Articles | Volume 20, issue 22
https://doi.org/10.5194/acp-20-13687-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-13687-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Scant evidence for a volcanically forced winter warming over Eurasia following the Krakatau eruption of August 1883
Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY
10027, USA
Department of Earth and Environmental Sciences, Columbia University, New York, NY
10027, USA
Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964, USA
Suzana J. Camargo
Department of Earth and Environmental Sciences, Columbia University, New York, NY
10027, USA
Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964, USA
Related authors
Tyler P. Janoski, Ivan Mitevski, Ryan J. Kramer, Michael Previdi, and Lorenzo M. Polvani
EGUsphere, https://doi.org/10.5194/egusphere-2024-2561, https://doi.org/10.5194/egusphere-2024-2561, 2024
Short summary
Short summary
We developed the ClimKern project to improve the reproducibility of climate feedback calculations, which are vital for future climate projections. Our project includes a repository of standardized radiative kernels and a Python package. Testing ClimKern on climate model output revealed significant variability in results depending on the kernel used, especially in polar regions. This highlights the need for multiple kernels and standardized calculations in future climate studies.
Kevin DallaSanta and Lorenzo M. Polvani
Atmos. Chem. Phys., 22, 8843–8862, https://doi.org/10.5194/acp-22-8843-2022, https://doi.org/10.5194/acp-22-8843-2022, 2022
Short summary
Short summary
Volcanic eruptions cool the earth by reducing the amount of sunlight reaching the surface. Paradoxically, it has been suggested that they may also warm the surface, but the evidence for this is scant. Here, we show that a small warming can be seen in a climate model for large-enough eruptions. However, even for eruptions much larger than those that have occurred in the past two millennia, post-eruption winters over Eurasia are indistinguishable from those occurring without a prior eruption.
Adam A. Scaife, Mark P. Baldwin, Amy H. Butler, Andrew J. Charlton-Perez, Daniela I. V. Domeisen, Chaim I. Garfinkel, Steven C. Hardiman, Peter Haynes, Alexey Yu Karpechko, Eun-Pa Lim, Shunsuke Noguchi, Judith Perlwitz, Lorenzo Polvani, Jadwiga H. Richter, John Scinocca, Michael Sigmond, Theodore G. Shepherd, Seok-Woo Son, and David W. J. Thompson
Atmos. Chem. Phys., 22, 2601–2623, https://doi.org/10.5194/acp-22-2601-2022, https://doi.org/10.5194/acp-22-2601-2022, 2022
Short summary
Short summary
Great progress has been made in computer modelling and simulation of the whole climate system, including the stratosphere. Since the late 20th century we also gained a much clearer understanding of how the stratosphere interacts with the lower atmosphere. The latest generation of numerical prediction systems now explicitly represents the stratosphere and its interaction with surface climate, and here we review its role in long-range predictions and projections from weeks to decades ahead.
Antara Banerjee, Amy H. Butler, Lorenzo M. Polvani, Alan Robock, Isla R. Simpson, and Lantao Sun
Atmos. Chem. Phys., 21, 6985–6997, https://doi.org/10.5194/acp-21-6985-2021, https://doi.org/10.5194/acp-21-6985-2021, 2021
Short summary
Short summary
We find that simulated stratospheric sulfate geoengineering could lead to warmer Eurasian winters alongside a drier Mediterranean and wetting to the north. These effects occur due to the strengthening of the Northern Hemisphere stratospheric polar vortex, which shifts the North Atlantic Oscillation to a more positive phase. We find the effects in our simulations to be much more significant than the wintertime effects of large tropical volcanic eruptions which inject much less sulfate aerosol.
Rei Chemke, Michael Previdi, Mark R. England, and Lorenzo M. Polvani
The Cryosphere, 14, 4135–4144, https://doi.org/10.5194/tc-14-4135-2020, https://doi.org/10.5194/tc-14-4135-2020, 2020
Short summary
Short summary
The increase in Antarctic surface mass balance (SMB, precipitation vs. evaporation/sublimation) is projected to mitigate sea-level rise. Here we show that nearly half of this increase over the 20th century is attributed to stratospheric ozone depletion and ozone-depleting substance (ODS) emissions. Our results suggest that the phaseout of ODS by the Montreal Protocol, and the recovery of stratospheric ozone, will act to decrease the SMB over the 21st century and the mitigation of sea-level rise.
Jessica Oehrlein, Gabriel Chiodo, and Lorenzo M. Polvani
Atmos. Chem. Phys., 20, 10531–10544, https://doi.org/10.5194/acp-20-10531-2020, https://doi.org/10.5194/acp-20-10531-2020, 2020
Short summary
Short summary
Winter winds in the stratosphere 10–50 km above the surface impact climate at the surface. Prior studies suggest that this interaction between the stratosphere and the surface is affected by ozone. We compare two ways of including ozone in computer simulations of climate. One method is more realistic but more expensive. We find that the method of including ozone in simulations affects the surface climate when the stratospheric winds are unusually weak but not when they are unusually strong.
Lorenzo M. Polvani, Antara Banerjee, and Anja Schmidt
Atmos. Chem. Phys., 19, 6351–6366, https://doi.org/10.5194/acp-19-6351-2019, https://doi.org/10.5194/acp-19-6351-2019, 2019
Short summary
Short summary
This study provides compelling new evidence that the surface winter warming observed over the Northern Hemisphere continents following the 1991 eruption of Mt. Pinatubo was, very likely, completely unrelated to the eruption. This result has implications for earlier eruptions, as the evidence presented here demonstrates that the surface signal of even the very largest known eruptions may be swamped by the internal variability at high latitudes.
Blanca Ayarzagüena, Lorenzo M. Polvani, Ulrike Langematz, Hideharu Akiyoshi, Slimane Bekki, Neal Butchart, Martin Dameris, Makoto Deushi, Steven C. Hardiman, Patrick Jöckel, Andrew Klekociuk, Marion Marchand, Martine Michou, Olaf Morgenstern, Fiona M. O'Connor, Luke D. Oman, David A. Plummer, Laura Revell, Eugene Rozanov, David Saint-Martin, John Scinocca, Andrea Stenke, Kane Stone, Yousuke Yamashita, Kohei Yoshida, and Guang Zeng
Atmos. Chem. Phys., 18, 11277–11287, https://doi.org/10.5194/acp-18-11277-2018, https://doi.org/10.5194/acp-18-11277-2018, 2018
Short summary
Short summary
Stratospheric sudden warmings (SSWs) are natural major disruptions of the polar stratospheric circulation that also affect surface weather. In the literature there are conflicting claims as to whether SSWs will change in the future. The confusion comes from studies using different models and methods. Here we settle the question by analysing 12 models with a consistent methodology, to show that no robust changes in frequency and other features are expected over the 21st century.
Tyler P. Janoski, Ivan Mitevski, Ryan J. Kramer, Michael Previdi, and Lorenzo M. Polvani
EGUsphere, https://doi.org/10.5194/egusphere-2024-2561, https://doi.org/10.5194/egusphere-2024-2561, 2024
Short summary
Short summary
We developed the ClimKern project to improve the reproducibility of climate feedback calculations, which are vital for future climate projections. Our project includes a repository of standardized radiative kernels and a Python package. Testing ClimKern on climate model output revealed significant variability in results depending on the kernel used, especially in polar regions. This highlights the need for multiple kernels and standardized calculations in future climate studies.
Malcolm John Roberts, Kevin A. Reed, Qing Bao, Joseph J. Barsugli, Suzana J. Camargo, Louis-Philippe Caron, Ping Chang, Cheng-Ta Chen, Hannah M. Christensen, Gokhan Danabasoglu, Ivy Frenger, Neven S. Fučkar, Shabeh ul Hasson, Helene T. Hewitt, Huanping Huang, Daehyun Kim, Chihiro Kodama, Michael Lai, Lai-Yung Ruby Leung, Ryo Mizuta, Paulo Nobre, Pablo Ortega, Dominique Paquin, Christopher D. Roberts, Enrico Scoccimarro, Jon Seddon, Anne Marie Treguier, Chia-Ying Tu, Paul A. Ullrich, Pier Luigi Vidale, Michael F. Wehner, Colin M. Zarzycki, Bosong Zhang, Wei Zhang, and Ming Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2024-2582, https://doi.org/10.5194/egusphere-2024-2582, 2024
Short summary
Short summary
HighResMIP2 is a model intercomparison project focussing on high resolution global climate models, that is those with grid spacings of 25 km or less in atmosphere and ocean, using simulations of decades to a century or so in length. We are proposing an update of our simulation protocol to make the models more applicable to key questions for climate variability and hazard in present day and future projections, and to build links with other communities to provide more robust climate information.
Kevin DallaSanta and Lorenzo M. Polvani
Atmos. Chem. Phys., 22, 8843–8862, https://doi.org/10.5194/acp-22-8843-2022, https://doi.org/10.5194/acp-22-8843-2022, 2022
Short summary
Short summary
Volcanic eruptions cool the earth by reducing the amount of sunlight reaching the surface. Paradoxically, it has been suggested that they may also warm the surface, but the evidence for this is scant. Here, we show that a small warming can be seen in a climate model for large-enough eruptions. However, even for eruptions much larger than those that have occurred in the past two millennia, post-eruption winters over Eurasia are indistinguishable from those occurring without a prior eruption.
Adam A. Scaife, Mark P. Baldwin, Amy H. Butler, Andrew J. Charlton-Perez, Daniela I. V. Domeisen, Chaim I. Garfinkel, Steven C. Hardiman, Peter Haynes, Alexey Yu Karpechko, Eun-Pa Lim, Shunsuke Noguchi, Judith Perlwitz, Lorenzo Polvani, Jadwiga H. Richter, John Scinocca, Michael Sigmond, Theodore G. Shepherd, Seok-Woo Son, and David W. J. Thompson
Atmos. Chem. Phys., 22, 2601–2623, https://doi.org/10.5194/acp-22-2601-2022, https://doi.org/10.5194/acp-22-2601-2022, 2022
Short summary
Short summary
Great progress has been made in computer modelling and simulation of the whole climate system, including the stratosphere. Since the late 20th century we also gained a much clearer understanding of how the stratosphere interacts with the lower atmosphere. The latest generation of numerical prediction systems now explicitly represents the stratosphere and its interaction with surface climate, and here we review its role in long-range predictions and projections from weeks to decades ahead.
Antara Banerjee, Amy H. Butler, Lorenzo M. Polvani, Alan Robock, Isla R. Simpson, and Lantao Sun
Atmos. Chem. Phys., 21, 6985–6997, https://doi.org/10.5194/acp-21-6985-2021, https://doi.org/10.5194/acp-21-6985-2021, 2021
Short summary
Short summary
We find that simulated stratospheric sulfate geoengineering could lead to warmer Eurasian winters alongside a drier Mediterranean and wetting to the north. These effects occur due to the strengthening of the Northern Hemisphere stratospheric polar vortex, which shifts the North Atlantic Oscillation to a more positive phase. We find the effects in our simulations to be much more significant than the wintertime effects of large tropical volcanic eruptions which inject much less sulfate aerosol.
Samuel Dandoy, Francesco S. R. Pausata, Suzana J. Camargo, René Laprise, Katja Winger, and Kerry Emanuel
Clim. Past, 17, 675–701, https://doi.org/10.5194/cp-17-675-2021, https://doi.org/10.5194/cp-17-675-2021, 2021
Short summary
Short summary
This study analyzes the impacts of changing vegetation and atmospheric dust concentrations over an area that is currently desert (the Sahara) to investigate their impacts on tropical cyclone activity during a warm climate state, the mid-Holocene. Our results suggest a significant change in Atlantic TC frequency, intensity and seasonality when considering the effects of a warmer climate in a greener world. They also highlight the importance of considering these factors in future climate studies.
Rei Chemke, Michael Previdi, Mark R. England, and Lorenzo M. Polvani
The Cryosphere, 14, 4135–4144, https://doi.org/10.5194/tc-14-4135-2020, https://doi.org/10.5194/tc-14-4135-2020, 2020
Short summary
Short summary
The increase in Antarctic surface mass balance (SMB, precipitation vs. evaporation/sublimation) is projected to mitigate sea-level rise. Here we show that nearly half of this increase over the 20th century is attributed to stratospheric ozone depletion and ozone-depleting substance (ODS) emissions. Our results suggest that the phaseout of ODS by the Montreal Protocol, and the recovery of stratospheric ozone, will act to decrease the SMB over the 21st century and the mitigation of sea-level rise.
Jessica Oehrlein, Gabriel Chiodo, and Lorenzo M. Polvani
Atmos. Chem. Phys., 20, 10531–10544, https://doi.org/10.5194/acp-20-10531-2020, https://doi.org/10.5194/acp-20-10531-2020, 2020
Short summary
Short summary
Winter winds in the stratosphere 10–50 km above the surface impact climate at the surface. Prior studies suggest that this interaction between the stratosphere and the surface is affected by ozone. We compare two ways of including ozone in computer simulations of climate. One method is more realistic but more expensive. We find that the method of including ozone in simulations affects the surface climate when the stratospheric winds are unusually weak but not when they are unusually strong.
Lorenzo M. Polvani, Antara Banerjee, and Anja Schmidt
Atmos. Chem. Phys., 19, 6351–6366, https://doi.org/10.5194/acp-19-6351-2019, https://doi.org/10.5194/acp-19-6351-2019, 2019
Short summary
Short summary
This study provides compelling new evidence that the surface winter warming observed over the Northern Hemisphere continents following the 1991 eruption of Mt. Pinatubo was, very likely, completely unrelated to the eruption. This result has implications for earlier eruptions, as the evidence presented here demonstrates that the surface signal of even the very largest known eruptions may be swamped by the internal variability at high latitudes.
Blanca Ayarzagüena, Lorenzo M. Polvani, Ulrike Langematz, Hideharu Akiyoshi, Slimane Bekki, Neal Butchart, Martin Dameris, Makoto Deushi, Steven C. Hardiman, Patrick Jöckel, Andrew Klekociuk, Marion Marchand, Martine Michou, Olaf Morgenstern, Fiona M. O'Connor, Luke D. Oman, David A. Plummer, Laura Revell, Eugene Rozanov, David Saint-Martin, John Scinocca, Andrea Stenke, Kane Stone, Yousuke Yamashita, Kohei Yoshida, and Guang Zeng
Atmos. Chem. Phys., 18, 11277–11287, https://doi.org/10.5194/acp-18-11277-2018, https://doi.org/10.5194/acp-18-11277-2018, 2018
Short summary
Short summary
Stratospheric sudden warmings (SSWs) are natural major disruptions of the polar stratospheric circulation that also affect surface weather. In the literature there are conflicting claims as to whether SSWs will change in the future. The confusion comes from studies using different models and methods. Here we settle the question by analysing 12 models with a consistent methodology, to show that no robust changes in frequency and other features are expected over the 21st century.
Related subject area
Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Stratosphere | Science Focus: Physics (physical properties and processes)
Explaining the green volcanic sunsets after the 1883 eruption of Krakatoa
A multi-scenario Lagrangian trajectory analysis to identify source regions of the Asian tropopause aerosol layer on the Indian subcontinent in August 2016
Future dust concentration over the Middle East and North Africa region under global warming and stratospheric aerosol intervention scenarios
How the extreme 2019–2020 Australian wildfires affected global circulation and adjustments
Opinion: How fear of nuclear winter has helped save the world, so far
Including ash in UKESM1 model simulations of the Raikoke volcanic eruption reveals improved agreement with observations
Particle number concentrations and size distributions in the stratosphere: implications of nucleation mechanisms and particle microphysics
Interactive stratospheric aerosol models' response to different amounts and altitudes of SO2 injection during the 1991 Pinatubo eruption
Climate response to off-equatorial stratospheric sulfur injections in three Earth system models – Part 2: Stratospheric and free-tropospheric response
The effect of ash, water vapor, and heterogeneous chemistry on the evolution of a Pinatubo-size volcanic cloud
Dynamical perturbation of the stratosphere by a pyrocumulonimbus injection of carbonaceous aerosols
Important role of stratospheric injection height for the distribution and radiative forcing of smoke aerosol from the 2019–2020 Australian wildfires
Volcanic stratospheric injections up to 160 Tg(S) yield a Eurasian winter warming indistinguishable from internal variability
Assessing the consequences of including aerosol absorption in potential stratospheric aerosol injection climate intervention strategies
An approach to sulfate geoengineering with surface emissions of carbonyl sulfide
Online treatment of eruption dynamics improves the volcanic ash and SO2 dispersion forecast: case of the 2019 Raikoke eruption
The impact of stratospheric aerosol intervention on the North Atlantic and Quasi-Biennial Oscillations in the Geoengineering Model Intercomparison Project (GeoMIP) G6sulfur experiment
An interactive stratospheric aerosol model intercomparison of solar geoengineering by stratospheric injection of SO2 or accumulation-mode sulfuric acid aerosols
Limitations of assuming internal mixing between different aerosol species: a case study with sulfate geoengineering simulations
Dependency of the impacts of geoengineering on the stratospheric sulfur injection strategy – Part 1: Intercomparison of modal and sectional aerosol modules
The long-term transport and radiative impacts of the 2017 British Columbia pyrocumulonimbus smoke aerosols in the stratosphere
Identifying the sources of uncertainty in climate model simulations of solar radiation modification with the G6sulfur and G6solar Geoengineering Model Intercomparison Project (GeoMIP) simulations
Harnessing stratospheric diffusion barriers for enhanced climate geoengineering
Comparing different generations of idealized solar geoengineering simulations in the Geoengineering Model Intercomparison Project (GeoMIP)
Model physics and chemistry causing intermodel disagreement within the VolMIP-Tambora Interactive Stratospheric Aerosol ensemble
North Atlantic Oscillation response in GeoMIP experiments G6solar and G6sulfur: why detailed modelling is needed for understanding regional implications of solar radiation management
Differing responses of the quasi-biennial oscillation to artificial SO2 injections in two global models
Revisiting the Agung 1963 volcanic forcing – impact of one or two eruptions
Northern Hemisphere continental winter warming following the 1991 Mt. Pinatubo eruption: reconciling models and observations
Upper tropospheric ice sensitivity to sulfate geoengineering
Stratospheric aerosol radiative forcing simulated by the chemistry climate model EMAC using Aerosol CCI satellite data
Dynamical response of Mediterranean precipitation to greenhouse gases and aerosols
Global radiative effects of solid fuel cookstove aerosol emissions
Model simulations of the chemical and aerosol microphysical evolution of the Sarychev Peak 2009 eruption cloud compared to in situ and satellite observations
Sensitivity of the radiative forcing by stratospheric sulfur geoengineering to the amount and strategy of the SO2injection studied with the LMDZ-S3A model
Sulfur deposition changes under sulfate geoengineering conditions: quasi-biennial oscillation effects on the transport and lifetime of stratospheric aerosols
Changing transport processes in the stratosphere by radiative heating of sulfate aerosols
Equatorward dispersion of a high-latitude volcanic plume and its relation to the Asian summer monsoon: a case study of the Sarychev eruption in 2009
Sulfate geoengineering impact on methane transport and lifetime: results from the Geoengineering Model Intercomparison Project (GeoMIP)
Nucleation modeling of the Antarctic stratospheric CN layer and derivation of sulfuric acid profiles
Radiative and climate effects of stratospheric sulfur geoengineering using seasonally varying injection areas
Volcanic ash modeling with the online NMMB-MONARCH-ASH v1.0 model: model description, case simulation, and evaluation
Sulfate geoengineering: a review of the factors controlling the needed injection of sulfur dioxide
Climatic impacts of stratospheric geoengineering with sulfate, black carbon and titania injection
Radiative and climate impacts of a large volcanic eruption during stratospheric sulfur geoengineering
Climate extremes in multi-model simulations of stratospheric aerosol and marine cloud brightening climate engineering
What is the limit of climate engineering by stratospheric injection of SO2?
Quasi-biennial oscillation of the tropical stratospheric aerosol layer
The impact of volcanic aerosol on the Northern Hemisphere stratospheric polar vortex: mechanisms and sensitivity to forcing structure
Modeling the stratospheric warming following the Mt. Pinatubo eruption: uncertainties in aerosol extinctions
Christian von Savigny, Anna Lange, Christoph G. Hoffmann, and Alexei Rozanov
Atmos. Chem. Phys., 24, 2415–2422, https://doi.org/10.5194/acp-24-2415-2024, https://doi.org/10.5194/acp-24-2415-2024, 2024
Short summary
Short summary
It is well known that volcanic eruptions strongly affect the colours of the twilight sky. Typically, volcanic eruptions lead to enhanced reddish and violet twilight colours. In rare cases, however, volcanic eruptions can also lead to green sunsets. This study provides an explanation for the occurrence of these unusual green sunsets based on simulations with a radiative transfer model. Green volcanic sunsets require a sufficient stratospheric aerosol optical depth and specific aerosol sizes.
Jan Clemens, Bärbel Vogel, Lars Hoffmann, Sabine Griessbach, Nicole Thomas, Suvarna Fadnavis, Rolf Müller, Thomas Peter, and Felix Ploeger
Atmos. Chem. Phys., 24, 763–787, https://doi.org/10.5194/acp-24-763-2024, https://doi.org/10.5194/acp-24-763-2024, 2024
Short summary
Short summary
The source regions of the Asian tropopause aerosol layer (ATAL) are debated. We use balloon-borne measurements of the layer above Nainital (India) in August 2016 and atmospheric transport models to find ATAL source regions. Most air originated from the Tibetan plateau. However, the measured ATAL was stronger when more air originated from the Indo-Gangetic Plain and weaker when more air originated from the Pacific. Hence, the results indicate important anthropogenic contributions to the ATAL.
Seyed Vahid Mousavi, Khalil Karami, Simone Tilmes, Helene Muri, Lili Xia, and Abolfazl Rezaei
Atmos. Chem. Phys., 23, 10677–10695, https://doi.org/10.5194/acp-23-10677-2023, https://doi.org/10.5194/acp-23-10677-2023, 2023
Short summary
Short summary
Understanding atmospheric dust changes in the Middle East and North Africa (MENA) region under future climate scenarios is essential. By injecting sulfate aerosols into the stratosphere, stratospheric aerosol injection (SAI) geoengineering reflects some of the incoming sunlight back to space. This study shows that the MENA region would experience lower dust concentration under both SAI and RCP8.5 scenarios compared to the current climate (CTL) by the end of the century.
Fabian Senf, Bernd Heinold, Anne Kubin, Jason Müller, Roland Schrödner, and Ina Tegen
Atmos. Chem. Phys., 23, 8939–8958, https://doi.org/10.5194/acp-23-8939-2023, https://doi.org/10.5194/acp-23-8939-2023, 2023
Short summary
Short summary
Wildfire smoke is a significant source of airborne atmospheric particles that can absorb sunlight. Extreme fires in particular, such as those during the 2019–2020 Australian wildfire season (Black Summer fires), can considerably affect our climate system. In the present study, we investigate the various effects of Australian smoke using a global climate model to clarify how the Earth's atmosphere, including its circulation systems, adjusted to the extraordinary amount of Australian smoke.
Alan Robock, Lili Xia, Cheryl S. Harrison, Joshua Coupe, Owen B. Toon, and Charles G. Bardeen
Atmos. Chem. Phys., 23, 6691–6701, https://doi.org/10.5194/acp-23-6691-2023, https://doi.org/10.5194/acp-23-6691-2023, 2023
Short summary
Short summary
A nuclear war could produce a nuclear winter, with catastrophic consequences for global food supplies. Nuclear winter theory helped to end the nuclear arms race in the 1980s, but more than 10 000 nuclear weapons still exist. This means they can be used, by unstable leaders, accidently from technical malfunctions or human error, or by terrorists. Therefore, it is urgent for scientists to study these issues, broadly communicate their results, and work for the elimination of nuclear weapons.
Alice F. Wells, Andy Jones, Martin Osborne, Lilly Damany-Pearce, Daniel G. Partridge, and James M. Haywood
Atmos. Chem. Phys., 23, 3985–4007, https://doi.org/10.5194/acp-23-3985-2023, https://doi.org/10.5194/acp-23-3985-2023, 2023
Short summary
Short summary
In 2019 the Raikoke volcano erupted explosively, emitting the largest injection of SO2 into the stratosphere since 2011. Observations indicated that a large amount of volcanic ash was also injected. Previous studies have identified that volcanic ash can prolong the lifetime of stratospheric aerosol optical depth, which we explore in UKESM1. Comparisons to observations suggest that including ash in model emission schemes can improve the representation of volcanic plumes in global climate models.
Fangqun Yu, Gan Luo, Arshad Arjunan Nair, Sebastian Eastham, Christina J. Williamson, Agnieszka Kupc, and Charles A. Brock
Atmos. Chem. Phys., 23, 1863–1877, https://doi.org/10.5194/acp-23-1863-2023, https://doi.org/10.5194/acp-23-1863-2023, 2023
Short summary
Short summary
Particle number concentrations and size distributions in the stratosphere are studied through model simulations and comparisons with measurements. The nucleation scheme used in most of the solar geoengineering modeling studies overpredicts the nucleation rates and particle number concentrations in the stratosphere. The model based on updated nucleation schemes captures reasonably well some aspects of particle size distributions but misses some features. The possible reasons are discussed.
Ilaria Quaglia, Claudia Timmreck, Ulrike Niemeier, Daniele Visioni, Giovanni Pitari, Christina Brodowsky, Christoph Brühl, Sandip S. Dhomse, Henning Franke, Anton Laakso, Graham W. Mann, Eugene Rozanov, and Timofei Sukhodolov
Atmos. Chem. Phys., 23, 921–948, https://doi.org/10.5194/acp-23-921-2023, https://doi.org/10.5194/acp-23-921-2023, 2023
Short summary
Short summary
The last very large explosive volcanic eruption we have measurements for is the eruption of Mt. Pinatubo in 1991. It is therefore often used as a benchmark for climate models' ability to reproduce these kinds of events. Here, we compare available measurements with the results from multiple experiments conducted with climate models interactively simulating the aerosol cloud formation.
Ewa M. Bednarz, Daniele Visioni, Ben Kravitz, Andy Jones, James M. Haywood, Jadwiga Richter, Douglas G. MacMartin, and Peter Braesicke
Atmos. Chem. Phys., 23, 687–709, https://doi.org/10.5194/acp-23-687-2023, https://doi.org/10.5194/acp-23-687-2023, 2023
Short summary
Short summary
Building on Part 1 of this two-part study, we demonstrate the role of biases in climatological circulation and specific aspects of model microphysics in driving the differences in simulated sulfate distributions amongst three Earth system models. We then characterize the simulated changes in stratospheric and free-tropospheric temperatures, ozone, water vapor, and large-scale circulation, elucidating the role of the above aspects in the surface responses discussed in Part 1.
Mohamed Abdelkader, Georgiy Stenchikov, Andrea Pozzer, Holger Tost, and Jos Lelieveld
Atmos. Chem. Phys., 23, 471–500, https://doi.org/10.5194/acp-23-471-2023, https://doi.org/10.5194/acp-23-471-2023, 2023
Short summary
Short summary
We study the effect of injected volcanic ash, water vapor, and SO2 on the development of the volcanic cloud and the stratospheric aerosol optical depth (AOD). Both are sensitive to the initial injection height and to the aging of the volcanic ash shaped by heterogeneous chemistry coupled with the ozone cycle. The paper explains the large differences in AOD for different injection scenarios, which could improve the estimate of the radiative forcing of volcanic eruptions.
Giorgio Doglioni, Valentina Aquila, Sampa Das, Peter R. Colarco, and Dino Zardi
Atmos. Chem. Phys., 22, 11049–11064, https://doi.org/10.5194/acp-22-11049-2022, https://doi.org/10.5194/acp-22-11049-2022, 2022
Short summary
Short summary
We use a global chemistry climate model to analyze the perturbations to the stratospheric dynamics caused by an injection of carbonaceous aerosol comparable to the one caused by a series of pyrocumulonimbi that formed over British Columbia, Canada on 13 August 2017. The injection of light-absorbing aerosol in an otherwise clean lower stratosphere causes the formation of long-lasting stratospheric anticyclones at the synoptic scale.
Bernd Heinold, Holger Baars, Boris Barja, Matthew Christensen, Anne Kubin, Kevin Ohneiser, Kerstin Schepanski, Nick Schutgens, Fabian Senf, Roland Schrödner, Diego Villanueva, and Ina Tegen
Atmos. Chem. Phys., 22, 9969–9985, https://doi.org/10.5194/acp-22-9969-2022, https://doi.org/10.5194/acp-22-9969-2022, 2022
Short summary
Short summary
The extreme 2019–2020 Australian wildfires produced massive smoke plumes lofted into the lower stratosphere by pyrocumulonimbus convection. Most climate models do not adequately simulate the injection height of such intense fires. By combining aerosol-climate modeling with prescribed pyroconvective smoke injection and lidar observations, this study shows the importance of the representation of the most extreme wildfire events for estimating the atmospheric energy budget.
Kevin DallaSanta and Lorenzo M. Polvani
Atmos. Chem. Phys., 22, 8843–8862, https://doi.org/10.5194/acp-22-8843-2022, https://doi.org/10.5194/acp-22-8843-2022, 2022
Short summary
Short summary
Volcanic eruptions cool the earth by reducing the amount of sunlight reaching the surface. Paradoxically, it has been suggested that they may also warm the surface, but the evidence for this is scant. Here, we show that a small warming can be seen in a climate model for large-enough eruptions. However, even for eruptions much larger than those that have occurred in the past two millennia, post-eruption winters over Eurasia are indistinguishable from those occurring without a prior eruption.
Jim M. Haywood, Andy Jones, Ben T. Johnson, and William McFarlane Smith
Atmos. Chem. Phys., 22, 6135–6150, https://doi.org/10.5194/acp-22-6135-2022, https://doi.org/10.5194/acp-22-6135-2022, 2022
Short summary
Short summary
Simulations are presented investigating the influence of moderately absorbing aerosol in the stratosphere to combat the impacts of climate change. A number of detrimental impacts are noted compared to sulfate aerosol, including (i) reduced cooling efficiency, (ii) increased deficits in global precipitation, (iii) delays in the recovery of the stratospheric ozone hole, and (iv) disruption of the stratospheric circulation and the wintertime storm tracks that impact European precipitation.
Ilaria Quaglia, Daniele Visioni, Giovanni Pitari, and Ben Kravitz
Atmos. Chem. Phys., 22, 5757–5773, https://doi.org/10.5194/acp-22-5757-2022, https://doi.org/10.5194/acp-22-5757-2022, 2022
Short summary
Short summary
Carbonyl sulfide is a gas that mixes very well in the atmosphere and can reach the stratosphere, where it reacts with sunlight and produces aerosol. Here we propose that, by increasing surface fluxes by an order of magnitude, the number of stratospheric aerosols produced may be enough to partially offset the warming produced by greenhouse gases. We explore what effect this would have on the atmospheric composition.
Julia Bruckert, Gholam Ali Hoshyaripour, Ákos Horváth, Lukas O. Muser, Fred J. Prata, Corinna Hoose, and Bernhard Vogel
Atmos. Chem. Phys., 22, 3535–3552, https://doi.org/10.5194/acp-22-3535-2022, https://doi.org/10.5194/acp-22-3535-2022, 2022
Short summary
Short summary
Volcanic emissions endanger aviation and public health and also influence weather and climate. Forecasting the volcanic-plume dispersion is therefore a critical yet sophisticated task. Here, we show that explicit treatment of volcanic-plume dynamics and eruption source parameters significantly improves volcanic-plume dispersion forecasts. We further demonstrate the lofting of the SO2 due to a heating of volcanic particles by sunlight with major implications for volcanic aerosol research.
Andy Jones, Jim M. Haywood, Adam A. Scaife, Olivier Boucher, Matthew Henry, Ben Kravitz, Thibaut Lurton, Pierre Nabat, Ulrike Niemeier, Roland Séférian, Simone Tilmes, and Daniele Visioni
Atmos. Chem. Phys., 22, 2999–3016, https://doi.org/10.5194/acp-22-2999-2022, https://doi.org/10.5194/acp-22-2999-2022, 2022
Short summary
Short summary
Simulations by six Earth-system models of geoengineering by introducing sulfuric acid aerosols into the tropical stratosphere are compared. A robust impact on the northern wintertime North Atlantic Oscillation is found, exacerbating precipitation reduction over parts of southern Europe. In contrast, the models show no consistency with regard to impacts on the Quasi-Biennial Oscillation, although results do indicate a risk that the oscillation could become locked into a permanent westerly phase.
Debra K. Weisenstein, Daniele Visioni, Henning Franke, Ulrike Niemeier, Sandro Vattioni, Gabriel Chiodo, Thomas Peter, and David W. Keith
Atmos. Chem. Phys., 22, 2955–2973, https://doi.org/10.5194/acp-22-2955-2022, https://doi.org/10.5194/acp-22-2955-2022, 2022
Short summary
Short summary
This paper explores a potential method of geoengineering that could be used to slow the rate of change of climate over decadal scales. We use three climate models to explore how injections of accumulation-mode sulfuric acid aerosol change the large-scale stratospheric particle size distribution and radiative forcing response for the chosen scenarios. Radiative forcing per unit sulfur injected and relative to the change in aerosol burden is larger with particulate than with SO2 injections.
Daniele Visioni, Simone Tilmes, Charles Bardeen, Michael Mills, Douglas G. MacMartin, Ben Kravitz, and Jadwiga H. Richter
Atmos. Chem. Phys., 22, 1739–1756, https://doi.org/10.5194/acp-22-1739-2022, https://doi.org/10.5194/acp-22-1739-2022, 2022
Short summary
Short summary
Aerosols are simulated in a simplified way in climate models: in the model analyzed here, they are represented in every grid as described by three simple logarithmic distributions, mixing all different species together. The size can evolve when new particles are formed, particles merge together to create a larger one or particles are deposited to the surface. This approximation normally works fairly well. Here we show however that when large amounts of sulfate are simulated, there are problems.
Anton Laakso, Ulrike Niemeier, Daniele Visioni, Simone Tilmes, and Harri Kokkola
Atmos. Chem. Phys., 22, 93–118, https://doi.org/10.5194/acp-22-93-2022, https://doi.org/10.5194/acp-22-93-2022, 2022
Short summary
Short summary
The use of different spatio-temporal sulfur injection strategies with different magnitudes to create an artificial reflective aerosol layer to cool the climate is studied using sectional and modal aerosol schemes in a climate model. There are significant differences in the results depending on the aerosol microphysical module used. Different spatio-temporal injection strategies have a significant impact on the magnitude and zonal distribution of radiative forcing and atmospheric dynamics.
Sampa Das, Peter R. Colarco, Luke D. Oman, Ghassan Taha, and Omar Torres
Atmos. Chem. Phys., 21, 12069–12090, https://doi.org/10.5194/acp-21-12069-2021, https://doi.org/10.5194/acp-21-12069-2021, 2021
Short summary
Short summary
Interactions of extreme fires with weather systems can produce towering smoke plumes that inject aerosols at very high altitudes (> 10 km). Three such major injections, largest at the time in terms of emitted aerosol mass, took place over British Columbia, Canada, in August 2017. We model the transport and impacts of injected aerosols on the radiation balance of the atmosphere. Our model results match the satellite-observed plume transport and residence time at these high altitudes very closely.
Daniele Visioni, Douglas G. MacMartin, Ben Kravitz, Olivier Boucher, Andy Jones, Thibaut Lurton, Michou Martine, Michael J. Mills, Pierre Nabat, Ulrike Niemeier, Roland Séférian, and Simone Tilmes
Atmos. Chem. Phys., 21, 10039–10063, https://doi.org/10.5194/acp-21-10039-2021, https://doi.org/10.5194/acp-21-10039-2021, 2021
Short summary
Short summary
A new set of simulations is used to investigate commonalities, differences and sources of uncertainty when simulating the injection of SO2 in the stratosphere in order to mitigate the effects of climate change (solar geoengineering). The models differ in how they simulate the aerosols and how they spread around the stratosphere, resulting in differences in projected regional impacts. Overall, however, the models agree that aerosols have the potential to mitigate the warming produced by GHGs.
Nikolas O. Aksamit, Ben Kravitz, Douglas G. MacMartin, and George Haller
Atmos. Chem. Phys., 21, 8845–8861, https://doi.org/10.5194/acp-21-8845-2021, https://doi.org/10.5194/acp-21-8845-2021, 2021
Short summary
Short summary
There exist robust and influential material features evolving within turbulent fluids that behave as the skeleton for fluid transport pathways. Recent developments in applied mathematics have made the identification of these time-varying structures more rigorous and insightful than ever. Using short-range wind forecasts, we detail how and why these material features can be exploited in an effort to optimize the spread of aerosols in the stratosphere for climate geoengineering.
Ben Kravitz, Douglas G. MacMartin, Daniele Visioni, Olivier Boucher, Jason N. S. Cole, Jim Haywood, Andy Jones, Thibaut Lurton, Pierre Nabat, Ulrike Niemeier, Alan Robock, Roland Séférian, and Simone Tilmes
Atmos. Chem. Phys., 21, 4231–4247, https://doi.org/10.5194/acp-21-4231-2021, https://doi.org/10.5194/acp-21-4231-2021, 2021
Short summary
Short summary
This study investigates multi-model response to idealized geoengineering (high CO2 with solar reduction) across two different generations of climate models. We find that, with the exception of a few cases, the results are unchanged between the different generations. This gives us confidence that broad conclusions about the response to idealized geoengineering are robust.
Margot Clyne, Jean-Francois Lamarque, Michael J. Mills, Myriam Khodri, William Ball, Slimane Bekki, Sandip S. Dhomse, Nicolas Lebas, Graham Mann, Lauren Marshall, Ulrike Niemeier, Virginie Poulain, Alan Robock, Eugene Rozanov, Anja Schmidt, Andrea Stenke, Timofei Sukhodolov, Claudia Timmreck, Matthew Toohey, Fiona Tummon, Davide Zanchettin, Yunqian Zhu, and Owen B. Toon
Atmos. Chem. Phys., 21, 3317–3343, https://doi.org/10.5194/acp-21-3317-2021, https://doi.org/10.5194/acp-21-3317-2021, 2021
Short summary
Short summary
This study finds how and why five state-of-the-art global climate models with interactive stratospheric aerosols differ when simulating the aftermath of large volcanic injections as part of the Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP). We identify and explain the consequences of significant disparities in the underlying physics and chemistry currently in some of the models, which are problems likely not unique to the models participating in this study.
Andy Jones, Jim M. Haywood, Anthony C. Jones, Simone Tilmes, Ben Kravitz, and Alan Robock
Atmos. Chem. Phys., 21, 1287–1304, https://doi.org/10.5194/acp-21-1287-2021, https://doi.org/10.5194/acp-21-1287-2021, 2021
Short summary
Short summary
Two different methods of simulating a geoengineering scenario are compared using data from two different Earth system models. One method is very idealised while the other includes details of a plausible mechanism. The results from both models agree that the idealised approach does not capture an impact found when detailed modelling is included, namely that geoengineering induces a positive phase of the North Atlantic Oscillation which leads to warmer, wetter winters in northern Europe.
Ulrike Niemeier, Jadwiga H. Richter, and Simone Tilmes
Atmos. Chem. Phys., 20, 8975–8987, https://doi.org/10.5194/acp-20-8975-2020, https://doi.org/10.5194/acp-20-8975-2020, 2020
Short summary
Short summary
Artificial injections of SO2 into the tropical stratosphere show an impact on the quasi-biennial oscillation (QBO). Different numerical models show only qualitatively but not quantitatively consistent impacts. We show for two models that the response of the QBO is similar when a similar stratospheric heating rate is induced by SO2 injections of different amounts. The reason is very different vertical advection in the two models resulting in different aerosol burden and heating of the aerosols.
Ulrike Niemeier, Claudia Timmreck, and Kirstin Krüger
Atmos. Chem. Phys., 19, 10379–10390, https://doi.org/10.5194/acp-19-10379-2019, https://doi.org/10.5194/acp-19-10379-2019, 2019
Short summary
Short summary
In 1963 Mt. Agung, Indonesia, showed unrest for several months. During this period,
two medium-sized eruptions injected SO2 into the stratosphere. Recent volcanic emission datasets include only one large eruption phase. Therefore, we compared model experiments, with (a) one larger eruption and (b) two eruptions as observed. The evolution of the volcanic cloud differs significantly between the two experiments. Both climatic eruptions should be taken into account.
Lorenzo M. Polvani, Antara Banerjee, and Anja Schmidt
Atmos. Chem. Phys., 19, 6351–6366, https://doi.org/10.5194/acp-19-6351-2019, https://doi.org/10.5194/acp-19-6351-2019, 2019
Short summary
Short summary
This study provides compelling new evidence that the surface winter warming observed over the Northern Hemisphere continents following the 1991 eruption of Mt. Pinatubo was, very likely, completely unrelated to the eruption. This result has implications for earlier eruptions, as the evidence presented here demonstrates that the surface signal of even the very largest known eruptions may be swamped by the internal variability at high latitudes.
Daniele Visioni, Giovanni Pitari, Glauco di Genova, Simone Tilmes, and Irene Cionni
Atmos. Chem. Phys., 18, 14867–14887, https://doi.org/10.5194/acp-18-14867-2018, https://doi.org/10.5194/acp-18-14867-2018, 2018
Short summary
Short summary
Many side effects of sulfate geoengineering have to be analyzed before the world can even consider deploying this method of solar radiation management. In particular, we show that ice clouds in the upper troposphere are modified by a sulfate injection, producing a change that (by allowing for more planetary radiation to escape to space) would produce a further cooling. This might be important when considering the necessary amount of sulfate that needs to be injected to achieve a certain target.
Christoph Brühl, Jennifer Schallock, Klaus Klingmüller, Charles Robert, Christine Bingen, Lieven Clarisse, Andreas Heckel, Peter North, and Landon Rieger
Atmos. Chem. Phys., 18, 12845–12857, https://doi.org/10.5194/acp-18-12845-2018, https://doi.org/10.5194/acp-18-12845-2018, 2018
Short summary
Short summary
Use of multi-instrument satellite data is important to get consistent simulations of aerosol radiative forcing by a complex chemistry climate model, here with a main focus on the lower stratosphere. The satellite data at different wavelengths together with the patterns in the simulated size distribution point to a significant contribution from moist mineral dust lifted to the tropopause region by the Asian summer monsoon.
Tao Tang, Drew Shindell, Bjørn H. Samset, Oliviér Boucher, Piers M. Forster, Øivind Hodnebrog, Gunnar Myhre, Jana Sillmann, Apostolos Voulgarakis, Timothy Andrews, Gregory Faluvegi, Dagmar Fläschner, Trond Iversen, Matthew Kasoar, Viatcheslav Kharin, Alf Kirkevåg, Jean-Francois Lamarque, Dirk Olivié, Thomas Richardson, Camilla W. Stjern, and Toshihiko Takemura
Atmos. Chem. Phys., 18, 8439–8452, https://doi.org/10.5194/acp-18-8439-2018, https://doi.org/10.5194/acp-18-8439-2018, 2018
Yaoxian Huang, Nadine Unger, Trude Storelvmo, Kandice Harper, Yiqi Zheng, and Chris Heyes
Atmos. Chem. Phys., 18, 5219–5233, https://doi.org/10.5194/acp-18-5219-2018, https://doi.org/10.5194/acp-18-5219-2018, 2018
Short summary
Short summary
We apply a global 3-D climate model to quantify the climate impacts of carbonaceous aerosols from solid fuel cookstove emissions. Without black carbon (BC) serving as ice nuclei (IN), global and Indian solid fuel cookstove aerosol emissions have net global cooling impacts. However, when BC acts as IN, the net sign of radiative impacts of carbonaceous aerosols from solid fuel cookstove emissions varies with the choice of maximum freezing efficiency of BC during ice cloud formation.
Thibaut Lurton, Fabrice Jégou, Gwenaël Berthet, Jean-Baptiste Renard, Lieven Clarisse, Anja Schmidt, Colette Brogniez, and Tjarda J. Roberts
Atmos. Chem. Phys., 18, 3223–3247, https://doi.org/10.5194/acp-18-3223-2018, https://doi.org/10.5194/acp-18-3223-2018, 2018
Short summary
Short summary
We quantify the chemical and microphysical effects of volcanic SO2 and HCl from the June 2009 Sarychev Peak eruption using a comprehensive aerosol–chemistry model combined with in situ measurements and satellite retrievals. Our results suggest that previous studies underestimated the eruption's atmospheric and climatic impact, mainly because previous model-to-satellite comparisons had to make assumptions about the aerosol size distribution and were based on biased satellite retrievals of AOD.
Christoph Kleinschmitt, Olivier Boucher, and Ulrich Platt
Atmos. Chem. Phys., 18, 2769–2786, https://doi.org/10.5194/acp-18-2769-2018, https://doi.org/10.5194/acp-18-2769-2018, 2018
Short summary
Short summary
We use a state-of-the-art stratospheric aerosol model to study geoengineering through stratospheric sulfur injections. We find that the efficiency may decrease more drastically for larger injections than previously estimated and that injections at higher altitude are not more effective. This study may provide additional evidence that this proposed geoengineering technique is still more complicated, probably less effective, and may implicate stronger side effects than initially thought.
Daniele Visioni, Giovanni Pitari, Paolo Tuccella, and Gabriele Curci
Atmos. Chem. Phys., 18, 2787–2808, https://doi.org/10.5194/acp-18-2787-2018, https://doi.org/10.5194/acp-18-2787-2018, 2018
Short summary
Short summary
Sulfate geoengineering is a proposed technique that would mimic explosive volcanic eruptions by injecting sulfur dioxide (SO2) into the stratosphere to counteract global warming produced by greenhouse gases by reflecting part of the incoming solar radiation. In this study we use two models to simulate how the injected aerosols would react to dynamical changes in the stratosphere (due to the quasi-biennial oscillation - QBO) and how this would affect the deposition of sulfate at the surface.
Ulrike Niemeier and Hauke Schmidt
Atmos. Chem. Phys., 17, 14871–14886, https://doi.org/10.5194/acp-17-14871-2017, https://doi.org/10.5194/acp-17-14871-2017, 2017
Short summary
Short summary
An artificial stratospheric sulfur layer heats the lower stratosphere which impacts stratospheric dynamics and transport. The quasi-biennial oscillation shuts down due to the heated sulfur layer which impacts the meridional transport of the sulfate aerosols. The tropical confinement of the sulfate is stronger and the radiative forcing efficiency of the aerosol layer decreases compared to previous studies, as does the forcing when increasing the injection height.
Xue Wu, Sabine Griessbach, and Lars Hoffmann
Atmos. Chem. Phys., 17, 13439–13455, https://doi.org/10.5194/acp-17-13439-2017, https://doi.org/10.5194/acp-17-13439-2017, 2017
Short summary
Short summary
This study is focused on the Sarychev eruption in 2009. Based on Lagrangian model simulations and satellite data, the equatorward transport of the plume and aerosol from the Sarychev eruption is confirmed, and the transport is facilitated by the Asian summer monsoon anticyclonic circulations. The aerosol transported to the tropics remained for months and dispersed upward, which could make the Sarychev eruption have a similar global climate impact as a tropical volcanic eruption.
Daniele Visioni, Giovanni Pitari, Valentina Aquila, Simone Tilmes, Irene Cionni, Glauco Di Genova, and Eva Mancini
Atmos. Chem. Phys., 17, 11209–11226, https://doi.org/10.5194/acp-17-11209-2017, https://doi.org/10.5194/acp-17-11209-2017, 2017
Short summary
Short summary
Sulfate geoengineering (SG), the sustained injection of SO2 in the lower stratosphere, is being discussed as a way to counterbalance surface warming, mimicking volcanic eruptions. In this paper, we analyse results from two models part of the GeoMIP project in order to understand the effect SG might have on the concentration and lifetime of methane, which acts in the atmosphere as a greenhouse gas. Understanding possible side effects of SG is a crucial step if its viability is to be assessed.
Steffen Münch and Joachim Curtius
Atmos. Chem. Phys., 17, 7581–7591, https://doi.org/10.5194/acp-17-7581-2017, https://doi.org/10.5194/acp-17-7581-2017, 2017
Short summary
Short summary
Recent research has analyzed the formation of a particle (CN) layer in the stratosphere above Antarctica after sunrise. We investigate the CN layer formation processes with our particle formation model and derive sulfuric acid profiles (no measurements exist). Our study confirms existing explanations and gives more insights into the formation process, leading to higher derived concentrations. Therefore, this paper improves our understanding of the processes in the high atmosphere.
Anton Laakso, Hannele Korhonen, Sami Romakkaniemi, and Harri Kokkola
Atmos. Chem. Phys., 17, 6957–6974, https://doi.org/10.5194/acp-17-6957-2017, https://doi.org/10.5194/acp-17-6957-2017, 2017
Short summary
Short summary
Based on simulations, equatorial stratospheric sulfur injections have shown to be an efficient strategy to counteract ongoing global warming. However, equatorial injections would result in relatively larger cooling in low latitudes than in high latitudes. This together with greenhouse-gas-induced warming would lead to cooling in the Equator and warming in the high latitudes. Results of this study show that a more optimal cooling effect is achieved by varying the injection area seasonally.
Alejandro Marti, Arnau Folch, Oriol Jorba, and Zavisa Janjic
Atmos. Chem. Phys., 17, 4005–4030, https://doi.org/10.5194/acp-17-4005-2017, https://doi.org/10.5194/acp-17-4005-2017, 2017
Short summary
Short summary
We describe and evaluate NMMB-MONARCH-ASH, a novel online multi-scale meteorological and transport model developed at the BSC-CNS capable of forecasting the dispersal and deposition of volcanic ash. The forecast skills of the model have been validated and they improve on those from traditional operational offline (decoupled) models. The results support the use of online coupled models to aid civil aviation and emergency management during a crisis such as the 2010 eruption of Eyjafjallajökull.
Daniele Visioni, Giovanni Pitari, and Valentina Aquila
Atmos. Chem. Phys., 17, 3879–3889, https://doi.org/10.5194/acp-17-3879-2017, https://doi.org/10.5194/acp-17-3879-2017, 2017
Short summary
Short summary
This review paper summarizes the state-of-the-art knowledge of the direct and indirect side effects of sulfate geoengineering, that is, the injection of sulfur dioxide into the stratosphere in order to offset the warming caused by the anthropic increase in greenhouse gasses. An overview of the various effects and their uncertainties, using results from published scientific articles, may help fine-tune the best amount of sulfate to be injected in an eventual realization of the experiment.
Anthony C. Jones, James M. Haywood, and Andy Jones
Atmos. Chem. Phys., 16, 2843–2862, https://doi.org/10.5194/acp-16-2843-2016, https://doi.org/10.5194/acp-16-2843-2016, 2016
Short summary
Short summary
In this paper we assess the potential climatic impacts of geoengineering with sulfate, black carbon and titania injection strategies. We find that black carbon injection results in severe stratospheric warming and precipitation impacts, and therefore black carbon is unsuitable for geoengineering purposes. As the injection rates and climatic impacts for titania are close to those for sulfate, there appears little benefit of using titania when compared to injection of sulfur dioxide.
A. Laakso, H. Kokkola, A.-I. Partanen, U. Niemeier, C. Timmreck, K. E. J. Lehtinen, H. Hakkarainen, and H. Korhonen
Atmos. Chem. Phys., 16, 305–323, https://doi.org/10.5194/acp-16-305-2016, https://doi.org/10.5194/acp-16-305-2016, 2016
Short summary
Short summary
We have studied the impacts of a volcanic eruption during solar radiation management (SRM) using an aerosol-climate model ECHAM5-HAM-SALSA and an Earth system model MPI-ESM. A volcanic eruption during stratospheric sulfur geoengineering would lead to larger particles and smaller amount of new particles than if an volcano erupts in normal atmospheric conditions. Thus, volcanic eruption during SRM would lead to only a small additional cooling which would last for a significantly shorter period.
V. N. Aswathy, O. Boucher, M. Quaas, U. Niemeier, H. Muri, J. Mülmenstädt, and J. Quaas
Atmos. Chem. Phys., 15, 9593–9610, https://doi.org/10.5194/acp-15-9593-2015, https://doi.org/10.5194/acp-15-9593-2015, 2015
Short summary
Short summary
Simulations conducted in the GeoMIP and IMPLICC model intercomparison studies for climate engineering by stratospheric sulfate injection and marine cloud brightening via sea salt are analysed and compared to the reference scenario RCP4.5. The focus is on extremes in surface temperature and precipitation. It is found that the extreme changes mostly follow the mean changes and that extremes are also in general well mitigated, except for in polar regions.
U. Niemeier and C. Timmreck
Atmos. Chem. Phys., 15, 9129–9141, https://doi.org/10.5194/acp-15-9129-2015, https://doi.org/10.5194/acp-15-9129-2015, 2015
Short summary
Short summary
The injection of sulfur dioxide is considered as an option for solar radiation management. We have calculated the effects of SO2 injections up to 100 Tg(S)/y. Our calculations show that the forcing efficiency of the injection decays exponentially. This result implies that SO2 injections in the order of 6 times Mt. Pinatubo eruptions per year are required to keep temperatures constant at that anticipated for 2020, whilst maintaining business as usual emission conditions.
R. Hommel, C. Timmreck, M. A. Giorgetta, and H. F. Graf
Atmos. Chem. Phys., 15, 5557–5584, https://doi.org/10.5194/acp-15-5557-2015, https://doi.org/10.5194/acp-15-5557-2015, 2015
M. Toohey, K. Krüger, M. Bittner, C. Timmreck, and H. Schmidt
Atmos. Chem. Phys., 14, 13063–13079, https://doi.org/10.5194/acp-14-13063-2014, https://doi.org/10.5194/acp-14-13063-2014, 2014
Short summary
Short summary
Earth system model simulations are used to investigate the impact of volcanic aerosol forcing on stratospheric dynamics, e.g. the Northern Hemisphere (NH) polar vortex. We find that mechanisms linking aerosol heating and high-latitude dynamics are not as direct as often assumed; high-latitude effects result from changes in stratospheric circulation and related vertical motions. The simulated responses also show evidence of being sensitive to the structure of the volcanic forcing used.
F. Arfeuille, B. P. Luo, P. Heckendorn, D. Weisenstein, J. X. Sheng, E. Rozanov, M. Schraner, S. Brönnimann, L. W. Thomason, and T. Peter
Atmos. Chem. Phys., 13, 11221–11234, https://doi.org/10.5194/acp-13-11221-2013, https://doi.org/10.5194/acp-13-11221-2013, 2013
Cited articles
Bittner, M.: On the discrepancy between observed and simulated dynamical
responses of Northern Hemisphere winter climate to large tropical volcanic
eruptions, PhD thesis, Univerisity of Hamburg, Reports on Earth System
Science, no. 173, 2015. a
Bittner, M., Schmidt, H., Timmreck, C., and Sienz, F.: Using a large ensemble
of simulations to assess the Northern Hemisphere stratospheric dynamical
response to tropical volcanic eruptions and its uncertainty, Geophys.
Res. Lett., 43, 9324–9332, https://doi.org/10.1002/2016GL070587,
2016a. a, b, c, d, e
Bittner, M., Timmreck, C., Schmidt, H., Toohey, M., and Krüger, K.: The
impact of wave-mean flow interaction on the Northern Hemisphere polar vortex
after tropical volcanic eruptions, J. Geophys. Res.-Atmos., 121, 5281–5297, https://doi.org/10.1002/2015JD024603, 2016b. a
Butler, A. H., Charlton-Perez, A., Domeisen, D. I., Simpson, I. R., and
Sjoberg, J.: Predictability of Northern Hemisphere final stratospheric
warmings and their surface impacts, Geophys. Res. Lett., 46,
10578–10588, https://doi.org/10.1029/2019GL083346, 2019. a
Calvo, N., García-Herrera, R., and Garcia, R. R.: The ENSO signal in the
stratosphere, Ann. NY. Acad. Sci., 1146, 16–31, 2008. a
Charlton, A. J. and Polvani, L. M.: A new look at stratospheric sudden
warmings. Part I: Climatology and modeling benchmarks, J. Climate,
20, 449–469, https://doi.org/10.1175/JCLI3996.1, 2007. a
Charlton-Perez, A. J., Baldwin, M. P., Birner, T., Black, R. X., Butler,
A. H., Calvo, N., Davis, N. A., Gerber, E. P., Gillett, N., Hardiman, S.,
Kim, J., Krüger, K., Lee, Y., Manzini, E., McDaniel, B. A., Polvani, L.,
Reichler, T., Shaw, T. A., Sigmond, M., Son, S., Toohey, M., Wilcox, L.,
Yoden, S., Christiansen, B., Lott, F., Shindell, D., Yukimoto, S., and
Watanabe, S.: On the lack of stratospheric dynamical variability in low-top
versions of the CMIP5 models, J. Geophys. Res., 118, 2494–2505,
https://doi.org/10.1002/jgrd.50125, 2013. a, b
Chylek, P., Folland, C., Klett, J. D., and Dubey, M. K.: CMIP5 climate models
overestimate cooling by volcanic aerosols, Geophys. Res. Lett., 47,
e2020GL087047, https://doi.org/10.1029/2020GL087047, 2020. a
Compo, G. P., Whitaker, J. S., and Sardeshmukh, P. D.: Feasibility of a 100
year reanalysis using only surface pressure data, B. Am. Meteorol. Soc.,
87, 175–190, https://doi.org/10.1175/BAMS-87-2-175, 2006. a, b
Compo, G. P., Whitaker, J. S., Sardeshmukh, P., Matsui, N., Allan, R., Gleason,
X. Y. B., Vose, R., Rutledge, G., Bessemoulin, P., Broennimann, S., Brunet,
M., Crouthamel, R., Grant, A., Groisman, P., Jones, P., Kruk, M., Kruger, A.,
Marshall, G., Maugeri, M., Mok, H., Nordli, O., Ross, T., Trigo, R., Wang,
X., Woodruff, S., and Worley, S.: The Twentieth Century Reanalysis
Project, Q. J. Roy. Meteor. Soc., 137, 1–128, https://doi.org/10.1002/qj.776, 2011. a
Deser, C., Lehner, F., Rodgers, K., Ault, T., Delworth, T., DiNezio, P., Fiore,
A., Frankignoul, C., Fyfe, J., Horton, D., Kay, J., Knutti, R., Lovenduski,
N., Marotzke, J., McKinnon, K. A., Minobe, S., Randerson, J., Screen, J.,
Simpson, I., and Ting, M.: Insights from Earth system model initial-condition
large ensembles and future prospects, Nat. Geosci., 40, 277–286,
https://doi.org/10.1038/s41558-020-0731-2, 2020. a
Fischer, E. M., Luterbacher, J., Zorita, E., Tett, S., Casty, C., and Wanner,
H.: European climate response to tropical volcanic eruptions over the last
half millennium, Geophys. Res. Lett., 34, L05707, https://doi.org/10.1029/2006GL027992, 2007. a
Free, M. and Lanzante, J.: Effect of volcanic eruptions on the vertical
temperature profile in radiosonde data and climate models, J. Climate, 22, 2925–2939, https://doi.org/10.1175/2008JCLI2562.1, 2009. a
Fyfe, J. C.: Southern Ocean warming due to human influence, Geophys.
Res. Lett., 33, L19701, https://doi.org/10.1029/2006GL027247, 2006. a
Gleckler, P., AchutaRao, K., Gregory, J., Santer, B., Taylor, K., and Wigley,
T.: Krakatoa lives: The effect of volcanic eruptions on ocean heat content
and thermal expansion, Geophys. Res. Lett., 33, L17702,
https://doi.org/10.1029/2006GL026771, 2006. a
Graf, H., Kirchner, I., Robock, A., and Schult, I.: Pinatubo eruption winter
climate effects: Model versus observations, Clim. Dynam., 9, 81–93,
https://doi.org/10.1007/BF00210011, 1993. a
Groisman, P. Y.: Possible regional climate consequences of the Pinatubo
eruption: An empirical approach, Geophys. Res. Lett., 19,
1603–1606, https://doi.org/10.1029/92GL01474, 1992. a
Hakim, G. J., Emile-Geay, J., Steig, E. J., Noone, D., Anderson, D. M., Tardif,
R., Steiger, N., and Perkins, W. A.: The last millennium climate reanalysis
project: Framework and first results, J. Geophys. Res.-Atmos., 121, 6745–6764, https://doi.org/10.1002/2016JD024751, 2016. a
Illing, S., Kadow, C., Pohlmann, H., and Timmreck, C.: Assessing the impact of a future volcanic eruption on decadal predictions, Earth Syst. Dynam., 9, 701–715, https://doi.org/10.5194/esd-9-701-2018, 2018. a
Jones, P. D., Lister, D. H., Osborn, T. J., Harpham, C., Salmon, M., and
Morice, C. P.: Hemispheric and large-scale land surface air temperature
variations: an extensive revision and an update to 2010, J. Geophys. Res.,
117, D05127, https://doi.org/10.1029/2011JD017139, 2012. a
Kay, J. E., Deser, C., Phillips, A., Mai, A., Hannay, C., Strand, G.,
Arblaster, J. M., Bates, S. C., Danabasoglu, G., Edwards, J., Holland, M.,
Kushner, P., Lamarque, J.-F., Lawrence, D., Lindsay, K., Middleton, A.,
Munoz, E., Neale, R., Oleson, K., Polvani, L., and Vertenstein, M.: The
Community Earth System Model (CESM) Large Ensemble Project: A community
resource for studying climate change in the presence of internal climate
variability, B. Am. Meteorol. Soc., 96, 1333–1349,
https://doi.org/10.1175/JCLI-D-11-00015.1, 2015. a
Kirchner, I., Stenchikov, G. L., Graf, H.-F., Robock, A., and Antuña,
J. C.: Climate model simulation of winter warming and summer cooling
following the 1991 Mount Pinatubo volcanic eruption, J. Geophys.
Res.-Atmos., 104, 19039–19055, https://doi.org/10.1029/1999JD900213,
1999. a
Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi,
K., Kamahori, H., Kobayashi, C., Endo, H., Miyaoka, K., and Takahashi, K.:
The JRA-55 Reanalysis: General Specifications and Basic Characteristics,
J. Meteorol. Soc. Jpn. Ser. II, 93, 5–48,
https://doi.org/10.2151/jmsj.2015-001, 2015. a
Kodera, K.: Influence of volcanic eruptions on the troposphere through
stratospheric dynamical processes in the northern hemisphere winter, J.
Geophys. Res.-Atmos., 99, 1273–1282,
https://doi.org/10.1029/93JD02731, 1994. a
Labitzke, K. and McCormick, M.: Stratospheric temperature increases due to
Pinatubo aerosols, Geophys. Res. Lett., 19, 207–210,
https://doi.org/10.1029/91GL02940, 1992. a
Lenssen, N., Schmidt, G., Hansen, J., Menne, M., Persin, A., Ruedy, R., and
Zyss, D.: Improvements in the GISTEMP uncertainty model, J. Geophys. Res.-Atmos., 124, 6307–6326, https://doi.org/10.1029/2018JD029522, 2019. a
Maher, N., Milinski, S., Suarez-Gutierrez, L., Botzet, M., Dobrynin, M.,
Kornblue, L., Kröger, J., Takano, Y., Ghosh, R., Hedemann, C., Li, C., Li,
H., Manzini, E., Notz, N., Putrasahan, D., Boysen, L., Claussen, M., Ilyina,
T., Olonscheck, D., Raddatz, T., Stevens, B., and Marotzke, J.: The Max
Planck Institute Grand Ensemble: Enabling the Exploration of Climate System
Variability, J. Adv. Model. Earth. Sy., 11, 1–21,
https://doi.org/10.1029/2019MS001639, 2019. a, b
Perlwitz, J. and Graf, H.-F.: The statistical connection between tropospheric
and stratospheric circulation of the Northern Hemisphere in winter, J. Climate, 8, 2281–2295,
https://doi.org/10.1175/1520-0442(1995)008{<}2281:TSCBTA{>}2.0.CO;2, 1995. a
Poli, P., Hersbach, H., Dee, D. P., Berrisford, P., Simmons, A. J., Vitart, F.,
Laloyaux, P., Tan, D. G., Peubey, C., Thépaut, J.-N., et al.: ERA-20C:
An atmospheric reanalysis of the twentieth century, J. Climate, 29,
4083–4097, https://doi.org/10.1175/JCLI-D-15-0556.1, 2016. a
Polvani, L. M., Banerjee, A., and Schmidt, A.: Northern Hemisphere continental winter warming following the 1991 Mt. Pinatubo eruption: reconciling models and observations, Atmos. Chem. Phys., 19, 6351–6366, https://doi.org/10.5194/acp-19-6351-2019, 2019. a
Rao, J., Garfinkel, C. I., and White, I. P.: Impact of the Quasi-Biennial
Oscillation on the Northern Winter Stratospheric Polar Vortex in CMIP5/6
Models, J. Climate, 33, 4787–4813, 2020. a
Rayner, N., Parker, D. E., Horton, E., Folland, C. K., Alexander, L. V.,
Rowell, D., Kent, E., and Kaplan, A.: Global analyses of sea surface
temperature, sea ice, and night marine air temperature since the late
nineteenth century, J. Geophys. Res.-Atmos., 108, 4407,
https://doi.org/10.1029/2002JD002670, 2003. a
Rea, G., Riccio, A., Fierli, F., Cairo, F., and Cagnazzo, C.:
Stratosphere-resolving CMIP5 models simulate different changes in the
Southern Hemisphere, Clim. Dynam., 50, 2239–2255,
https://doi.org/10.1007/s00382-017-3746-2, 2018. a, b
Robock, A.: El Chinchón eruption: The dust cloud of the century, Nature,
301, 373, https://doi.org/10.1038/301373a0, 1983. a
Robock, A.: Volcanic eruptions and climate, Rev. Geophys., 38,
191–219, https://doi.org/10.1029/1998RG000054, 2000. a
Robock, A. and Mao, J.: Winter warming from large volcanic eruptions,
Geophys. Res. Lett., 19, 2405–2408, https://doi.org/10.1029/92GL02627, 1992. a, b
Robock, A. and Mao, J.: The volcanic signal in surface temperature
observations, J. Climate, 8, 1086–1103,
https://doi.org/10.1175/1520-0442(1995)008{<}1086:TVSIST{>}2.0.CO;2, 1995. a
Shindell, D. T., Schmidt, G. A., Mann, M. E., and Faluvegi, G.: Dynamic winter
climate response to large tropical volcanic eruptions since 1600, J.
Geophys. Res.-Atmos., 109, D05104, https://doi.org/10.1029/2003JD004151, 2004. a
Simkin, T. and Fiske, R.: Krakatau, 1883: the volcanic eruption and its
effects, Smithsonian Institution Press, Washington, D.C., 1983. a
Smith, T. M., Reynolds, R. W., Peterson, T. C., and Lawrimore, J.:
Improvements to NOAA's historical merged land – ocean surface temperature
analysis (1880–2006), J. Climate, 21, 2283–2296,
https://doi.org/10.1175/2007JCLI2100.1, 2008. a
Steiger, N. J., Smerdon, J. E., Cook, E. R., and Cook, B. I.: A reconstruction
of global hydroclimate and dynamical variables over the Common Era,
Sci. Data, 5, 180086, https://doi.org/10.1038/sdata.2018.86, 2018. a
Stenchikov, G., Hamilton, K., Stouffer, R. J., Robock, A., Ramaswamy, V.,
Santer, B., and Graf, H.-F.: Arctic Oscillation response to volcanic
eruptions in the IPCC AR4 climate models, J. Geophys. Res.-Atmos., 111, D07107, https://doi.org/10.1029/2005JD006286, 2006. a, b
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An overview of CMIP5 and
the experiment design, B. Amer. Meteorol. Soc., 93, 485–498,
https://doi.org/10.1175/BAMS-D-11-00094.1, 2012. a, b
Thomas, M. A., Giorgetta, M. A., Timmreck, C., Graf, H.-F., and Stenchikov,
G.: Simulation of the climate impact of Mt. Pinatubo eruption using ECHAM5 – Part 2: Sensitivity to the phase of the QBO and ENSO, Atmos. Chem. Phys., 9, 3001–3009, https://doi.org/10.5194/acp-9-3001-2009, 2009a. a, b
Thomas, M. A., Timmreck, C., Giorgetta, M. A., Graf, H.-F., and Stenchikov,
G.: Simulation of the climate impact of Mt. Pinatubo eruption using ECHAM5 – Part 1: Sensitivity to the modes of atmospheric circulation and boundary conditions, Atmos. Chem. Phys., 9, 757–769, https://doi.org/10.5194/acp-9-757-2009, 2009b. a
Timmreck, C., Pohlmann, H., Illing, S., and Kadow, C.: The impact of
stratospheric volcanic aerosol on decadal-scale climate predictions,
Geophys. Res. Lett., 43, 834–842, https://doi.org/10.1002/2015GL067431, 2016. a
Toohey, M. and Sigl, M.: Volcanic stratospheric sulfur injections and aerosol optical depth from 500 BCE to 1900 CE, Earth Syst. Sci. Data, 9, 809–831, https://doi.org/10.5194/essd-9-809-2017, 2017. a, b
Toohey, M., Krüger, K., Bittner, M., Timmreck, C., and Schmidt, H.: The impact of volcanic aerosol on the Northern Hemisphere stratospheric polar vortex: mechanisms and sensitivity to forcing structure, Atmos. Chem. Phys., 14, 13063–13079, https://doi.org/10.5194/acp-14-13063-2014, 2014. a, b
Vose, R. S., Arndt, D., Banzon, V. F., Easterling, D. R., Gleason, B., Huang,
B., Lawrimore, J. H., Menne, M. J., Peterson, T. C., Reynolds, R. W., Smith,
T. M., Jr., C. N. W., and Wuertz, D. L.: NOAA's merged land-ocean surface
temperature analysis, B. Am. Meteorol. Soc., 21, 2283–2296,
https://doi.org/10.1175/BAMS-D-11-00241.1, 2012. a
Wunderlich, F. and Mitchell, D. M.: Revisiting the observed surface climate response to large volcanic eruptions, Atmos. Chem. Phys., 17, 485–499, https://doi.org/10.5194/acp-17-485-2017, 2017. a, b
Zambri, B. and Robock, A.: Winter warming and summer monsoon reduction after
volcanic eruptions in Coupled Model Intercomparison Project 5 (CMIP5)
simulations, Geophys. Res. Lett., 43, 10920–10928, https://doi.org/10.1002/2016GL070460,
2016. a, b
Zanchettin, D., Timmreck, C., Toohey, M., Jungclaus, J. H., Bittner, M.,
Lorenz, S. J., and Rubino, A.: Clarifying the relative role of forcing
uncertainties and initial-condition unknowns in spreading the climate
response to volcanic eruptions, Geophys. Res. Lett., 46, 1602–1611,
https://doi.org/10.1029/2018GL081018, 2019. a
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(6563 KB) - Full-text XML
Short summary
On the basis of questionable early studies, it is widely believed that low-latitude volcanic eruptions cause winter warming over Eurasia. However, we here demonstrate that the winter warming over Eurasia following the 1883 Krakatau eruption was unremarkable and, in all likelihood, unrelated to that eruption. Confirming similar findings for the 1991 Pinatubo eruption, the new research demonstrates that no detectable Eurasian winter warming is to be expected after eruptions of similar magnitude.
On the basis of questionable early studies, it is widely believed that low-latitude volcanic...
Altmetrics
Final-revised paper
Preprint