koster van Groos et al., 2014), adsorption and desorption on
the airborne particle surfaces (Fu et al., 2019a), and chemical processes (Blum et al., 2014). In addition,
odd-MIF suggests occurrence of photo chemical processes when sources mixing can be excluded
(Bergquist and Blum, 2007), and even-MIF signatures diagnose the contributions from wet precipitation
in natural environment (Enrico et al., 2016).

Several studies on atmospheric Hg isotopes have conducted at coastal areas, where as the receptors
for mixing air plumes from both continents and the MBL (Demers et al., 2015;Fu et al., 2018;Fu et al.,
2019a;Rolison et al., 2013;Yu et al., 2016). These reported isotopic compositions in atmospheric Hg have
been suggested as the mixing results of continental anthropogenic emissions and the clean air from MBL.
However, the isotopic fractionations occurred during transformations of atmospheric Hg in MBL are
diluted by the strong impacts of continental emissions. In order to track the transformations of
atmospheric Hg in MBL using isotopic tracing method, the in-situ sampling is indispensable.

The objective of this study was to track atmospheric Hg transformations in the MBL using stable
Hg isotopes. Both the total gaseous Hg (TGM, composed of GEM and GOM) and PBM samples were
collected during three cruises to Chinese seas in summer and winter. The isotopic signatures in TGM and
PBM were compared with the observation results at continental sites to extract the fractionations outside
of the influences from anthropogenic emissions, and to reveal the potential mechanisms of the

transformation processes of atmospheric Hg in the MBL.

2 Materials and Methods

2.1 Sample Collection

The TGM and PBM samples were collected aboard on the Dongfanghong 11 research vessel during
3 cruises conducted from Jul. 7" to Jul. 20™, 2016 (denoted as 2016-summer cruise), Dec. 29, 2016 to
Jan. 15™, 2017 (denoted as 2016-winter cruise), and Jun. 27% to Jul. 15™, 2018 (denoted as 2018-summer

cruise).
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The TGM collection system was constructed following previous publications (Fu et al., 2014;Yu et
al., 2016) and using a chloride activated carbon (CIC) trap (Fu et al., 2014) to capture the TGM in ambient
air. A single TGM system was installed on the vessel during the 2016-summer and 2016-winter cruises,
and two systems were deployed for the 2018-summer cruise. Two total suspended particle (TSP)
collection systems equipped with quartz fiber filter were installed next to the TGM collection systems
for the 2018-summer cruise. Sampling was interrupted during bouts of inclement weather occasionally
experienced during the cruises, and thus was not continuous (Table S1). Sampling durations were divided
into daytime and nighttime periods during the 2016-summer and 2018-summer cruises, and 24h
continuous sampling was conducted during the 2016-winter cruise. See supporting information (Sl) for

more details.

2.2 Pre-concentration

A thermal-decomposition method using double stage tube furnaces was applied for the pre-
concentrations (Sun et al., 2013;Yu et al., 2016). Acid-trapping solution (40%, 2HNO3s/1HCI, v/v) (Sun
et al., 2013) was utilized to capture the released Hg. The Hg concentrations in the trapping solutions were
then measured by cold vapor atomic fluorescence spectrometry (CVAFS) following USEPA Method
1631. The sample solutions with Hg concentrations > 2 ng mL* were then diluted to 1 ng mL"* to decrease
the acid concentration to < 20% (v/v). Other sample solutions with lower THg concentrations were
grouped based on daytime and nighttime sampling. In each group, the samples were treated with a purge-
trap method using SnCl, solution and the same acid-trapping solution, and then diluted to 1 ng mLL. The

grouped samples were marked in Table S1. See S| for more details.

2.3 Isotopic measurements

Isotopic compositions of the solution samples were measured by a Neptune Plus multi-collector
inductively coupled plasma mass spectrometry using an online vapor generation system (Yin et al., 2010).
The instrument was tuned according to a previous publication (Geng et al., 2018) to obtain high
sensitivity (?°2Hg: 1.6 V per ng mL* Hg) and steady (internal precision: < 0.1%o) signals. Hg isotopic

compositions were calculated according to the following formulas (Blum and Bergquist, 2007):

xXXHgsam le/lgngsam le
5¥Xx g — ( p p — 1) x 1000 1
Isample XXHgnisTs13s/ PP HgNIST3133 ( )
Axxngzdxxng_ﬁxazozHg (2)
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0.252 (xxx = 199)
B ={0502 (xxx =200) (3)
0.752  (xxx = 201)
where xxx refers to the mass of each Hg isotope with amu values of 199, 200, 201, and 202.
The 26 of isotopic compositions for each sample (Table S1) were selected as the greater one of (A)

the 2o of replicated measurements of referenced standards including BCR 482 and SRM 3177, and (B)

the 26 of replicated measurements of each sample.

2.4 QAIQC

Data for QA/QC was listed in Table S2.

The performance of the CIC trap was evaluated twice by parallel sampling and by performing
breakthrough experiments. Before sampling, ~0.5 g CIC was loaded in each sorbent trap, and the THg
content in acid solution was > 10 ng. Thus, the CIC blank counted < 6% (< 2% for most high Hg content
samples without merging in pre-concentration step) in all of the acid solution.

BCR 482 (lichen, IRMM, Belgium) was used as the standard to evaluate the recoveries of the pre-
concentration procedure. The measured isotopic compositions in the two referenced standards, including
BCR 482 and SRM 3177 (mercuric chloride standard solution, NIST) were comparable to reported data
(Sun et al., 2016;Estrade et al., 2010). Replicate measurements were conducted during Hg concentration
(n = 3) and isotopic measurement (n = 2; except for parallel TGM samples collected in 2018-summer, n
= 4). Method blanks were excluded when calculating the Hg concentrations and the pre-concentration
recoveries. The mass bias during isotopic measurement was calibrated using sample-standard bracketing

method, and using Tl aerosols as an internal spike (Yin et al., 2010).

2.5 Other supportive data

The meteorological data collected during the cruise were obtained from an automatic weather station
on the Dongfanghong 11 research vessel.

One of the two parallel sampling filters collected in cruise 2018-summer was treated to measure
Hg® Hg(l1), and Br speciation on airborne particles. The measurement of Hg® and Hg(II) in TSPs were
conducted following previous publication (Feng et al., 2004). 1/4 sheet of sampling filter was rolled up
and settled in a heating tube installed in tube furnace. The furnace was maintained at 80 °C for 2h and

then maintained at S00°C for 2h. Bubbler filled with 5 mL acid-trapping solution same as used in pre-
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concentration stage were connected at outlet of the heating tube to capture the released Hg at 80 °C and
500°C, respectively. Purified nitrogen used as carrier gas was maintained at 25 mL min-1. The THg in
acid-trapping solution was measured using CVAFS following USEPA Method 163 1. The other 3/4 sheet
of sampling filter was treated following the National Environmental Protection Standards of the People's
Republic of China HJ 799-2016 to obtain the concentration of Br atom, Br anion, and organic Br on TSPs,
using ion chromatography.

See SI for more details on the calculation and illustration of 72 h Back-trajectories associated with
higher and lower A'Hg in TGM using the Hybrid Single-Particle Lagrangian Integrated Trajectory

(HYSPLIT4) Model (Rolph et al., 2017;Stein et al., 2015) in Fig. S1.

3 Results and discussion
A summary of measured isotopic values and concentrations is listed in Table 1.
3.1 Isotopic composition in TGM

According to a William-York bivariate linear regression (Cantrell, 2008) applying §?°?Hg and
A™¥Hg in all of the TGM samples, the observed fitted curve shaped a slope of -0.10 =0.01 (Fig. 1). This
fitted curve always indicated a mixing of plumes with different isotopic fingerprints (Demers et al.,
2015;Yu et al., 2016;Fu et al., 2018). Especially a ~ -0.1 slope could be shaped when mixing of plumes
from anthropogenic emissions characterized by negative 52%2Hg and near-zero A***Hg values, and plumes
from remote areas characterized by positive §?2°?Hg and negative A**°Hg values, e.g., three slopes of -
0.09, -0.13, and -0.07 observed in TGM from Mt. Damei, Mt. Ailao, and Beijing, China, respectively
(Yu et al., 2016), and -0.095 observed in TGM/GEM and source materials worldwide (Fu et al., 2018).
The eastern region of China is dominated by subtropical monsoon climate, with winds moving from the
mainland to the ocean in winter and reversely in summer (Fig. S1). TGM collected during the 2016-
winter cruise, that was supposed to be largely impacted by anthropogenic emissions from mainland China
based on the monsoon (Fig. S1), but showed positive §2°?Hg and negative A*°Hg (52°?Hg: 0.19 £ 0.30%o;
AHg: -0.13 +0.04%o, n = 14, 16) echoing the isotopic fingerprints of TGM at the remote sites (Demers
et al., 2013;Demers et al., 2015;Fu et al., 2016;Fu et al., 2018;Yu et al., 2016) (Fig. 1). TGM collected
during this cruise also showed the highest concentrations (1.8140.51 ng m?, n = 14, 1c) among the three

cruises, exceeding background value of northern hemisphere (~1.5 ng m-®) but falling below averaged
6
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GEM concentrations measured at both urban and remote sites in Chinese mainland (urban: 9.2040.56 ng
m3; remote: 2.8640.95 ng m3) (Fu et al., 2015). Considering that the average wind speed of 6.9 m s
was measured during this cruise, the air mass leaving Chinese mainland could reach the vessel within
several hours. Therefore, isotopic compositions in TGM collected during 2016-winter cruise suggested
limited influence from the anthropogenic emissions that diluted in the clean air in MBL.

On the other hand, TGM collected in two summer cruises were characterized by significantly
negative §?°?Hg and near-zero AHg values (2016-summer: §%2Hg: -1.48 +0.56%0; A*°*Hg: 0.01 +
0.05%o, n =9, 1o; 2018-summer: 5?°2Hg: -0.09%0.48%o; A*°Hg: -0.13 +0.06%o, n = 18, 15) indicated
the mixing of continental emissions to marine originated plumes (Fig. 2 process a). TGM collected in
2016-summer cruise showed near-zero A™Hg values, most likely inherited from anthropogenic
emissions (Demers et al., 2015;Yu et al., 2016;Fu et al., 2018;Sun et al., 2014), but also showed lower
THg concentrations than TGM collected in the other two cruises (Table 1). This result was uncommon
because higher TGM concentrations always associated with anthropogenic emissions in China (Fu et al.,
2015). The positive correlation between TGM concentrations and A'**Hg values in TGM, commonly
attribute to mixing of anthropogenic emissions and clean air, was also absent (P > 0.05) in this cruise
(Fig. 3b). Backward trajectory analysis showed that higher A%*Hg values were associated with air masses
originated from both mainland China and open oceans (Fig. S1). These uncommon relationships and the
back-trajectory analysis results suggested alternative reasons rather than only mixing with continental

emissions should contribute to TGM in MBL in summer.

3.2 Isotopic composition in PBM

The isotopic compositions in PBM collected from the MBL with negative §?°?Hg and positive
A°Hg values (5%2Hg: -0.80 £0.58%o0; A%°Hg: 0.40 £0.21%0, n = 9, 16) were distinguishable from those
in the TGM (Fig. 1). Similar data have been observed for PBM collected from Huaniao Island, China
(822Hg: -0.87 £0.31%0; A*°Hg: 0.34 +0.34%o) (Fu et al., 2019a). Meanwhile, PBM collected at a coastal
site in Grand Bay, USA showed higher A™Hg values (A*°Hg: 0.83%0.35%o) (Rolison et al., 2013). In
contrast, other reported isotopic compositions of PBM almost collected at continental urban/rural sites,
have been characterized by negative §2°2Hg and near-zero A*°*Hg, due to anthropogenic emissions (Yu

et al., 2016;Das et al., 2016;Huang et al., 2016;Huang et al., 2015;Xu et al., 2017).
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The isotopic compositions in PBM in this study and the similar isotopic compositions in PBM
collected at island site in China (Fu et al., 2019a) were distinguishable from those collected at inland
urban/rural sites, suggesting the dominated influences from marine environment rather than continental
anthropogenic emissions. The primary species of PBM examined in this study was Hg(ll), accounting
for 78.63.0% (1o, n =9, Table S3) of total PBM. Therefore, the isotopic fractionations between TGM
mostly composed by HgP and PBM in MBL, attributed to Hg(l1) on the particle surfaces.

Slightly negative A?®°Hg and positive A?°Hg were observed in both TGM and PBM samples,
respectively (Table 1). These near-zero values were comparable to reported data observed in TGM and
PBM at most sites globally (Das et al., 2016;Huang et al., 2015;Fu et al., 2019a;Fu et al., 2019b;Fu et al.,
2018;Demers et al., 2015;Demers et al., 2013;Enrico et al., 2016). In addition, higher A?°Hg values
(0.1940.18%o, 10, n = 69) have been commonly observed globally in wet precipitation with Hg(Il) as
primary species (Chen et al., 2012;Yuan et al., 2018;Gratz et al., 2010;Enrico et al., 2016;Wang et al.,
2015). A*®™Hg values of samples have been used to evaluate the contribution from wet precipitation
(Enrico et al., 2016). Those near-zero A?®Hg values of TGM and PBM in this study indicated limited
contributions from Hg(l1) in wet precipitations via photo-reduction and re-emission from droplet surfaces
to both PBM and TGM. Therefore, gaseous Hg® oxidation was implied as an important contributor to the

high AHg values in PBM.

3.3 The oxidation processes in the MBL

MIF induced by the magnetic isotope effect (MIE) mechanism produces a ~1.0 slope in the linear
regression of A'®Hg and A?°*Hg in environmental samples, while a ~1.6 slope is created as a result of
the nuclear volume effect (NVE) (Blum and Bergquist, 2007). Although the linear correlation between
A™Hg and A?°*Hg in the PBM was insignificant (P > 0.05), ratios of A***Hg/A?'Hg (6.848.4, 1SD, n =
9) in the PBM samples were significantly higher than 1.0 (Fig. 4), that was the common ratios observed
in PBM from sites influenced by anthropogenic emissions (Yu et al., 2016;Das et al., 2016;Huang et al.,
2016;Huang et al., 2015;Xu et al., 2017). The observed ratios of A®°Hg/A%'Hg in the PBM were also
higher than those collected at an island site in China (A**Hg/A?*Hg: ~1.14) (Fu et al., 2019a), and at a
coastal site in USA (A°Hg/A?*Hg: ~1.12) (Rolison et al., 2013). The insignificant correlation between

A™Hg and A?’*Hg in the PBM, and between the isotopic signatures and the percentages of oxidized Hg
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in the PBM (P > 0.05, Table S3), indicated multiple processes inducing different fractionation rather than
single oxidation process occurred.

To date, few isotopic studies have been performed on isotopic fractionation during GEM oxidation,
and the mechanism has been suggested to be NVE, according to a study on HgP oxidation by Br and ClI
atoms (Sun et al., 2016). In this study, the Hg(ll) in PBM should not be attributed directly to oxidation
derived by Br or Cl atoms, because Br and Cl atoms would induce negative odd-MIF in the product Hg(11)
during oxidation (Sun et al., 2016) (Fig. 2 process b and c), that was inconsistent with the positive odd-
MIF observed in the PBM with Hg(I1) as the primary form. When the photo-reduction of aquatic Hg(I1)
involving dissolved organic matter occurs, especially in the MBL with high RH values, the direction of
odd-MIF might reverse because positive odd-MIF would be induced in Hg(ll) in aquatic layer on particle
surfaces (Zheng and Hintelmann, 2009, 2010). The magnitude of photo-reduction should be much greater
than oxidation derived by Br/Cl atoms to produce the observed positive odd-MIF in PBM. However,
ratios of A'Hg/A?*Hg in PBM measured in this study were much higher than 1.0, that value has been
associated with the photo-reduction of aquatic Hg(lI1) (Zheng and Hintelmann, 2009, 2010;Bergquist and
Blum, 2007). Therefore, Br/Cl atoms-derived photo-oxidation followed by the photo-reduction of aquatic
Hg(I1) should not be the primary routine leading to the isotopic compositions in PBM in this study. In
addition, correlation between Hg isotopic compositions in PBM and speciated Br concentrations on the
TSPs was also absent (Table S3). All of these results suggested that Br or Cl atoms were not the direct
contributor to the Hg(Il) in PBM in the MBL in this study.

Alternative oxidizers other than Br and CI atoms, including the derivatives of Br/Cl atoms (e.g.,
BrO, HOCI, OCI), ozone, hydroxyl radicals, nitrate radicals, and iodine radicals, might play more
important roles to the Hg(11) in PBM in this study. The limited isotopic study of Hg® oxidation prevented
the specific oxidizers from being identified here. However, the following clues might be helpful to
uncover the oxidizers and oxidation processes in the future. According to the isotopic signatures present
in TGM and PBM, the primary oxidation of Hg® by unidentified oxidizer should induce a positive odd-
MIF in the Hg(I1) (Fig. 2 process d). To date, no evidence suggests that odd-MIF could occur during the
adsorption of Hg(ll) on the surface of particles (Fig.2 process g), and the high ratios of A'*°Hg/A?'Hg
observed in PBM in this study indicated the insignificance of continental impacts. Therefore, the high
A™Hg and high ratios of A®Hg/A%'Hg in the PBM should be primarily attributed to the oxidation of

Hg°, following the NVE mechanism. The MIF driven by NVE shares the same direction as the MDF
9
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induced during certain process (Schauble, 2007). Negative MDF must be subsequently induced in Hg(I1)
after oxidation, producing the negative 52°?Hg and positive A'*®Hg values in the PBM examined here.
Lighter isotopes prefer to be bound on the surfaces of particles, that could be the most possible reason to
negative MDF (Fig.2 processes Q).

It should be noted that the primary process leading to the Hg(Il) in PBM could not be the primary
oxidation processes of Hg® in MBL in this study. The GOM attributed to multiple oxidizers would show
a variety of occurrence forms, with different adsorption capacities on particle surfaces. The specific forms
of Hg(l1) on particle surfaces remained unclear in this study. Meanwhile, the oxidation processes leading
to the Hg(ll) in PBM might also occur in the interface reaction layer on particle surfaces. To date, the
mechanisms and isotopic fractionations on the formations of GOM were poorly understood, preventing
the accurate cognitions to the Hg(Il) in PBM.

On the other hand, all slopes obtained by performing a linear regression of the A°Hg and A%**Hg
in the TGM samples were higher than 1.0 (Fig. 4). A ~1.0 slope was commonly observed in TGM
collected at sites influenced by anthropogenic emissions (Gratz et al., 2010;Yu et al., 2016;Yin et al.,
2013). While lower slopes (0.5-0.8) were observed in TGM collected at remote sites located at island
(Fu et al., 2018), coast (Demers et al., 2015;Rolison et al., 2013), forest (Demers et al., 2013;Fu et al.,
2018;Yu et al., 2016), and summit (Fu et al., 2016). Among the three cruises, the highest slope was
observed in TGM collected in 2016-summer cruise. Meanwhile, the most near-zero A'**Hg values and
lowest TGM concentrations were also observed during this cruise as mentioned. This result indicated
that alternative factors elevated the slope shaped by mixing continental emissions to clean air in MBL.
Positive odd-MIF and high slope of A**°Hg/A?'Hg (Br: 1.64; Cl: 1.89) could be induced in remained
Hg° pool when oxidation derived by Br/Cl atoms occurred (Sun et al., 2016), consistent to the odd-MIF
signatures in TGM in this study. Furthermore, negative MDF would occur in Hg® pool during the
oxidation derived by Br atoms (Fig. 2 process b), that was also consistent to the negative MDF in TGM
collected during two summer cruises, contrasting to the opposite direction of MDF in Hg® when oxidation
was derived by Cl atoms (Fig. 2 process c¢). Therefore, Br atoms were suggested to be the primary oxidizer
for Hg? in MBL, echoing the demonstration in previous publications (De Simone et al., 2013;Holmes et
al., 2010;Holmes et al., 2009;Ye et al., 2016;0brist et al., 2011).

In addition, potential alternative factors might also contribute to the transformations of TGM in this

study, followed by these isotopic clues. A negative correlation (P < 0.01) between A'®Hg in the TGM
10
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and the atmospheric temperature (17.7 to 28.4<C) was observed during the 2018-summer cruise,
indicating that process inducing positive odd-MIF in TGM could be more active at lower temperatures,
enhancing the oxidation and scavenging of Hg®in the MBL (Hedgecock and Pirrone, 2004). However,
the correlation was absent during the 2016-summer cruise, which is possibly due to the narrow
temperature range involved (22.5 to 24.7<C) (Fig. 3a), and also absent during the 2016-winter cruise with
lower temperatures. Despite of the similar large temperature range (-1.4 to 12.0C), and the similar
positive correlation (P = 0.03) between A'®Hg in TGM and TGM concentration with 2018-summer
cruise (Fig. 3b), that correlation absence indicated the process might be weak during winter cruise.

Emissions from surface sea water (Fig. 2 process h) are commonly considered to be crucial to
influencing atmospheric Hg in MBL. Volatilization of dissolved gaseous Hg should induce negative
MDF to Hg® in the MBL (Zheng et al., 2007), which partially contributed to the negative 6°Hg observed
in the TGM. This process should not produce odd-MIF (Zheng et al., 2007). According to the negative
correlation observed between air temperature and A**°Hg in TGM in 2018-summer cruise, if the elevated
temperature accelerating Hg volatilization from surface sea water was an important factor shaping
isotopic compositions in TGM, the similar correlation between A®°*Hg in TGM and air temperature
should also be observed in winter, which was absent in this study. Also, isotopic fingerprints of both
dissolved gaseous Hg® and dissolved Hg(ll) in surface sea water in studied areas remained unclarified.
Therefore, further studies are necessary to investigate both isotopic fractionation directions and
contributions from air-sea surface exchange to isotopic compositions of TGM in MBL.

Transformations of atmospheric Hg are complicated. The mechanisms and isotopic fractionations
of transformation processes are poorly understood. For instance, the photo-reduction of Hg(I1) in gaseous
phase (Lin and Pehkonen, 1999;Horowitz et al., 2017) might also induce odd-MIF in the Hg(ll)
remaining on aerosol surfaces (Fig. 2 process e). On the other hand, some gaseous mercury, e.g., MeHg
and diMeHg in plume, have been suggested as important components to atmospheric Hg in MBL (Barkay
et al., 2011;Baya et al., 2015), and the Hg isotopic compositions in those components remain unclear
(Fig.2 process k). Effects of these two factors on isotopic compositions in TGM and PBM in the MBL
cannot be ruled out.

Odd-MIF occurrences are commonly associated with photo chemical reactions (Bergquist and Blum,
2007;Sun et al., 2016). However, isotopic compositions in TGM or PBM collected in daytime and

nighttime were insignificant different in this study (T-test, P > 0.05). A possible reason is that the isotopic
11
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fractionations caused by photo chemical reactions were diluted due to the low time resolutions during

sampling.

4 Conclusions

Our measurements of TGM and PBM samples collected in Chinese MBL suggested Br atoms could
be the most possible oxidant to TGM, but alternative oxidants other than Br or Cl atoms play a major
role in the formation of Hg(Il) in PBM. These oxidation processes could largely shift the Hg isotopes in
the atmosphere, producing negative MDF, positive MIF, and elevated slopes in linear regression results
of A Hg/A?'Hg in TGM, as well as more positive MIF and high ratios of A'®Hg/A?*Hg in PBM
following NVE mechanism. Lower air temperature could promote relevant processes causing positive
MIF in TGM in summer, while the relative processes might be weak in winter.

To our knowledge, isotopic fractionation that occurs during Hg environmental processes is diluted
by isotopic signatures inherited from multiple emission sources, especially from anthropogenic emissions,
and thus has been omitted in previous studies conducted at continental sites when a stable Hg isotopic
tracking method was used. In this study, however, the mixing with continental emissions could not
entirely lead to the isotopic signatures in atmospheric Hg. The observed isotopic signatures indicated the
importance of local Hg environmental behaviours caused by an abundance of highly reactive species.
Therefore, isotopic fractionation occurring during environmental processes should be carefully
considered when using stable Hg isotopes to trace sources.

In this study, isotopic compositions in atmospheric Hg collected from marine areas were different
from those collected from most inland areas. Due to the low concentrations of TGM and PBM in the
MBL, the time resolutions of isotopic signatures were low. This would dilute potential isotopic
fractionations occurring within each sampling period, e.g., the isotopic fractionation following the GOM
concentration increasing associated with air temperature and RH changes, or the potential isotopic
diversities associated with the gradient PBM concentration from coastal areas to open seas (Wang et al.,
2016a;Wang et al., 2016b). In addition, many atmospheric Hg transformation processes, e.g., the
reduction of Hg(lIl) in the gaseous phase, are still poorly understood. Moreover, isotopic fingerprints of
many endmembers, e.g., re-emitted gaseous Hg from surface sea water, are unknown. More studies are

therefore needed to constrain isotopic fractionation during these processes, and isotopic compositions in
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these endmembers. When the sampling and isotopic measurement techniques improve, and the isotopic
study of the oxidation of gaseous Hg is performed in the future, stable Hg isotopes could provide
diagnostic information for clarifying the contributions of multiple environmental processes influencing
atmospheric Hg chemistry, and could serve as effective tools for tracking transformation processes of

atmospheric Hg in the MBL, and in other areas with a variety of atmospheric oxidants in atmosphere.
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Figure 1: The scatter plot of °?Hg and A*°Hg in TGM and PBM samples in this study, illustrated with
reported isotopic compositions in GEM (Fu et al., 2018) and PBM (Fu et al., 2019a) collected at Huaniao
island site in East China Sea, reported data ranges (mean2SD) of isotopic compositions in TGM/GEM from
the remote sites globally (Demers et al., 2015;Yu et al., 2016;Demers et al., 2013;Fu et al., 2016), and in PBM
from inland sites (Yu et al., 2016;Das et al., 2016;Huang et al., 2016;Huang et al., 2015;Xu et al., 2017). Error

bars refer to max 2¢ for samples in this study.
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Figure 2: The atmospheric processes of Hg in MBL with inducing isotopic fractionations (MDF and only odd-
MIF directions). a: the mixing with continental emissions; b: oxidation by Br atoms; c: oxidation by Cl atoms;
d: oxidations by alternative oxidants; e: photo-reductions of gaseous Hg(ll); f: adsorption and desorption of

580 HgP on airborne particle surfaces; g: adsorption and desorption of Hg(ll) on airborne particle surfaces; h:
volatilization of dissolved gaseous Hg® from surface sea water; i: photo-reduction of aquatic Hg(l1); j: photo-
decomposition of aquatic MeHg/diMeHg; k: photo-decomposition of gaseous MeHg/diMeHg; I: volatilization
of dissolved MeHg/diMeHg.
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Figure 3: The correlation between A'*Hg in the TGM and air temperatures (panel a), and between A**Hg in

the TGM and TGM concentrations (panel b). Regressions lines were coloured to
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Figure 4: Scatter plot of A®Hg and A?*'Hg in the TGM and PBM samples, illustrated with reported data

obtained at Huaniao island sites in East China Sea (Fu et al., 2018;Fu et al., 2019a). Regression lines were

coloured to match the TGM scatters. Error bars refer to 2¢ for samples in this study.
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Table 1: Statistical summary table of isotopic data in this study. The comparing data from previous
595 publications is characterized to TGM in remote area (Demers et al., 2013;Demers et al., 2015;Fu et al.,
2016;Fu et al., 2018;Yu et al., 2016), GEM in an island located in East China Sea (Fu et al., 2018), PBM
collected at inland sites (Yu et al., 2016;Das et al., 2016;Huang et al., 2016;Huang et al., 2015;Xu et al., 2017),

and PBM collected in a coastal site in United States (Rolison et al., 2013) and the same island in East China

Sea (Fu et al., 2019b).

Sampling Concentration* 1¢* 8292Hg 1o A™Hg 16 AMHg 16 AMHg 1o
Sample

Time ng (pg) m ng (pg) M= (%) (%) (%o) (%0) (%) (%0) (%) (%o)
TGM 2016-winter 1.81 0.51 0.19 0.30 -0.13 0.04 -0.03 0.02 -0.12 0.04
TGM 2016-summer  1.31 0.31 -1.48 0.56 0.01 0.05 -0.03 0.04 -0.02 0.04
TGM 2018-summer  1.74 0.64 -0.09 0.48 -0.13 0.06 -0.05 0.04 -0.13 0.05
PBM 2018-summer  14.3 19.8 -0.80 0.58 0.40 021 0.01 0.03 0.09 0.10
TGM/GEM-remote 0.54 0.38 -0.21 0.04 -0.05 0.03 -0.20 0.04
GEM-island -0.21 0.39 -0.16 0.06 -0.06 0.04 -0.18 0.07
PBM-inland -1.01 0.76 -0.01 0.15 0.03 0.04 -0.03 0.14
PBM-coastal/island -0.87 0.36 0.50 0.41 0.10 0.06 0.35 0.39

600  *: The concentrations reported in this study were calculated by measured THg concentrations in trapping

605

solution and measured air volume during sampling. The TGM concentrations were reported in unit of

ng m=3, and PBM concentrations were reported in unit of pg m=,
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