Articles | Volume 20, issue 20
https://doi.org/10.5194/acp-20-12223-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-12223-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Global modeling of cloud water acidity, precipitation acidity, and acid inputs to ecosystems
Harvard John A. Paulson School of Engineering and Applied Sciences,
Harvard University, Cambridge, MA, USA
Daniel J. Jacob
Harvard John A. Paulson School of Engineering and Applied Sciences,
Harvard University, Cambridge, MA, USA
Department of Earth and Planetary Sciences, Harvard University,
Cambridge, MA, USA
Jonathan M. Moch
Department of Earth and Planetary Sciences, Harvard University,
Cambridge, MA, USA
Xuan Wang
Harvard John A. Paulson School of Engineering and Applied Sciences,
Harvard University, Cambridge, MA, USA
now at: School of Energy and Environment, City University of
Hong Kong, Hong Kong SAR, China
Shixian Zhai
Harvard John A. Paulson School of Engineering and Applied Sciences,
Harvard University, Cambridge, MA, USA
Related authors
Rebekah P. Horner, Eloise A. Marais, Nana Wei, Robert G. Ryan, and Viral Shah
Atmos. Chem. Phys., 24, 13047–13064, https://doi.org/10.5194/acp-24-13047-2024, https://doi.org/10.5194/acp-24-13047-2024, 2024
Short summary
Short summary
Nitrogen oxides (NOx ≡ NO + NO2) affect tropospheric ozone and the hydroxyl radical, influencing climate and atmospheric oxidation. To address the lack of routine observations of NOx, we cloud slice satellite observations of NO2 to derive a new dataset of global vertical profiles of NO2. We evaluate our data against in situ aircraft observations and use these data to critique the contemporary understanding of tropospheric NOx, as simulated by the GEOS-Chem model.
Laura Hyesung Yang, Daniel J. Jacob, Ruijun Dang, Yujin J. Oak, Haipeng Lin, Jhoon Kim, Shixian Zhai, Nadia K. Colombi, Drew C. Pendergrass, Ellie Beaudry, Viral Shah, Xu Feng, Robert M. Yantosca, Heesung Chong, Junsung Park, Hanlim Lee, Won-Jin Lee, Soontae Kim, Eunhye Kim, Katherine R. Travis, James H. Crawford, and Hong Liao
Atmos. Chem. Phys., 24, 7027–7039, https://doi.org/10.5194/acp-24-7027-2024, https://doi.org/10.5194/acp-24-7027-2024, 2024
Short summary
Short summary
The Geostationary Environment Monitoring Spectrometer (GEMS) provides hourly measurements of NO2. We use the chemical transport model to find how emissions, chemistry, and transport drive the changes in NO2 observed by GEMS at different times of the day. In winter, the chemistry plays a minor role, and high daytime emissions dominate the diurnal variation in NO2, balanced by transport. In summer, emissions, chemistry, and transport play an important role in shaping the diurnal variation in NO2.
Ruijun Dang, Daniel J. Jacob, Viral Shah, Sebastian D. Eastham, Thibaud M. Fritz, Loretta J. Mickley, Tianjia Liu, Yi Wang, and Jun Wang
Atmos. Chem. Phys., 23, 6271–6284, https://doi.org/10.5194/acp-23-6271-2023, https://doi.org/10.5194/acp-23-6271-2023, 2023
Short summary
Short summary
We use the GEOS-Chem model to better understand the magnitude and trend in free tropospheric NO2 over the contiguous US. Model underestimate of background NO2 is largely corrected by considering aerosol nitrate photolysis. Increase in aircraft emissions affects satellite retrievals by altering the NO2 shape factor, and this effect is expected to increase in future. We show the importance of properly accounting for the free tropospheric background in interpreting NO2 observations from space.
Nadia K. Colombi, Daniel J. Jacob, Laura Hyesung Yang, Shixian Zhai, Viral Shah, Stuart K. Grange, Robert M. Yantosca, Soontae Kim, and Hong Liao
Atmos. Chem. Phys., 23, 4031–4044, https://doi.org/10.5194/acp-23-4031-2023, https://doi.org/10.5194/acp-23-4031-2023, 2023
Short summary
Short summary
Surface ozone, detrimental to human and ecosystem health, is very high and increasing in South Korea. Using a global model of the atmosphere, we found that emissions from South Korea and China contribute equally to the high ozone observed. We found that in the absence of all anthropogenic emissions over East Asia, ozone is still very high, implying that the air quality standard in South Korea is not practically achievable unless this background external to East Asia can be decreased.
Laura Hyesung Yang, Daniel J. Jacob, Nadia K. Colombi, Shixian Zhai, Kelvin H. Bates, Viral Shah, Ellie Beaudry, Robert M. Yantosca, Haipeng Lin, Jared F. Brewer, Heesung Chong, Katherine R. Travis, James H. Crawford, Lok N. Lamsal, Ja-Ho Koo, and Jhoon Kim
Atmos. Chem. Phys., 23, 2465–2481, https://doi.org/10.5194/acp-23-2465-2023, https://doi.org/10.5194/acp-23-2465-2023, 2023
Short summary
Short summary
A geostationary satellite can now provide hourly NO2 vertical columns, and obtaining the NO2 vertical columns from space relies on NO2 vertical distribution from the chemical transport model (CTM). In this work, we update the CTM to better represent the chemistry environment so that the CTM can accurately provide NO2 vertical distribution. We also find that the changes in NO2 vertical distribution driven by a change in mixing depth play an important role in the NO2 column's diurnal variation.
Viral Shah, Daniel J. Jacob, Ruijun Dang, Lok N. Lamsal, Sarah A. Strode, Stephen D. Steenrod, K. Folkert Boersma, Sebastian D. Eastham, Thibaud M. Fritz, Chelsea Thompson, Jeff Peischl, Ilann Bourgeois, Ilana B. Pollack, Benjamin A. Nault, Ronald C. Cohen, Pedro Campuzano-Jost, Jose L. Jimenez, Simone T. Andersen, Lucy J. Carpenter, Tomás Sherwen, and Mat J. Evans
Atmos. Chem. Phys., 23, 1227–1257, https://doi.org/10.5194/acp-23-1227-2023, https://doi.org/10.5194/acp-23-1227-2023, 2023
Short summary
Short summary
NOx in the free troposphere (above 2 km) affects global tropospheric chemistry and the retrieval and interpretation of satellite NO2 measurements. We evaluate free tropospheric NOx in global atmospheric chemistry models and find that recycling NOx from its reservoirs over the oceans is faster than that simulated in the models, resulting in increases in simulated tropospheric ozone and OH. Over the U.S., free tropospheric NO2 contributes the majority of the tropospheric NO2 column in summer.
Viral Shah, Daniel J. Jacob, Ke Li, Rachel F. Silvern, Shixian Zhai, Mengyao Liu, Jintai Lin, and Qiang Zhang
Atmos. Chem. Phys., 20, 1483–1495, https://doi.org/10.5194/acp-20-1483-2020, https://doi.org/10.5194/acp-20-1483-2020, 2020
Short summary
Short summary
We analyze 15 years of satellite observations of nitrogen dioxide (NO2) and use an atmospheric chemistry model to understand the seasonal changes and trends in nitrogen oxides (NOx) over China. We show that the seasonal changes in NO2 occur due to changes in the NOx oxidation lifetime. We find that Chinese NOx emissions peaked in 2011 and had decreased by about 25 % by 2018. But the decrease in NO2 in winter was larger, likely because of a simultaneous decrease in the NOx oxidation lifetime.
Jingyuan Shao, Qianjie Chen, Yuxuan Wang, Xiao Lu, Pengzhen He, Yele Sun, Viral Shah, Randall V. Martin, Sajeev Philip, Shaojie Song, Yue Zhao, Zhouqing Xie, Lin Zhang, and Becky Alexander
Atmos. Chem. Phys., 19, 6107–6123, https://doi.org/10.5194/acp-19-6107-2019, https://doi.org/10.5194/acp-19-6107-2019, 2019
Short summary
Short summary
Sulfate is a key species contributing to particle formation and growth during wintertime Chinese haze events. This study combines observations and modeling of oxygen isotope signatures in sulfate aerosol to investigate its formation mechanisms, with a focus on heterogeneous production on aerosol surface via H2O2, O3, and NO2 and trace metal catalyzed oxidation. Contributions from different formation pathways are presented.
Eloise A. Marais, Daniel J. Jacob, Sungyeon Choi, Joanna Joiner, Maria Belmonte-Rivas, Ronald C. Cohen, Steffen Beirle, Lee T. Murray, Luke D. Schiferl, Viral Shah, and Lyatt Jaeglé
Atmos. Chem. Phys., 18, 17017–17027, https://doi.org/10.5194/acp-18-17017-2018, https://doi.org/10.5194/acp-18-17017-2018, 2018
Short summary
Short summary
We intercompare two new products of global upper tropospheric nitrogen dioxide (NO2) retrieved from the Ozone Monitoring Instrument (OMI). We evaluate these products with aircraft observations from NASA DC8 aircraft campaigns and interpret the useful information these products can provide about nitrogen oxides (NOx) in the global upper troposphere using the GEOS-Chem chemical transport model.
Jiayue Huang, Lyatt Jaeglé, and Viral Shah
Atmos. Chem. Phys., 18, 16253–16269, https://doi.org/10.5194/acp-18-16253-2018, https://doi.org/10.5194/acp-18-16253-2018, 2018
Short summary
Short summary
The contribution of blowing snow and frost flower as sources of sea salt aerosols (SSA) over polar regions remains uncertain, despite its potentially important role in polar climate and chemistry. Using chemical transport models and satellite observations, we find that blowing snow emissions are the dominant source of SSA over sea ice during the cold season. We infer a monthly snow salinity on first-year sea ice that decreases from fall–spring, minimizing the model discrepancy to within 10 %.
Viral Shah and Lyatt Jaeglé
Atmos. Chem. Phys., 17, 8999–9017, https://doi.org/10.5194/acp-17-8999-2017, https://doi.org/10.5194/acp-17-8999-2017, 2017
Short summary
Short summary
We use a model of mercury chemistry and transport in the atmosphere, along with ground- and aircraft-based mercury observations, to learn that oxidized mercury chemically produced in the free troposphere descends in the subtropical anticyclones and makes up much of the mercury depositing to the Earth's surface. Our findings imply that mercury chemistry in the free troposphere and transport in the subtropics are important links between global emissions and surface deposition of mercury.
V. Shah, L. Jaeglé, L. E. Gratz, J. L. Ambrose, D. A. Jaffe, N. E. Selin, S. Song, T. L. Campos, F. M. Flocke, M. Reeves, D. Stechman, M. Stell, J. Festa, J. Stutz, A. J. Weinheimer, D. J. Knapp, D. D. Montzka, G. S. Tyndall, E. C. Apel, R. S. Hornbrook, A. J. Hills, D. D. Riemer, N. J. Blake, C. A. Cantrell, and R. L. Mauldin III
Atmos. Chem. Phys., 16, 1511–1530, https://doi.org/10.5194/acp-16-1511-2016, https://doi.org/10.5194/acp-16-1511-2016, 2016
Short summary
Short summary
We present airborne observations of mercury over the southeastern USA during summer. Higher concentrations of oxidized mercury were observed in clean, dry air masses descending in the subtropical anti-cyclones. We used an atmospheric model to simulate the chemistry and transport of mercury. We found reasonable agreement with the observations when the modeled oxidation of elemental mercury was increased, suggesting fast cycling between elemental and oxidized mercury.
Rebekah P. Horner, Eloise A. Marais, Nana Wei, Robert G. Ryan, and Viral Shah
Atmos. Chem. Phys., 24, 13047–13064, https://doi.org/10.5194/acp-24-13047-2024, https://doi.org/10.5194/acp-24-13047-2024, 2024
Short summary
Short summary
Nitrogen oxides (NOx ≡ NO + NO2) affect tropospheric ozone and the hydroxyl radical, influencing climate and atmospheric oxidation. To address the lack of routine observations of NOx, we cloud slice satellite observations of NO2 to derive a new dataset of global vertical profiles of NO2. We evaluate our data against in situ aircraft observations and use these data to critique the contemporary understanding of tropospheric NOx, as simulated by the GEOS-Chem model.
Yujin J. Oak, Daniel J. Jacob, Drew C. Pendergrass, Ruijun Dang, Nadia K. Colombi, Heesung Chong, Seoyoung Lee, Su Keun Kuk, and Jhoon Kim
EGUsphere, https://doi.org/10.5194/egusphere-2024-3485, https://doi.org/10.5194/egusphere-2024-3485, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We analyze 2015–2023 air quality trends in South Korea using surface and satellite observations. Primary pollutants have decreased, consistent with emissions reductions. Surface O3 continues to increase and PM2.5has decreased overall, but the nitrate component has not. O3 and PM2.5 nitrate depend on nonlinear responses from precursor emissions. Satellite data indicate a recent shift to NOx-sensitive O3 and nitrate formation, where further NOx reductions will benefit both O3 and PM2.5 pollution.
Lucas A. Estrada, Daniel J. Varon, Melissa Sulprizio, Hannah Nesser, Zichong Chen, Nicholas Balasus, Sarah E. Hancock, Megan He, James D. East, Todd A. Mooring, Alexander Oort Alonso, Joannes D. Maasakkers, Ilse Aben, Sabour Baray, Kevin W. Bowman, John R. Worden, Felipe J. Cardoso-Saldaña, Emily Reidy, and Daniel J. Jacob
EGUsphere, https://doi.org/10.5194/egusphere-2024-2700, https://doi.org/10.5194/egusphere-2024-2700, 2024
Short summary
Short summary
Reducing methane emissions, a powerful greenhouse gas, is a top policy concern for mitigating anthropogenic climate change. The Integrated Methane Inversion (IMI) is an advanced, cloud-based software that translates satellite observations into actionable emissions data. Here we present IMI version 2.0 with vastly expanded capabilities. These updates enable a wider range of scientific and stakeholder applications from regional to global scales and allow continuous emissions monitoring.
Yujin J. Oak, Daniel J. Jacob, Nicholas Balasus, Laura H. Yang, Heesung Chong, Junsung Park, Hanlim Lee, Gitaek T. Lee, Eunjo S. Ha, Rokjin J. Park, Hyeong-Ahn Kwon, and Jhoon Kim
Atmos. Meas. Tech., 17, 5147–5159, https://doi.org/10.5194/amt-17-5147-2024, https://doi.org/10.5194/amt-17-5147-2024, 2024
Short summary
Short summary
We present an improved NO2 product from GEMS by calibrating it to TROPOMI using machine learning and by reprocessing both satellite products to adopt common NO2 profiles. Our corrected GEMS product combines the high data density of GEMS with the accuracy of TROPOMI, supporting the combined use for analyses of East Asia air quality including emissions and chemistry. This method can be extended to other species and geostationary satellites including TEMPO and Sentinel-4.
Haipeng Lin, Louisa K. Emmons, Elizabeth W. Lundgren, Laura Hyesung Yang, Xu Feng, Ruijun Dang, Shixian Zhai, Yunxiao Tang, Makoto M. Kelp, Nadia K. Colombi, Sebastian D. Eastham, Thibaud M. Fritz, and Daniel J. Jacob
Atmos. Chem. Phys., 24, 8607–8624, https://doi.org/10.5194/acp-24-8607-2024, https://doi.org/10.5194/acp-24-8607-2024, 2024
Short summary
Short summary
Tropospheric ozone is a major air pollutant, a greenhouse gas, and a major indicator of model skill. Global atmospheric chemistry models show large differences in simulations of tropospheric ozone, but isolating sources of differences is complicated by different model environments. By implementing the GEOS-Chem model side by side to CAM-chem within a common Earth system model, we identify and evaluate specific differences between the two models and their impacts on key chemical species.
Elise Penn, Daniel J. Jacob, Zichong Chen, James D. East, Melissa P. Sulprizio, Lori Bruhwiler, Joannes D. Maasakkers, Hannah Nesser, Zhen Qu, Yuzhong Zhang, and John Worden
EGUsphere, https://doi.org/10.5194/egusphere-2024-2260, https://doi.org/10.5194/egusphere-2024-2260, 2024
Short summary
Short summary
The hydroxyl radical (OH), destroys many air pollutants, including methane. Global mean OH cannot be directly measured, so it is inferred with the methyl chloroform (MCF) proxy. MCF is decreasing, and a replacement is needed. We use satellite observations of methane in two spectral ranges as a proxy for OH instead. We find shortwave infrared observations can characterize yearly OH and its seasonality, but not the latitudinal distribution. Thermal infrared observations add little information.
Sarah E. Hancock, Daniel Jacob, Zichong Chen, Hannah Nesser, Aaron Davitt, Daniel J. Varon, Melissa P. Sulprizio, Nicholas Balasus, Lucas A. Estrada, James D. East, Elise Penn, Cynthia A. Randles, John Worden, Ilse Aben, Robert J. Parker, and Joannes D. Maasakkers
EGUsphere, https://doi.org/10.5194/egusphere-2024-1763, https://doi.org/10.5194/egusphere-2024-1763, 2024
Short summary
Short summary
We quantify 2021 methane emissions in South America at up to 25 km × 25 km resolution using satellite methane observations. We find a 55 % upward correction to the national anthropogenic inventories reported to the United Nations Framework Convention on Climate Change (UNFCCC) under the Paris Agreement. Our estimates match inventories for Brazil, Bolivia, and Paraguay but are much higher for other countries. Livestock emissions (65 % of anthropogenic emissions) show the largest discrepancies.
Laura Hyesung Yang, Daniel J. Jacob, Ruijun Dang, Yujin J. Oak, Haipeng Lin, Jhoon Kim, Shixian Zhai, Nadia K. Colombi, Drew C. Pendergrass, Ellie Beaudry, Viral Shah, Xu Feng, Robert M. Yantosca, Heesung Chong, Junsung Park, Hanlim Lee, Won-Jin Lee, Soontae Kim, Eunhye Kim, Katherine R. Travis, James H. Crawford, and Hong Liao
Atmos. Chem. Phys., 24, 7027–7039, https://doi.org/10.5194/acp-24-7027-2024, https://doi.org/10.5194/acp-24-7027-2024, 2024
Short summary
Short summary
The Geostationary Environment Monitoring Spectrometer (GEMS) provides hourly measurements of NO2. We use the chemical transport model to find how emissions, chemistry, and transport drive the changes in NO2 observed by GEMS at different times of the day. In winter, the chemistry plays a minor role, and high daytime emissions dominate the diurnal variation in NO2, balanced by transport. In summer, emissions, chemistry, and transport play an important role in shaping the diurnal variation in NO2.
Drew C. Pendergrass, Daniel J. Jacob, Yujin J. Oak, Jeewoo Lee, Minseok Kim, Jhoon Kim, Seoyoung Lee, Shixian Zhai, Hitoshi Irie, and Hong Liao
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-172, https://doi.org/10.5194/essd-2024-172, 2024
Preprint withdrawn
Short summary
Short summary
Fine particles suspended in the atmosphere are a major form of air pollution and an important public health burden. However, measurements of particulate matter are sparse in space and in places like East Asia monitors are established after regulatory policies to improve pollution have changed. In this paper, we use machine learning to fill in the gaps. We train an algorithm to predict pollution at the surface from the atmosphere’s opacity, then produce high resolution maps of data without gaps.
Jack H. Bruno, Dylan Jervis, Daniel J. Varon, and Daniel J. Jacob
Atmos. Meas. Tech., 17, 2625–2636, https://doi.org/10.5194/amt-17-2625-2024, https://doi.org/10.5194/amt-17-2625-2024, 2024
Short summary
Short summary
Methane is a potent greenhouse gas and a current high-priority target for short- to mid-term climate change mitigation. Detection of individual methane emitters from space has become possible in recent years, and the volume of data for this task has been rapidly growing, outpacing processing capabilities. We introduce an automated approach, U-Plume, which can detect and quantify emissions from individual methane sources in high-spatial-resolution satellite data.
Hannah Nesser, Daniel J. Jacob, Joannes D. Maasakkers, Alba Lorente, Zichong Chen, Xiao Lu, Lu Shen, Zhen Qu, Melissa P. Sulprizio, Margaux Winter, Shuang Ma, A. Anthony Bloom, John R. Worden, Robert N. Stavins, and Cynthia A. Randles
Atmos. Chem. Phys., 24, 5069–5091, https://doi.org/10.5194/acp-24-5069-2024, https://doi.org/10.5194/acp-24-5069-2024, 2024
Short summary
Short summary
We quantify 2019 methane emissions in the contiguous US (CONUS) at a ≈ 25 km × 25 km resolution using satellite methane observations. We find a 13 % upward correction to the 2023 US Environmental Protection Agency (EPA) Greenhouse Gas Emissions Inventory (GHGI) for 2019, with large corrections to individual states, urban areas, and landfills. This may present a challenge for US climate policies and goals, many of which target significant reductions in methane emissions.
Sebastian D. Eastham, Guillaume P. Chossière, Raymond L. Speth, Daniel J. Jacob, and Steven R. H. Barrett
Atmos. Chem. Phys., 24, 2687–2703, https://doi.org/10.5194/acp-24-2687-2024, https://doi.org/10.5194/acp-24-2687-2024, 2024
Short summary
Short summary
Emissions from aircraft are known to cause air quality impacts worldwide, but the scale and mechanisms of this impact are not well understood. This work uses high-resolution computational modeling of the atmosphere to show that air pollution changes from aviation are mostly the result of emissions during cruise (high-altitude) operations, that these impacts are related to how much non-aviation pollution is present, and that prior regional assessments have underestimated these impacts.
Kelvin H. Bates, Mathew J. Evans, Barron H. Henderson, and Daniel J. Jacob
Geosci. Model Dev., 17, 1511–1524, https://doi.org/10.5194/gmd-17-1511-2024, https://doi.org/10.5194/gmd-17-1511-2024, 2024
Short summary
Short summary
Accurate representation of rates and products of chemical reactions in atmospheric models is crucial for simulating concentrations of pollutants and climate forcers. We update the widely used GEOS-Chem atmospheric chemistry model with reaction parameters from recent compilations of experimental data and demonstrate the implications for key atmospheric chemical species. The updates decrease tropospheric CO mixing ratios and increase stratospheric nitrogen oxide mixing ratios, among other changes.
Drew C. Pendergrass, Daniel J. Jacob, Hannah Nesser, Daniel J. Varon, Melissa Sulprizio, Kazuyuki Miyazaki, and Kevin W. Bowman
Geosci. Model Dev., 16, 4793–4810, https://doi.org/10.5194/gmd-16-4793-2023, https://doi.org/10.5194/gmd-16-4793-2023, 2023
Short summary
Short summary
We have built a tool called CHEEREIO that allows scientists to use observations of pollutants or gases in the atmosphere, such as from satellites or surface stations, to update supercomputer models that simulate the Earth. CHEEREIO uses the difference between the model simulations of the atmosphere and real-world observations to come up with a good guess for the actual composition of our atmosphere, the true emissions of various pollutants, and whatever else they may want to study.
Nicholas Balasus, Daniel J. Jacob, Alba Lorente, Joannes D. Maasakkers, Robert J. Parker, Hartmut Boesch, Zichong Chen, Makoto M. Kelp, Hannah Nesser, and Daniel J. Varon
Atmos. Meas. Tech., 16, 3787–3807, https://doi.org/10.5194/amt-16-3787-2023, https://doi.org/10.5194/amt-16-3787-2023, 2023
Short summary
Short summary
We use machine learning to remove biases in TROPOMI satellite observations of atmospheric methane, with GOSAT observations serving as a reference. We find that the TROPOMI biases relative to GOSAT are related to the presence of aerosols and clouds, the surface brightness, and the specific detector that makes the observation aboard TROPOMI. The resulting blended TROPOMI+GOSAT product is more reliable for quantifying methane emissions.
Daniel J. Varon, Daniel J. Jacob, Benjamin Hmiel, Ritesh Gautam, David R. Lyon, Mark Omara, Melissa Sulprizio, Lu Shen, Drew Pendergrass, Hannah Nesser, Zhen Qu, Zachary R. Barkley, Natasha L. Miles, Scott J. Richardson, Kenneth J. Davis, Sudhanshu Pandey, Xiao Lu, Alba Lorente, Tobias Borsdorff, Joannes D. Maasakkers, and Ilse Aben
Atmos. Chem. Phys., 23, 7503–7520, https://doi.org/10.5194/acp-23-7503-2023, https://doi.org/10.5194/acp-23-7503-2023, 2023
Short summary
Short summary
We use TROPOMI satellite observations to quantify weekly methane emissions from the US Permian oil and gas basin from May 2018 to October 2020. We find that Permian emissions are highly variable, with diverse economic and activity drivers. The most important drivers during our study period were new well development and natural gas price. Permian methane intensity averaged 4.6 % and decreased by 1 % per year.
Ruijun Dang, Daniel J. Jacob, Viral Shah, Sebastian D. Eastham, Thibaud M. Fritz, Loretta J. Mickley, Tianjia Liu, Yi Wang, and Jun Wang
Atmos. Chem. Phys., 23, 6271–6284, https://doi.org/10.5194/acp-23-6271-2023, https://doi.org/10.5194/acp-23-6271-2023, 2023
Short summary
Short summary
We use the GEOS-Chem model to better understand the magnitude and trend in free tropospheric NO2 over the contiguous US. Model underestimate of background NO2 is largely corrected by considering aerosol nitrate photolysis. Increase in aircraft emissions affects satellite retrievals by altering the NO2 shape factor, and this effect is expected to increase in future. We show the importance of properly accounting for the free tropospheric background in interpreting NO2 observations from space.
Zichong Chen, Daniel J. Jacob, Ritesh Gautam, Mark Omara, Robert N. Stavins, Robert C. Stowe, Hannah Nesser, Melissa P. Sulprizio, Alba Lorente, Daniel J. Varon, Xiao Lu, Lu Shen, Zhen Qu, Drew C. Pendergrass, and Sarah Hancock
Atmos. Chem. Phys., 23, 5945–5967, https://doi.org/10.5194/acp-23-5945-2023, https://doi.org/10.5194/acp-23-5945-2023, 2023
Short summary
Short summary
We quantify methane emissions from individual countries in the Middle East and North Africa by inverse analysis of 2019 TROPOMI satellite observations of atmospheric methane. We show that the ability to simply relate oil/gas emissions to activity metrics is compromised by stochastic nature of local infrastructure and management practices. We find that the industry target for oil/gas methane intensity is achievable through associated gas capture, modern infrastructure, and centralized operations.
Haihui Zhu, Randall V. Martin, Betty Croft, Shixian Zhai, Chi Li, Liam Bindle, Jeffrey R. Pierce, Rachel Y.-W. Chang, Bruce E. Anderson, Luke D. Ziemba, Johnathan W. Hair, Richard A. Ferrare, Chris A. Hostetler, Inderjeet Singh, Deepangsu Chatterjee, Jose L. Jimenez, Pedro Campuzano-Jost, Benjamin A. Nault, Jack E. Dibb, Joshua S. Schwarz, and Andrew Weinheimer
Atmos. Chem. Phys., 23, 5023–5042, https://doi.org/10.5194/acp-23-5023-2023, https://doi.org/10.5194/acp-23-5023-2023, 2023
Short summary
Short summary
Particle size of atmospheric aerosol is important for estimating its climate and health effects, but simulating atmospheric aerosol size is computationally demanding. This study derives a simple parameterization of the size of organic and secondary inorganic ambient aerosol that can be applied to atmospheric models. Applying this parameterization allows a better representation of the global spatial pattern of aerosol size, as verified by ground and airborne measurements.
Shixian Zhai, Daniel J. Jacob, Drew C. Pendergrass, Nadia K. Colombi, Viral Shah, Laura Hyesung Yang, Qiang Zhang, Shuxiao Wang, Hwajin Kim, Yele Sun, Jin-Soo Choi, Jin-Soo Park, Gan Luo, Fangqun Yu, Jung-Hun Woo, Younha Kim, Jack E. Dibb, Taehyoung Lee, Jin-Seok Han, Bruce E. Anderson, Ke Li, and Hong Liao
Atmos. Chem. Phys., 23, 4271–4281, https://doi.org/10.5194/acp-23-4271-2023, https://doi.org/10.5194/acp-23-4271-2023, 2023
Short summary
Short summary
Anthropogenic fugitive dust in East Asia not only causes severe coarse particulate matter air pollution problems, but also affects fine particulate nitrate. Due to emission control efforts, coarse PM decreased steadily. We find that the decrease of coarse PM is a major driver for a lack of decrease of fine particulate nitrate, as it allows more nitric acid to form fine particulate nitrate. The continuing decrease of coarse PM requires more stringent ammonia and nitrogen oxides emission controls.
Nadia K. Colombi, Daniel J. Jacob, Laura Hyesung Yang, Shixian Zhai, Viral Shah, Stuart K. Grange, Robert M. Yantosca, Soontae Kim, and Hong Liao
Atmos. Chem. Phys., 23, 4031–4044, https://doi.org/10.5194/acp-23-4031-2023, https://doi.org/10.5194/acp-23-4031-2023, 2023
Short summary
Short summary
Surface ozone, detrimental to human and ecosystem health, is very high and increasing in South Korea. Using a global model of the atmosphere, we found that emissions from South Korea and China contribute equally to the high ozone observed. We found that in the absence of all anthropogenic emissions over East Asia, ozone is still very high, implying that the air quality standard in South Korea is not practically achievable unless this background external to East Asia can be decreased.
Laura Hyesung Yang, Daniel J. Jacob, Nadia K. Colombi, Shixian Zhai, Kelvin H. Bates, Viral Shah, Ellie Beaudry, Robert M. Yantosca, Haipeng Lin, Jared F. Brewer, Heesung Chong, Katherine R. Travis, James H. Crawford, Lok N. Lamsal, Ja-Ho Koo, and Jhoon Kim
Atmos. Chem. Phys., 23, 2465–2481, https://doi.org/10.5194/acp-23-2465-2023, https://doi.org/10.5194/acp-23-2465-2023, 2023
Short summary
Short summary
A geostationary satellite can now provide hourly NO2 vertical columns, and obtaining the NO2 vertical columns from space relies on NO2 vertical distribution from the chemical transport model (CTM). In this work, we update the CTM to better represent the chemistry environment so that the CTM can accurately provide NO2 vertical distribution. We also find that the changes in NO2 vertical distribution driven by a change in mixing depth play an important role in the NO2 column's diurnal variation.
Viral Shah, Daniel J. Jacob, Ruijun Dang, Lok N. Lamsal, Sarah A. Strode, Stephen D. Steenrod, K. Folkert Boersma, Sebastian D. Eastham, Thibaud M. Fritz, Chelsea Thompson, Jeff Peischl, Ilann Bourgeois, Ilana B. Pollack, Benjamin A. Nault, Ronald C. Cohen, Pedro Campuzano-Jost, Jose L. Jimenez, Simone T. Andersen, Lucy J. Carpenter, Tomás Sherwen, and Mat J. Evans
Atmos. Chem. Phys., 23, 1227–1257, https://doi.org/10.5194/acp-23-1227-2023, https://doi.org/10.5194/acp-23-1227-2023, 2023
Short summary
Short summary
NOx in the free troposphere (above 2 km) affects global tropospheric chemistry and the retrieval and interpretation of satellite NO2 measurements. We evaluate free tropospheric NOx in global atmospheric chemistry models and find that recycling NOx from its reservoirs over the oceans is faster than that simulated in the models, resulting in increases in simulated tropospheric ozone and OH. Over the U.S., free tropospheric NO2 contributes the majority of the tropospheric NO2 column in summer.
Randall V. Martin, Sebastian D. Eastham, Liam Bindle, Elizabeth W. Lundgren, Thomas L. Clune, Christoph A. Keller, William Downs, Dandan Zhang, Robert A. Lucchesi, Melissa P. Sulprizio, Robert M. Yantosca, Yanshun Li, Lucas Estrada, William M. Putman, Benjamin M. Auer, Atanas L. Trayanov, Steven Pawson, and Daniel J. Jacob
Geosci. Model Dev., 15, 8731–8748, https://doi.org/10.5194/gmd-15-8731-2022, https://doi.org/10.5194/gmd-15-8731-2022, 2022
Short summary
Short summary
Atmospheric chemistry models must be able to operate both online as components of Earth system models and offline as standalone models. The widely used GEOS-Chem model operates both online and offline, but the classic offline version is not suitable for massively parallel simulations. We describe a new generation of the offline high-performance GEOS-Chem (GCHP) that enables high-resolution simulations on thousands of cores, including on the cloud, with improved access, performance, and accuracy.
Thibaud M. Fritz, Sebastian D. Eastham, Louisa K. Emmons, Haipeng Lin, Elizabeth W. Lundgren, Steve Goldhaber, Steven R. H. Barrett, and Daniel J. Jacob
Geosci. Model Dev., 15, 8669–8704, https://doi.org/10.5194/gmd-15-8669-2022, https://doi.org/10.5194/gmd-15-8669-2022, 2022
Short summary
Short summary
We bring the state-of-the-science chemistry module GEOS-Chem into the Community Earth System Model (CESM). We show that some known differences between results from GEOS-Chem and CESM's CAM-chem chemistry module may be due to the configuration of model meteorology rather than inherent differences in the model chemistry. This is a significant step towards a truly modular Earth system model and allows two strong but currently separate research communities to benefit from each other's advances.
William F. Swanson, Chris D. Holmes, William R. Simpson, Kaitlyn Confer, Louis Marelle, Jennie L. Thomas, Lyatt Jaeglé, Becky Alexander, Shuting Zhai, Qianjie Chen, Xuan Wang, and Tomás Sherwen
Atmos. Chem. Phys., 22, 14467–14488, https://doi.org/10.5194/acp-22-14467-2022, https://doi.org/10.5194/acp-22-14467-2022, 2022
Short summary
Short summary
Radical bromine molecules are seen at higher concentrations during the Arctic spring. We use the global model GEOS-Chem to test whether snowpack and wind-blown snow sources can explain high bromine concentrations. We run this model for the entire year of 2015 and compare results to observations of bromine from floating platforms on the Arctic Ocean and at Utqiaġvik. We find that the model performs best when both sources are enabled but may overestimate bromine production in summer and fall.
Xiao He, Xuan Zheng, Shaojun Zhang, Xuan Wang, Ting Chen, Xiao Zhang, Guanghan Huang, Yihuan Cao, Liqiang He, Xubing Cao, Yuan Cheng, Shuxiao Wang, and Ye Wu
Atmos. Chem. Phys., 22, 13935–13947, https://doi.org/10.5194/acp-22-13935-2022, https://doi.org/10.5194/acp-22-13935-2022, 2022
Short summary
Short summary
With the use of two-dimensional gas chromatography time-of-flight mass spectrometry (GC × GC ToF-MS), we successfully give a comprehensive characterization of particulate intermediate-volatility and semi-volatile organic compounds (I/SVOCs) emitted from heavy-duty diesel vehicles. I/SVOCs are speciated, identified, and quantified based on the patterns of the mass spectrum, and the gas–particle partitioning is fully addressed.
Haolin Wang, Xiao Lu, Daniel J. Jacob, Owen R. Cooper, Kai-Lan Chang, Ke Li, Meng Gao, Yiming Liu, Bosi Sheng, Kai Wu, Tongwen Wu, Jie Zhang, Bastien Sauvage, Philippe Nédélec, Romain Blot, and Shaojia Fan
Atmos. Chem. Phys., 22, 13753–13782, https://doi.org/10.5194/acp-22-13753-2022, https://doi.org/10.5194/acp-22-13753-2022, 2022
Short summary
Short summary
We report significant global tropospheric ozone increases in 1995–2017 based on extensive aircraft and ozonesonde observations. Using GEOS-Chem (Goddard Earth Observing System chemistry model) multi-decadal global simulations, we find that changes in global anthropogenic emissions, in particular the rapid increases in aircraft emissions, contribute significantly to the increases in tropospheric ozone and resulting radiative impact.
Lu Shen, Ritesh Gautam, Mark Omara, Daniel Zavala-Araiza, Joannes D. Maasakkers, Tia R. Scarpelli, Alba Lorente, David Lyon, Jianxiong Sheng, Daniel J. Varon, Hannah Nesser, Zhen Qu, Xiao Lu, Melissa P. Sulprizio, Steven P. Hamburg, and Daniel J. Jacob
Atmos. Chem. Phys., 22, 11203–11215, https://doi.org/10.5194/acp-22-11203-2022, https://doi.org/10.5194/acp-22-11203-2022, 2022
Short summary
Short summary
We use 22 months of TROPOMI satellite observations to quantity methane emissions from the oil (O) and natural gas (G) sector in the US and Canada at the scale of both individual basins as well as country-wide aggregates. We find that O/G-related methane emissions are underestimated in these inventories by 80 % for the US and 40 % for Canada, and 70 % of the underestimate in the US is from five O/G basins, including Permian, Haynesville, Anadarko, Eagle Ford, and Barnett.
Zichong Chen, Daniel J. Jacob, Hannah Nesser, Melissa P. Sulprizio, Alba Lorente, Daniel J. Varon, Xiao Lu, Lu Shen, Zhen Qu, Elise Penn, and Xueying Yu
Atmos. Chem. Phys., 22, 10809–10826, https://doi.org/10.5194/acp-22-10809-2022, https://doi.org/10.5194/acp-22-10809-2022, 2022
Short summary
Short summary
We quantify methane emissions in China and contributions from different sectors by inverse analysis of 2019 TROPOMI satellite observations of atmospheric methane. We find that anthropogenic methane emissions for China are underestimated in the national inventory. Our estimate of emissions indicates a small life-cycle loss rate, implying net climate benefits from the current
coal-to-gasenergy transition in China. However, this small loss rate can be misleading given China's high gas imports.
Daniel J. Jacob, Daniel J. Varon, Daniel H. Cusworth, Philip E. Dennison, Christian Frankenberg, Ritesh Gautam, Luis Guanter, John Kelley, Jason McKeever, Lesley E. Ott, Benjamin Poulter, Zhen Qu, Andrew K. Thorpe, John R. Worden, and Riley M. Duren
Atmos. Chem. Phys., 22, 9617–9646, https://doi.org/10.5194/acp-22-9617-2022, https://doi.org/10.5194/acp-22-9617-2022, 2022
Short summary
Short summary
We review the capability of satellite observations of atmospheric methane to quantify methane emissions on all scales. We cover retrieval methods, precision requirements, inverse methods for inferring emissions, source detection thresholds, and observations of system completeness. We show that current instruments already enable quantification of regional and national emissions including contributions from large point sources. Coverage and resolution will increase significantly in coming years.
Daniel J. Varon, Daniel J. Jacob, Melissa Sulprizio, Lucas A. Estrada, William B. Downs, Lu Shen, Sarah E. Hancock, Hannah Nesser, Zhen Qu, Elise Penn, Zichong Chen, Xiao Lu, Alba Lorente, Ashutosh Tewari, and Cynthia A. Randles
Geosci. Model Dev., 15, 5787–5805, https://doi.org/10.5194/gmd-15-5787-2022, https://doi.org/10.5194/gmd-15-5787-2022, 2022
Short summary
Short summary
Reducing atmospheric methane emissions is critical to slow near-term climate change. Globally surveying satellite instruments like the TROPOspheric Monitoring Instrument (TROPOMI) have unique capabilities for monitoring atmospheric methane around the world. Here we present a user-friendly cloud-computing tool that enables researchers and stakeholders to quantify methane emissions across user-selected regions of interest using TROPOMI satellite observations.
Katherine R. Travis, James H. Crawford, Gao Chen, Carolyn E. Jordan, Benjamin A. Nault, Hwajin Kim, Jose L. Jimenez, Pedro Campuzano-Jost, Jack E. Dibb, Jung-Hun Woo, Younha Kim, Shixian Zhai, Xuan Wang, Erin E. McDuffie, Gan Luo, Fangqun Yu, Saewung Kim, Isobel J. Simpson, Donald R. Blake, Limseok Chang, and Michelle J. Kim
Atmos. Chem. Phys., 22, 7933–7958, https://doi.org/10.5194/acp-22-7933-2022, https://doi.org/10.5194/acp-22-7933-2022, 2022
Short summary
Short summary
The 2016 Korea–United States Air Quality (KORUS-AQ) field campaign provided a unique set of observations to improve our understanding of PM2.5 pollution in South Korea. Models typically have errors in simulating PM2.5 in this region, which is of concern for the development of control measures. We use KORUS-AQ observations to improve our understanding of the mechanisms driving PM2.5 and the implications of model errors for determining PM2.5 that is attributable to local or foreign sources.
John R. Worden, Daniel H. Cusworth, Zhen Qu, Yi Yin, Yuzhong Zhang, A. Anthony Bloom, Shuang Ma, Brendan K. Byrne, Tia Scarpelli, Joannes D. Maasakkers, David Crisp, Riley Duren, and Daniel J. Jacob
Atmos. Chem. Phys., 22, 6811–6841, https://doi.org/10.5194/acp-22-6811-2022, https://doi.org/10.5194/acp-22-6811-2022, 2022
Short summary
Short summary
This paper is intended to accomplish two goals: 1) describe a new algorithm by which remotely sensed measurements of methane or other tracers can be used to not just quantify methane fluxes, but also attribute these fluxes to specific sources and regions and characterize their uncertainties, and 2) use this new algorithm to provide methane emissions by sector and country in support of the global stock take.
Tia R. Scarpelli, Daniel J. Jacob, Shayna Grossman, Xiao Lu, Zhen Qu, Melissa P. Sulprizio, Yuzhong Zhang, Frances Reuland, Deborah Gordon, and John R. Worden
Atmos. Chem. Phys., 22, 3235–3249, https://doi.org/10.5194/acp-22-3235-2022, https://doi.org/10.5194/acp-22-3235-2022, 2022
Short summary
Short summary
We present a spatially explicit version of the national inventories of oil, gas, and coal methane emissions as submitted by individual countries to the United Nations Framework Convention on Climate Change (UNFCCC) in 2021. We then use atmospheric modeling to compare our inventory emissions to atmospheric methane observations with the goal of identifying potential under- and overestimates of oil–gas methane emissions in the national inventories.
Drew C. Pendergrass, Shixian Zhai, Jhoon Kim, Ja-Ho Koo, Seoyoung Lee, Minah Bae, Soontae Kim, Hong Liao, and Daniel J. Jacob
Atmos. Meas. Tech., 15, 1075–1091, https://doi.org/10.5194/amt-15-1075-2022, https://doi.org/10.5194/amt-15-1075-2022, 2022
Short summary
Short summary
This paper uses a machine learning algorithm to infer high-resolution maps of particulate air quality in eastern China, Japan, and the Korean peninsula, using data from a geostationary satellite along with meteorology. We then perform an extensive evaluation of this inferred air quality and use it to diagnose trends in the region. We hope this paper and the associated data will be valuable to other scientists interested in epidemiology, air quality, remote sensing, and machine learning.
Lu Shen, Daniel J. Jacob, Mauricio Santillana, Kelvin Bates, Jiawei Zhuang, and Wei Chen
Geosci. Model Dev., 15, 1677–1687, https://doi.org/10.5194/gmd-15-1677-2022, https://doi.org/10.5194/gmd-15-1677-2022, 2022
Short summary
Short summary
The high computational cost of chemical integration is a long-standing limitation in global atmospheric chemistry models. Here we present an adaptive and efficient algorithm that can reduce the computational time of atmospheric chemistry by 50 % and maintain the error below 2 % for important species, inspired by machine learning clustering techniques and traditional asymptotic analysis ideas.
Haichao Wang, Chao Peng, Xuan Wang, Shengrong Lou, Keding Lu, Guicheng Gan, Xiaohong Jia, Xiaorui Chen, Jun Chen, Hongli Wang, Shaojia Fan, Xinming Wang, and Mingjin Tang
Atmos. Chem. Phys., 22, 1845–1859, https://doi.org/10.5194/acp-22-1845-2022, https://doi.org/10.5194/acp-22-1845-2022, 2022
Short summary
Short summary
Via combining laboratory and modeling work, we found that heterogeneous reaction of N2O5 with saline mineral dust aerosol could be an important source of tropospheric ClNO2 in inland regions.
Xiao Lu, Daniel J. Jacob, Haolin Wang, Joannes D. Maasakkers, Yuzhong Zhang, Tia R. Scarpelli, Lu Shen, Zhen Qu, Melissa P. Sulprizio, Hannah Nesser, A. Anthony Bloom, Shuang Ma, John R. Worden, Shaojia Fan, Robert J. Parker, Hartmut Boesch, Ritesh Gautam, Deborah Gordon, Michael D. Moran, Frances Reuland, Claudia A. Octaviano Villasana, and Arlyn Andrews
Atmos. Chem. Phys., 22, 395–418, https://doi.org/10.5194/acp-22-395-2022, https://doi.org/10.5194/acp-22-395-2022, 2022
Short summary
Short summary
We evaluate methane emissions and trends for 2010–2017 in the gridded national emission inventories for the United States, Canada, and Mexico by inversion of in situ and satellite methane observations. We find that anthropogenic methane emissions for all three countries are underestimated in the national inventories, largely driven by oil emissions. Anthropogenic methane emissions in the US peak in 2014, in contrast to the report of a steadily decreasing trend over 2010–2017 from the US EPA.
Kelvin H. Bates, Daniel J. Jacob, Ke Li, Peter D. Ivatt, Mat J. Evans, Yingying Yan, and Jintai Lin
Atmos. Chem. Phys., 21, 18351–18374, https://doi.org/10.5194/acp-21-18351-2021, https://doi.org/10.5194/acp-21-18351-2021, 2021
Short summary
Short summary
Simple aromatic compounds (benzene, toluene, xylene) have complex gas-phase chemistry that is inconsistently represented in atmospheric models. We compile recent experimental and theoretical insights to develop a new mechanism for gas-phase aromatic oxidation that is sufficiently compact for use in multiscale models. We compare our new mechanism to chamber experiments and other mechanisms, and implement it in a global model to quantify the impacts of aromatic oxidation on tropospheric chemistry.
Sabour Baray, Daniel J. Jacob, Joannes D. Maasakkers, Jian-Xiong Sheng, Melissa P. Sulprizio, Dylan B. A. Jones, A. Anthony Bloom, and Robert McLaren
Atmos. Chem. Phys., 21, 18101–18121, https://doi.org/10.5194/acp-21-18101-2021, https://doi.org/10.5194/acp-21-18101-2021, 2021
Short summary
Short summary
We use 2010–2015 surface and satellite observations to disentangle methane from anthropogenic and natural sources in Canada. Using a chemical transport model (GEOS-Chem), the mismatch between modelled and observed methane concentrations can be used to infer emissions according to Bayesian statistics. Compared to prior knowledge, we show higher anthropogenic emissions attributed to energy and/or agriculture in Western Canada and lower natural emissions from Boreal wetlands.
Shixian Zhai, Daniel J. Jacob, Jared F. Brewer, Ke Li, Jonathan M. Moch, Jhoon Kim, Seoyoung Lee, Hyunkwang Lim, Hyun Chul Lee, Su Keun Kuk, Rokjin J. Park, Jaein I. Jeong, Xuan Wang, Pengfei Liu, Gan Luo, Fangqun Yu, Jun Meng, Randall V. Martin, Katherine R. Travis, Johnathan W. Hair, Bruce E. Anderson, Jack E. Dibb, Jose L. Jimenez, Pedro Campuzano-Jost, Benjamin A. Nault, Jung-Hun Woo, Younha Kim, Qiang Zhang, and Hong Liao
Atmos. Chem. Phys., 21, 16775–16791, https://doi.org/10.5194/acp-21-16775-2021, https://doi.org/10.5194/acp-21-16775-2021, 2021
Short summary
Short summary
Geostationary satellite aerosol optical depth (AOD) has tremendous potential for monitoring surface fine particulate matter (PM2.5). Our study explored the physical relationship between AOD and PM2.5 by integrating data from surface networks, aircraft, and satellites with the GEOS-Chem chemical transport model. We quantitatively showed that accurate simulation of aerosol size distributions, boundary layer depths, relative humidity, coarse particles, and diurnal variations in PM2.5 are essential.
Liam Bindle, Randall V. Martin, Matthew J. Cooper, Elizabeth W. Lundgren, Sebastian D. Eastham, Benjamin M. Auer, Thomas L. Clune, Hongjian Weng, Jintai Lin, Lee T. Murray, Jun Meng, Christoph A. Keller, William M. Putman, Steven Pawson, and Daniel J. Jacob
Geosci. Model Dev., 14, 5977–5997, https://doi.org/10.5194/gmd-14-5977-2021, https://doi.org/10.5194/gmd-14-5977-2021, 2021
Short summary
Short summary
Atmospheric chemistry models like GEOS-Chem are versatile tools widely used in air pollution and climate studies. The simulations used in such studies can be very computationally demanding, and thus it is useful if the model can simulate a specific geographic region at a higher resolution than the rest of the globe. Here, we implement, test, and demonstrate a new variable-resolution capability in GEOS-Chem that is suitable for simulations conducted on supercomputers.
Zhen Qu, Daniel J. Jacob, Lu Shen, Xiao Lu, Yuzhong Zhang, Tia R. Scarpelli, Hannah Nesser, Melissa P. Sulprizio, Joannes D. Maasakkers, A. Anthony Bloom, John R. Worden, Robert J. Parker, and Alba L. Delgado
Atmos. Chem. Phys., 21, 14159–14175, https://doi.org/10.5194/acp-21-14159-2021, https://doi.org/10.5194/acp-21-14159-2021, 2021
Short summary
Short summary
The recent launch of TROPOMI offers an unprecedented opportunity to quantify the methane budget from a top-down perspective. We use TROPOMI and the more mature GOSAT methane observations to estimate methane emissions and get consistent global budgets. However, TROPOMI shows biases over regions where surface albedo is small and provides less information for the coarse-resolution inversion due to the larger error correlations and spatial variations in the number of observations.
Xuan Wang, Daniel J. Jacob, William Downs, Shuting Zhai, Lei Zhu, Viral Shah, Christopher D. Holmes, Tomás Sherwen, Becky Alexander, Mathew J. Evans, Sebastian D. Eastham, J. Andrew Neuman, Patrick R. Veres, Theodore K. Koenig, Rainer Volkamer, L. Gregory Huey, Thomas J. Bannan, Carl J. Percival, Ben H. Lee, and Joel A. Thornton
Atmos. Chem. Phys., 21, 13973–13996, https://doi.org/10.5194/acp-21-13973-2021, https://doi.org/10.5194/acp-21-13973-2021, 2021
Short summary
Short summary
Halogen radicals have a broad range of implications for tropospheric chemistry, air quality, and climate. We present a new mechanistic description and comprehensive simulation of tropospheric halogens in a global 3-D model and compare the model results with surface and aircraft measurements. We find that halogen chemistry decreases the global tropospheric burden of ozone by 11 %, NOx by 6 %, and OH by 4 %.
Haipeng Lin, Daniel J. Jacob, Elizabeth W. Lundgren, Melissa P. Sulprizio, Christoph A. Keller, Thibaud M. Fritz, Sebastian D. Eastham, Louisa K. Emmons, Patrick C. Campbell, Barry Baker, Rick D. Saylor, and Raffaele Montuoro
Geosci. Model Dev., 14, 5487–5506, https://doi.org/10.5194/gmd-14-5487-2021, https://doi.org/10.5194/gmd-14-5487-2021, 2021
Short summary
Short summary
Emissions are a central component of atmospheric chemistry models. The Harmonized Emissions Component (HEMCO) is a software component for computing emissions from a user-selected ensemble of emission inventories and algorithms. It allows users to select, add, and scale emissions from different sources through a configuration file with no change to the model source code. We demonstrate the implementation of HEMCO in several models, all sharing the same HEMCO core code and database library.
Yi Yin, Frederic Chevallier, Philippe Ciais, Philippe Bousquet, Marielle Saunois, Bo Zheng, John Worden, A. Anthony Bloom, Robert J. Parker, Daniel J. Jacob, Edward J. Dlugokencky, and Christian Frankenberg
Atmos. Chem. Phys., 21, 12631–12647, https://doi.org/10.5194/acp-21-12631-2021, https://doi.org/10.5194/acp-21-12631-2021, 2021
Short summary
Short summary
The growth of methane, the second-most important anthropogenic greenhouse gas after carbon dioxide, has been accelerating in recent years. Using an ensemble of multi-tracer atmospheric inversions constrained by surface or satellite observations, we show that global methane emissions increased by nearly 1 % per year from 2010–2017, with leading contributions from the tropics and East Asia.
Hannah Nesser, Daniel J. Jacob, Joannes D. Maasakkers, Tia R. Scarpelli, Melissa P. Sulprizio, Yuzhong Zhang, and Chris H. Rycroft
Atmos. Meas. Tech., 14, 5521–5534, https://doi.org/10.5194/amt-14-5521-2021, https://doi.org/10.5194/amt-14-5521-2021, 2021
Short summary
Short summary
Analytical inversions of satellite observations of atmospheric composition can improve emissions estimates and quantify errors but are computationally expensive at high resolutions. We propose two methods to decrease this cost. The methods reproduce a high-resolution inversion at a quarter of the cost. The reduced-dimension method creates a multiscale grid. The reduced-rank method solves the inversion where information content is highest.
Xu Feng, Haipeng Lin, Tzung-May Fu, Melissa P. Sulprizio, Jiawei Zhuang, Daniel J. Jacob, Heng Tian, Yaping Ma, Lijuan Zhang, Xiaolin Wang, Qi Chen, and Zhiwei Han
Geosci. Model Dev., 14, 3741–3768, https://doi.org/10.5194/gmd-14-3741-2021, https://doi.org/10.5194/gmd-14-3741-2021, 2021
Short summary
Short summary
WRF-GC is an online coupling of the WRF meteorological model and GEOS-Chem chemical transport model for regional atmospheric chemistry and air quality modeling. In WRF-GC v2.0, we implemented the aerosol–radiation interactions and aerosol–cloud interactions, as well as the capability to nest multiple domains for high-resolution simulations based on the modular framework of WRF-GC v1.0. This allows the GEOS-Chem users to investigate the meteorology–atmospheric chemistry interactions.
David R. Lyon, Benjamin Hmiel, Ritesh Gautam, Mark Omara, Katherine A. Roberts, Zachary R. Barkley, Kenneth J. Davis, Natasha L. Miles, Vanessa C. Monteiro, Scott J. Richardson, Stephen Conley, Mackenzie L. Smith, Daniel J. Jacob, Lu Shen, Daniel J. Varon, Aijun Deng, Xander Rudelis, Nikhil Sharma, Kyle T. Story, Adam R. Brandt, Mary Kang, Eric A. Kort, Anthony J. Marchese, and Steven P. Hamburg
Atmos. Chem. Phys., 21, 6605–6626, https://doi.org/10.5194/acp-21-6605-2021, https://doi.org/10.5194/acp-21-6605-2021, 2021
Short summary
Short summary
The Permian Basin (USA) is the world’s largest oil field. We use tower- and aircraft-based approaches to measure how methane emissions in the Permian Basin changed throughout 2020. In early 2020, 3.3 % of the region’s gas was emitted; then in spring 2020, the loss rate temporarily dropped to 1.9 % as oil price crashed. We find this short-term reduction to be a result of reduced well development, less gas flaring, and fewer abnormal events despite minimal reductions in oil and gas production.
Daniel J. Varon, Dylan Jervis, Jason McKeever, Ian Spence, David Gains, and Daniel J. Jacob
Atmos. Meas. Tech., 14, 2771–2785, https://doi.org/10.5194/amt-14-2771-2021, https://doi.org/10.5194/amt-14-2771-2021, 2021
Short summary
Short summary
Satellites can detect methane emissions by measuring sunlight reflected from the Earth's surface and atmosphere. Here we show that the European Space Agency's Sentinel-2 twin satellites can be used to monitor anomalously large methane point sources around the world, with global coverage every 2–5 days and 20 m spatial resolution. We demonstrate this previously unreported capability through high-frequency Sentinel-2 monitoring of two strong methane point sources in Algeria and Turkmenistan.
Xiao Lu, Daniel J. Jacob, Yuzhong Zhang, Joannes D. Maasakkers, Melissa P. Sulprizio, Lu Shen, Zhen Qu, Tia R. Scarpelli, Hannah Nesser, Robert M. Yantosca, Jianxiong Sheng, Arlyn Andrews, Robert J. Parker, Hartmut Boesch, A. Anthony Bloom, and Shuang Ma
Atmos. Chem. Phys., 21, 4637–4657, https://doi.org/10.5194/acp-21-4637-2021, https://doi.org/10.5194/acp-21-4637-2021, 2021
Short summary
Short summary
We use an analytical solution to the Bayesian inverse problem to quantitatively compare and combine the information from satellite and in situ observations, and to estimate global methane budget and their trends over the 2010–2017 period. We find that satellite and in situ observations are to a large extent complementary in the inversion for estimating global methane budget, and reveal consistent corrections of regional anthropogenic and wetland methane emissions relative to the prior inventory.
Joannes D. Maasakkers, Daniel J. Jacob, Melissa P. Sulprizio, Tia R. Scarpelli, Hannah Nesser, Jianxiong Sheng, Yuzhong Zhang, Xiao Lu, A. Anthony Bloom, Kevin W. Bowman, John R. Worden, and Robert J. Parker
Atmos. Chem. Phys., 21, 4339–4356, https://doi.org/10.5194/acp-21-4339-2021, https://doi.org/10.5194/acp-21-4339-2021, 2021
Short summary
Short summary
We use 2010–2015 GOSAT satellite observations of atmospheric methane over North America in a high-resolution inversion to estimate methane emissions. We find general consistency with the gridded EPA inventory but higher oil and gas production emissions, with oil production emissions twice as large as in the latest EPA Greenhouse Gas Inventory. We find lower wetland emissions than predicted by WetCHARTs and a small increasing trend in the eastern US, apparently related to unconventional oil/gas.
Yuzhong Zhang, Daniel J. Jacob, Xiao Lu, Joannes D. Maasakkers, Tia R. Scarpelli, Jian-Xiong Sheng, Lu Shen, Zhen Qu, Melissa P. Sulprizio, Jinfeng Chang, A. Anthony Bloom, Shuang Ma, John Worden, Robert J. Parker, and Hartmut Boesch
Atmos. Chem. Phys., 21, 3643–3666, https://doi.org/10.5194/acp-21-3643-2021, https://doi.org/10.5194/acp-21-3643-2021, 2021
Short summary
Short summary
We use 2010–2018 satellite observations of atmospheric methane to interpret the factors controlling atmospheric methane and its accelerating increase during the period. The 2010–2018 increase in global methane emissions is driven by tropical and boreal wetlands and tropical livestock (South Asia, Africa, Brazil), with an insignificant positive trend in emissions from the fossil fuel sector. The peak methane growth rates in 2014–2015 are also contributed by low OH and high fire emissions.
Susan S. Kulawik, John R. Worden, Vivienne H. Payne, Dejian Fu, Steven C. Wofsy, Kathryn McKain, Colm Sweeney, Bruce C. Daube Jr., Alan Lipton, Igor Polonsky, Yuguang He, Karen E. Cady-Pereira, Edward J. Dlugokencky, Daniel J. Jacob, and Yi Yin
Atmos. Meas. Tech., 14, 335–354, https://doi.org/10.5194/amt-14-335-2021, https://doi.org/10.5194/amt-14-335-2021, 2021
Short summary
Short summary
This paper shows comparisons of a new single-footprint methane product from the AIRS satellite to aircraft-based observations. We show that this AIRS methane product provides useful information to study seasonal and global methane trends of this important greenhouse gas.
Shaojie Song, Tao Ma, Yuzhong Zhang, Lu Shen, Pengfei Liu, Ke Li, Shixian Zhai, Haotian Zheng, Meng Gao, Jonathan M. Moch, Fengkui Duan, Kebin He, and Michael B. McElroy
Atmos. Chem. Phys., 21, 457–481, https://doi.org/10.5194/acp-21-457-2021, https://doi.org/10.5194/acp-21-457-2021, 2021
Short summary
Short summary
We simulate the atmospheric chemical processes of an important sulfur-containing organic aerosol species, which is produced by the reaction between sulfur dioxide and formaldehyde. We can predict its distribution on a global scale. We find it is particularly rich in East Asia. This aerosol species is more abundant in the colder season partly because of weaker sunlight.
Junfeng Wang, Jianhuai Ye, Dantong Liu, Yangzhou Wu, Jian Zhao, Weiqi Xu, Conghui Xie, Fuzhen Shen, Jie Zhang, Paul E. Ohno, Yiming Qin, Xiuyong Zhao, Scot T. Martin, Alex K. Y. Lee, Pingqing Fu, Daniel J. Jacob, Qi Zhang, Yele Sun, Mindong Chen, and Xinlei Ge
Atmos. Chem. Phys., 20, 14091–14102, https://doi.org/10.5194/acp-20-14091-2020, https://doi.org/10.5194/acp-20-14091-2020, 2020
Short summary
Short summary
We compared the organics in total submicron matter and those coated on BC cores during summertime in Beijing and found large differences between them. Traffic-related OA was associated significantly with BC, while cooking-related OA did not coat BC. In addition, a factor likely originated from primary biomass burning OA was only identified in BC-containing particles. Such a unique BBOA requires further field and laboratory studies to verify its presence and elucidate its properties and impacts.
Ke Li, Daniel J. Jacob, Lu Shen, Xiao Lu, Isabelle De Smedt, and Hong Liao
Atmos. Chem. Phys., 20, 11423–11433, https://doi.org/10.5194/acp-20-11423-2020, https://doi.org/10.5194/acp-20-11423-2020, 2020
Short summary
Short summary
Surface summer ozone increased in China from 2013 to 2019 despite new governmental efforts targeting ozone pollution. We find that the ozone increase is mostly due to anthropogenic drivers, although meteorology also plays a role. Further analysis for the North China Plain shows that PM2.5 continued to decrease through 2019, while emissions of volatile organic compounds (VOCs) stayed flat. This could explain the anthropogenic increase in ozone, as PM2.5 scavenges the radical precursors of ozone.
Xiao Lu, Lin Zhang, Tongwen Wu, Michael S. Long, Jun Wang, Daniel J. Jacob, Fang Zhang, Jie Zhang, Sebastian D. Eastham, Lu Hu, Lei Zhu, Xiong Liu, and Min Wei
Geosci. Model Dev., 13, 3817–3838, https://doi.org/10.5194/gmd-13-3817-2020, https://doi.org/10.5194/gmd-13-3817-2020, 2020
Short summary
Short summary
This study presents the development and evaluation of a new climate chemistry model, BCC-GEOS-Chem v1.0, which couples the GEOS-Chem chemical transport model as an atmospheric chemistry component in the Beijing Climate Center atmospheric general circulation model. A 3-year (2012–2014) simulation of BCC-GEOS-Chem v1.0 shows that the model captures well the spatiotemporal distributions of tropospheric ozone, other gaseous pollutants, and aerosols.
Haipeng Lin, Xu Feng, Tzung-May Fu, Heng Tian, Yaping Ma, Lijuan Zhang, Daniel J. Jacob, Robert M. Yantosca, Melissa P. Sulprizio, Elizabeth W. Lundgren, Jiawei Zhuang, Qiang Zhang, Xiao Lu, Lin Zhang, Lu Shen, Jianping Guo, Sebastian D. Eastham, and Christoph A. Keller
Geosci. Model Dev., 13, 3241–3265, https://doi.org/10.5194/gmd-13-3241-2020, https://doi.org/10.5194/gmd-13-3241-2020, 2020
Short summary
Short summary
Online coupling of meteorology and chemistry models often presents maintenance issues with hard-wired coding. We present WRF-GC, an one-way online coupling of the WRF meteorological model and GEOS-Chem atmospheric chemistry model for regional atmospheric chemistry and air quality modeling. Our coupling structure allows future versions of either parent model to be immediately integrated into WRF-GC. The WRF-GC model was able to well reproduce regional PM2.5 with greater computational efficiency.
Katherine R. Travis, Colette L. Heald, Hannah M. Allen, Eric C. Apel, Stephen R. Arnold, Donald R. Blake, William H. Brune, Xin Chen, Róisín Commane, John D. Crounse, Bruce C. Daube, Glenn S. Diskin, James W. Elkins, Mathew J. Evans, Samuel R. Hall, Eric J. Hintsa, Rebecca S. Hornbrook, Prasad S. Kasibhatla, Michelle J. Kim, Gan Luo, Kathryn McKain, Dylan B. Millet, Fred L. Moore, Jeffrey Peischl, Thomas B. Ryerson, Tomás Sherwen, Alexander B. Thames, Kirk Ullmann, Xuan Wang, Paul O. Wennberg, Glenn M. Wolfe, and Fangqun Yu
Atmos. Chem. Phys., 20, 7753–7781, https://doi.org/10.5194/acp-20-7753-2020, https://doi.org/10.5194/acp-20-7753-2020, 2020
Short summary
Short summary
Atmospheric models overestimate the rate of removal of trace gases by the hydroxyl radical (OH). This is a concern for studies of the climate and air quality impacts of human activities. Here, we evaluate the performance of a commonly used model of atmospheric chemistry against data from the NASA Atmospheric Tomography Mission (ATom) over the remote oceans where models have received little validation. The model is generally successful, suggesting that biases in OH may be a concern over land.
Gan Luo, Fangqun Yu, and Jonathan M. Moch
Geosci. Model Dev., 13, 2879–2903, https://doi.org/10.5194/gmd-13-2879-2020, https://doi.org/10.5194/gmd-13-2879-2020, 2020
Short summary
Short summary
This work improved pH calculation for cloud, rain, and wet surfaces, fraction of cloud available for aqueous-phase chemistry, rainout efficiencies for various types of cloud, empirical washout by rain and snow, and wet surface uptake in GEOS-Chem v12.6.0. We compared simulated mass concentrations of aerosol precursors and aerosols with surface monitoring networks, Arctic sites, and ATom observations, and showed that the model results with the updated wet processes agree better for most species.
Lu Shen, Daniel J. Jacob, Mauricio Santillana, Xuan Wang, and Wei Chen
Geosci. Model Dev., 13, 2475–2486, https://doi.org/10.5194/gmd-13-2475-2020, https://doi.org/10.5194/gmd-13-2475-2020, 2020
Short summary
Short summary
Chemical mechanisms in air quality models tend to get more complicated with time, reflecting both increasing knowledge and the need for greater scope. This objectively improves the models but increases the computational burden. In this work, we present an approach that can reduce the computational cost of chemical integration by 30–40 % while maintaining an accuracy better than 1 %. It retains the complexity of the full mechanism where it is needed and preserves full diagnostic information.
Tia R. Scarpelli, Daniel J. Jacob, Joannes D. Maasakkers, Melissa P. Sulprizio, Jian-Xiong Sheng, Kelly Rose, Lucy Romeo, John R. Worden, and Greet Janssens-Maenhout
Earth Syst. Sci. Data, 12, 563–575, https://doi.org/10.5194/essd-12-563-2020, https://doi.org/10.5194/essd-12-563-2020, 2020
Short summary
Short summary
Methane, a potent greenhouse gas, is emitted through the exploitation of oil, gas, and coal resources, and many efforts to reduce emissions have targeted these sources. We have created a global inventory of oil, gas, and coal methane emissions based on country reporting to the United Nations. The inventory can be used along with satellite observations of methane to better understand the contribution of these sources to global emissions and to identify potential biases in emissions reporting.
Viral Shah, Daniel J. Jacob, Ke Li, Rachel F. Silvern, Shixian Zhai, Mengyao Liu, Jintai Lin, and Qiang Zhang
Atmos. Chem. Phys., 20, 1483–1495, https://doi.org/10.5194/acp-20-1483-2020, https://doi.org/10.5194/acp-20-1483-2020, 2020
Short summary
Short summary
We analyze 15 years of satellite observations of nitrogen dioxide (NO2) and use an atmospheric chemistry model to understand the seasonal changes and trends in nitrogen oxides (NOx) over China. We show that the seasonal changes in NO2 occur due to changes in the NOx oxidation lifetime. We find that Chinese NOx emissions peaked in 2011 and had decreased by about 25 % by 2018. But the decrease in NO2 in winter was larger, likely because of a simultaneous decrease in the NOx oxidation lifetime.
Daniel H. Cusworth, Daniel J. Jacob, Daniel J. Varon, Christopher Chan Miller, Xiong Liu, Kelly Chance, Andrew K. Thorpe, Riley M. Duren, Charles E. Miller, David R. Thompson, Christian Frankenberg, Luis Guanter, and Cynthia A. Randles
Atmos. Meas. Tech., 12, 5655–5668, https://doi.org/10.5194/amt-12-5655-2019, https://doi.org/10.5194/amt-12-5655-2019, 2019
Short summary
Short summary
We examine the potential for global detection of methane plumes from individual point sources with the new generation of spaceborne imaging spectrometers scheduled for launch in 2019–2025. We perform methane retrievals on simulated scenes with varying surfaces and atmospheric methane concentrations. Our results suggest that imaging spectrometers in space could play a transformative role in the future for quantifying methane emissions from point sources on a global scale.
Shixian Zhai, Daniel J. Jacob, Xuan Wang, Lu Shen, Ke Li, Yuzhong Zhang, Ke Gui, Tianliang Zhao, and Hong Liao
Atmos. Chem. Phys., 19, 11031–11041, https://doi.org/10.5194/acp-19-11031-2019, https://doi.org/10.5194/acp-19-11031-2019, 2019
Short summary
Short summary
Observed annual mean PM2.5 decreased by 30–50 % in China from 2013–2018. However, meteorologically PM2.5 variability complicates trend attribution. We used a stepwise multiple linear regression model to quantitatively separate contributions from anthropogenic emissions and meteorology. Results show that 88 % of the PM2.5 decrease across China is attributable to anthropogenic emission changes, and 12 % is attributable to meteorology.
Katherine R. Travis and Daniel J. Jacob
Geosci. Model Dev., 12, 3641–3648, https://doi.org/10.5194/gmd-12-3641-2019, https://doi.org/10.5194/gmd-12-3641-2019, 2019
Short summary
Short summary
Models of ozone air pollution are often evaluated with the policy metric set by the EPA of the maximum daily 8 h average ozone concentration. These models may be used in policy settings to evaluate air quality regulations. However, most models have difficulty simulating how ozone varies over the course of the day, and thus the use of this metric in model evaluation is problematic. Improved representation of mixed layer dynamics and ozone loss to the surface is needed to resolve this issue.
Kelvin H. Bates and Daniel J. Jacob
Atmos. Chem. Phys., 19, 9613–9640, https://doi.org/10.5194/acp-19-9613-2019, https://doi.org/10.5194/acp-19-9613-2019, 2019
Short summary
Short summary
Isoprene is a highly reactive chemical released to the atmosphere by plants. Its gas-phase reactions and interactions with chemicals released by human activity have far-reaching atmospheric consequences, contributing to ozone and particulate pollution and prolonging the lifetime of methane, a potent greenhouse gas. We use global simulations with a new isoprene reaction scheme to quantify those effects and to show how recently discovered aspects of isoprene chemistry play out on a global scale.
Rachel F. Silvern, Daniel J. Jacob, Loretta J. Mickley, Melissa P. Sulprizio, Katherine R. Travis, Eloise A. Marais, Ronald C. Cohen, Joshua L. Laughner, Sungyeon Choi, Joanna Joiner, and Lok N. Lamsal
Atmos. Chem. Phys., 19, 8863–8878, https://doi.org/10.5194/acp-19-8863-2019, https://doi.org/10.5194/acp-19-8863-2019, 2019
Short summary
Short summary
The US EPA reports a steady decrease in nitrogen oxide (NOx) emissions from fuel combustion over the 2005–2017 period, while satellite observations show a leveling off after 2009, suggesting emission reductions and related air quality gains have halted. We show the sustained decrease in NOx emissions is in fact consistent with observed trends in surface NO2 and ozone concentrations and that the flattening of the satellite trend reflects a growing influence from the non-anthropogenic background.
Joannes D. Maasakkers, Daniel J. Jacob, Melissa P. Sulprizio, Tia R. Scarpelli, Hannah Nesser, Jian-Xiong Sheng, Yuzhong Zhang, Monica Hersher, A. Anthony Bloom, Kevin W. Bowman, John R. Worden, Greet Janssens-Maenhout, and Robert J. Parker
Atmos. Chem. Phys., 19, 7859–7881, https://doi.org/10.5194/acp-19-7859-2019, https://doi.org/10.5194/acp-19-7859-2019, 2019
Short summary
Short summary
We use 2010–2015 satellite observations of atmospheric methane to improve estimates of methane emissions and their trends, as well as the concentration and trend of tropospheric OH (hydroxyl radical, methane's main sink). We find overestimates of Chinese coal and Middle East oil/gas emissions in the prior estimate. The 2010–2015 growth in methane is attributed to an increase in emissions from India, China, and areas with large tropical wetlands. The contribution from OH is small in comparison.
Lu Shen, Daniel J. Jacob, Xiong Liu, Guanyu Huang, Ke Li, Hong Liao, and Tao Wang
Atmos. Chem. Phys., 19, 6551–6560, https://doi.org/10.5194/acp-19-6551-2019, https://doi.org/10.5194/acp-19-6551-2019, 2019
Lei Zhu, Daniel J. Jacob, Sebastian D. Eastham, Melissa P. Sulprizio, Xuan Wang, Tomás Sherwen, Mat J. Evans, Qianjie Chen, Becky Alexander, Theodore K. Koenig, Rainer Volkamer, L. Gregory Huey, Michael Le Breton, Thomas J. Bannan, and Carl J. Percival
Atmos. Chem. Phys., 19, 6497–6507, https://doi.org/10.5194/acp-19-6497-2019, https://doi.org/10.5194/acp-19-6497-2019, 2019
Short summary
Short summary
We quantify the effect of sea salt aerosol on tropospheric bromine chemistry with a new mechanistic description of the halogen chemistry in a global atmospheric chemistry model. For the first time, we are able to reproduce the observed levels of bromide activation from the sea salt aerosol in a manner consistent with bromine oxide radical measured from various platforms. Sea salt aerosol plays a far more complex role in global tropospheric chemistry than previously recognized.
Jingyuan Shao, Qianjie Chen, Yuxuan Wang, Xiao Lu, Pengzhen He, Yele Sun, Viral Shah, Randall V. Martin, Sajeev Philip, Shaojie Song, Yue Zhao, Zhouqing Xie, Lin Zhang, and Becky Alexander
Atmos. Chem. Phys., 19, 6107–6123, https://doi.org/10.5194/acp-19-6107-2019, https://doi.org/10.5194/acp-19-6107-2019, 2019
Short summary
Short summary
Sulfate is a key species contributing to particle formation and growth during wintertime Chinese haze events. This study combines observations and modeling of oxygen isotope signatures in sulfate aerosol to investigate its formation mechanisms, with a focus on heterogeneous production on aerosol surface via H2O2, O3, and NO2 and trace metal catalyzed oxidation. Contributions from different formation pathways are presented.
Xuan Wang, Daniel J. Jacob, Sebastian D. Eastham, Melissa P. Sulprizio, Lei Zhu, Qianjie Chen, Becky Alexander, Tomás Sherwen, Mathew J. Evans, Ben H. Lee, Jessica D. Haskins, Felipe D. Lopez-Hilfiker, Joel A. Thornton, Gregory L. Huey, and Hong Liao
Atmos. Chem. Phys., 19, 3981–4003, https://doi.org/10.5194/acp-19-3981-2019, https://doi.org/10.5194/acp-19-3981-2019, 2019
Short summary
Short summary
Chlorine radicals have a broad range of implications for tropospheric chemistry, air quality, and climate. We present a comprehensive simulation of tropospheric chlorine in a global 3-D model, which includes explicit accounting of chloride mobilization from sea salt aerosol. We find the chlorine chemistry contributes 1.0 % of the global oxidation of methane and decreases global burdens of tropospheric ozone by 7 % and OH by 3 % through the associated bromine radical chemistry.
Shaojie Song, Meng Gao, Weiqi Xu, Yele Sun, Douglas R. Worsnop, John T. Jayne, Yuzhong Zhang, Lei Zhu, Mei Li, Zhen Zhou, Chunlei Cheng, Yibing Lv, Ying Wang, Wei Peng, Xiaobin Xu, Nan Lin, Yuxuan Wang, Shuxiao Wang, J. William Munger, Daniel J. Jacob, and Michael B. McElroy
Atmos. Chem. Phys., 19, 1357–1371, https://doi.org/10.5194/acp-19-1357-2019, https://doi.org/10.5194/acp-19-1357-2019, 2019
Short summary
Short summary
Chemistry responsible for sulfate production in northern China winter haze remains mysterious. We propose a potentially key pathway through the reaction of formaldehyde and sulfur dioxide that has not been accounted for in previous studies. The special atmospheric conditions favor the formation and existence of their complex, hydroxymethanesulfonate (HMS).
Lu Shen, Daniel J. Jacob, Loretta J. Mickley, Yuxuan Wang, and Qiang Zhang
Atmos. Chem. Phys., 18, 17489–17496, https://doi.org/10.5194/acp-18-17489-2018, https://doi.org/10.5194/acp-18-17489-2018, 2018
Eloise A. Marais, Daniel J. Jacob, Sungyeon Choi, Joanna Joiner, Maria Belmonte-Rivas, Ronald C. Cohen, Steffen Beirle, Lee T. Murray, Luke D. Schiferl, Viral Shah, and Lyatt Jaeglé
Atmos. Chem. Phys., 18, 17017–17027, https://doi.org/10.5194/acp-18-17017-2018, https://doi.org/10.5194/acp-18-17017-2018, 2018
Short summary
Short summary
We intercompare two new products of global upper tropospheric nitrogen dioxide (NO2) retrieved from the Ozone Monitoring Instrument (OMI). We evaluate these products with aircraft observations from NASA DC8 aircraft campaigns and interpret the useful information these products can provide about nitrogen oxides (NOx) in the global upper troposphere using the GEOS-Chem chemical transport model.
Jian-Xiong Sheng, Daniel J. Jacob, Joannes D. Maasakkers, Yuzhong Zhang, and Melissa P. Sulprizio
Atmos. Meas. Tech., 11, 6379–6388, https://doi.org/10.5194/amt-11-6379-2018, https://doi.org/10.5194/amt-11-6379-2018, 2018
Short summary
Short summary
We conduct Observing System Simulation Experiments to compare the ability of future satellite measurements of atmospheric methane columns for constraining methane emissions at the 25 km scale. We find that the geostationary instruments can do much better than TROPOMI and are less sensitive to cloud cover. GeoCARB observing twice a day would provide 70 % of the information from the nominal GEO-CAPE mission considered by NASA in response to the Decadal Survey of the US National Research Council.
Daniel H. Cusworth, Daniel J. Jacob, Jian-Xiong Sheng, Joshua Benmergui, Alexander J. Turner, Jeremy Brandman, Laurent White, and Cynthia A. Randles
Atmos. Chem. Phys., 18, 16885–16896, https://doi.org/10.5194/acp-18-16885-2018, https://doi.org/10.5194/acp-18-16885-2018, 2018
Short summary
Short summary
Methane emissions from oil/gas fields originate from a large number of small and densely clustered point sources. We examine the potential of recently launched or planned satellites to locate these high-mode emitters through measurements of atmospheric methane. We find that the recently launched TROPOMI and the planned GeoCARB instruments are successful at locating high-emitting sources for fields of 20-50 emitters within the 50 × 50 km2 geographic domain but are unsuccessful for denser fields.
Jiayue Huang, Lyatt Jaeglé, and Viral Shah
Atmos. Chem. Phys., 18, 16253–16269, https://doi.org/10.5194/acp-18-16253-2018, https://doi.org/10.5194/acp-18-16253-2018, 2018
Short summary
Short summary
The contribution of blowing snow and frost flower as sources of sea salt aerosols (SSA) over polar regions remains uncertain, despite its potentially important role in polar climate and chemistry. Using chemical transport models and satellite observations, we find that blowing snow emissions are the dominant source of SSA over sea ice during the cold season. We infer a monthly snow salinity on first-year sea ice that decreases from fall–spring, minimizing the model discrepancy to within 10 %.
Lu Hu, Christoph A. Keller, Michael S. Long, Tomás Sherwen, Benjamin Auer, Arlindo Da Silva, Jon E. Nielsen, Steven Pawson, Matthew A. Thompson, Atanas L. Trayanov, Katherine R. Travis, Stuart K. Grange, Mat J. Evans, and Daniel J. Jacob
Geosci. Model Dev., 11, 4603–4620, https://doi.org/10.5194/gmd-11-4603-2018, https://doi.org/10.5194/gmd-11-4603-2018, 2018
Short summary
Short summary
We present a full-year online global simulation of tropospheric chemistry at 12.5 km resolution. To the best of our knowledge, such a resolution in a state-of-the-science global simulation of tropospheric chemistry is unprecedented. This simulation will serve as the Nature Run for observing system simulation experiments to support the future geostationary satellite constellation for tropospheric chemistry, and can also be used for various air quality applications.
Yuzhong Zhang, Daniel J. Jacob, Joannes D. Maasakkers, Melissa P. Sulprizio, Jian-Xiong Sheng, Ritesh Gautam, and John Worden
Atmos. Chem. Phys., 18, 15959–15973, https://doi.org/10.5194/acp-18-15959-2018, https://doi.org/10.5194/acp-18-15959-2018, 2018
Short summary
Short summary
We assess the potential of using satellite observations of atmospheric methane to monitor global mean tropospheric OH concentration, a key parameter for the oxidizing power of the atmosphere.
Daniel J. Varon, Daniel J. Jacob, Jason McKeever, Dylan Jervis, Berke O. A. Durak, Yan Xia, and Yi Huang
Atmos. Meas. Tech., 11, 5673–5686, https://doi.org/10.5194/amt-11-5673-2018, https://doi.org/10.5194/amt-11-5673-2018, 2018
Short summary
Short summary
Methane is a powerful greenhouse gas emitted from numerous human activities. Space-based observation of point sources would be a cost-effective monitoring solution, but the resolution of most current and planned methane-observing satellites is too coarse to resolve individual emitters. We simulate fine-resolution (50 m) satellite observations of methane plumes as would be measured by GHGSat (to be launched in 2019) and show that such data can usefully quantify large methane point sources.
Jian-Xiong Sheng, Daniel J. Jacob, Alexander J. Turner, Joannes D. Maasakkers, Joshua Benmergui, A. Anthony Bloom, Claudia Arndt, Ritesh Gautam, Daniel Zavala-Araiza, Hartmut Boesch, and Robert J. Parker
Atmos. Chem. Phys., 18, 12257–12267, https://doi.org/10.5194/acp-18-12257-2018, https://doi.org/10.5194/acp-18-12257-2018, 2018
Short summary
Short summary
Analysis of 7 years (2010–2016) of GOSAT methane trends over Canada, the contiguous US, and Mexico suggests that US methane emissions increased by 2.5 ± 1.4 % a−1 over the 7-year period, with contributions from both oil–gas systems and livestock in the Midwest. Mexican emissions show a decrease that can be attributed to a decreasing cattle population. Canadian emissions show year-to-year variability driven by wetland emissions and correlated with wetland areal extent.
Sebastian D. Eastham, Michael S. Long, Christoph A. Keller, Elizabeth Lundgren, Robert M. Yantosca, Jiawei Zhuang, Chi Li, Colin J. Lee, Matthew Yannetti, Benjamin M. Auer, Thomas L. Clune, Jules Kouatchou, William M. Putman, Matthew A. Thompson, Atanas L. Trayanov, Andrea M. Molod, Randall V. Martin, and Daniel J. Jacob
Geosci. Model Dev., 11, 2941–2953, https://doi.org/10.5194/gmd-11-2941-2018, https://doi.org/10.5194/gmd-11-2941-2018, 2018
Short summary
Short summary
Global atmospheric chemical transport models are crucial tools in atmospheric science, used to address problems ranging from climate change to acid rain. GEOS-Chem High Performance (GCHP) is a new implementation of the widely used GEOS-Chem model, designed for massively parallel architectures. GCHP v11-02c is shown to be highly scalable from 6 to over 500 cores, enabling the routine simulation of global atmospheric chemistry from the surface to the stratopause at resolutions of ~50 km or finer.
Alexander J. Turner, Daniel J. Jacob, Joshua Benmergui, Jeremy Brandman, Laurent White, and Cynthia A. Randles
Atmos. Chem. Phys., 18, 8265–8278, https://doi.org/10.5194/acp-18-8265-2018, https://doi.org/10.5194/acp-18-8265-2018, 2018
Short summary
Short summary
We conduct a 1-week WRF-STILT simulation to generate methane column footprints at 1.3 km spatial resolution and hourly temporal resolution over the Barnett Shale. We find that a week of TROPOMI observations should provide regional (~30 km) information on temporally invariant sources and GeoCARB should provide information on temporally invariant sources at 2–7 km spatial resolution. An instrument precision better than 6 ppb is an important threshold for achieving fine resolution of emissions.
Danny M. Leung, Amos P. K. Tai, Loretta J. Mickley, Jonathan M. Moch, Aaron van Donkelaar, Lu Shen, and Randall V. Martin
Atmos. Chem. Phys., 18, 6733–6748, https://doi.org/10.5194/acp-18-6733-2018, https://doi.org/10.5194/acp-18-6733-2018, 2018
Short summary
Short summary
This paper investigates how large-scale weather systems control fine particulate matter (PM2.5) air quality in China. We show that winter monsoons, onshore winds and frontal rains can drive daily PM2.5 variability in different regions of China. We further project future PM2.5 concentration change by 2050s due to climate change, and verify that climate change has little benefit on future PM2.5 in Beijing, implying cutting down emissions is necessary to mitigate pollutions in megacities of China.
Jian-Xiong Sheng, Daniel J. Jacob, Alexander J. Turner, Joannes D. Maasakkers, Melissa P. Sulprizio, A. Anthony Bloom, Arlyn E. Andrews, and Debra Wunch
Atmos. Chem. Phys., 18, 6483–6491, https://doi.org/10.5194/acp-18-6483-2018, https://doi.org/10.5194/acp-18-6483-2018, 2018
Short summary
Short summary
We use observations of boundary layer methane from the SEAC4RS aircraft campaign over the Southeast US to estimate methane emissions in that region. Our results suggest that the EPA inventory is regionally unbiased but there are large local biases, suggesting variable emission factors. Our results also suggest that the choice of landcover map is the dominant source of error for wetland emission estimates.
Shixian Zhai, Xingqin An, Tianliang Zhao, Zhaobin Sun, Wei Wang, Qing Hou, Zengyuan Guo, and Chao Wang
Atmos. Chem. Phys., 18, 6241–6258, https://doi.org/10.5194/acp-18-6241-2018, https://doi.org/10.5194/acp-18-6241-2018, 2018
Short summary
Short summary
The GRAPES–CUACE aerosol adjoint model was developed and applied in detecting PM2.5 sources for haze events in eastern China (EC). The response time of Beijing PM2.5 pollution peaks to local and surrounding emissions is quantized for regional transport of air pollution over the EC. The adjoint results agreed well with the Models-3/CMAQ assessments. The adjoint method is powerful in simulating the receptor–source relationship and can be utilized in dynamic air quality control scheme design.
Jiawei Zhuang, Daniel J. Jacob, and Sebastian D. Eastham
Atmos. Chem. Phys., 18, 6039–6055, https://doi.org/10.5194/acp-18-6039-2018, https://doi.org/10.5194/acp-18-6039-2018, 2018
Short summary
Short summary
Our work explains why current model simulations are unable to capture the intercontinental influences of pollution plumes that are often observed over some regions like California. Due to inadequate vertical grid resolution in these models, the plumes get diffused too rapidly during intercontinental transport. Increasing the vertical grid resolution greatly improves the simulation of plumes and considerably increases the estimate of local surface pollution influence.
Jennifer Kaiser, Daniel J. Jacob, Lei Zhu, Katherine R. Travis, Jenny A. Fisher, Gonzalo González Abad, Lin Zhang, Xuesong Zhang, Alan Fried, John D. Crounse, Jason M. St. Clair, and Armin Wisthaler
Atmos. Chem. Phys., 18, 5483–5497, https://doi.org/10.5194/acp-18-5483-2018, https://doi.org/10.5194/acp-18-5483-2018, 2018
Short summary
Short summary
Isoprene emissions from vegetation have a large effect on atmospheric chemistry and air quality. Here we use the adjoint of GEOS-Chem in an inversion of OMI formaldehyde observations to produce top-down estimates of isoprene emissions in the southeast US during the summer of 2013. We find that MEGAN v2.1 is biased high on average by 40 %. Our downward correction of isoprene emissions leads to a small reduction in modeled surface O3 and decreases the contribution of isoprene to organic aerosol.
Karen Yu, Christoph A. Keller, Daniel J. Jacob, Andrea M. Molod, Sebastian D. Eastham, and Michael S. Long
Geosci. Model Dev., 11, 305–319, https://doi.org/10.5194/gmd-11-305-2018, https://doi.org/10.5194/gmd-11-305-2018, 2018
Short summary
Short summary
Global simulations of atmospheric chemistry are generally conducted with off-line chemical transport models (CTMs) driven by archived meteorological data from general circulation models (GCMs). The off-line approach has the advantages of simplicity and expediency, but it is unable to reproduce the GCM transport exactly. We investigate the cascade of errors associated with the off-line approach using the GEOS-5 GCM and GEOS-Chem CTM and discuss improvements in the use of archived meteorology.
Xuan Wang, Colette L. Heald, Jiumeng Liu, Rodney J. Weber, Pedro Campuzano-Jost, Jose L. Jimenez, Joshua P. Schwarz, and Anne E. Perring
Atmos. Chem. Phys., 18, 635–653, https://doi.org/10.5194/acp-18-635-2018, https://doi.org/10.5194/acp-18-635-2018, 2018
Short summary
Short summary
Brown carbon (BrC) contributes significantly to uncertainty in estimating the global direct radiative effect (DRE) of aerosols. We develop a global model simulation of BrC and test it against BrC absorption measurements from two aircraft campaigns in the continental United States. We suggest that BrC DRE has been overestimated previously due to the lack of observational constraints from direct measurements and omission of the effects of photochemical whitening.
Theodore K. Koenig, Rainer Volkamer, Sunil Baidar, Barbara Dix, Siyuan Wang, Daniel C. Anderson, Ross J. Salawitch, Pamela A. Wales, Carlos A. Cuevas, Rafael P. Fernandez, Alfonso Saiz-Lopez, Mathew J. Evans, Tomás Sherwen, Daniel J. Jacob, Johan Schmidt, Douglas Kinnison, Jean-François Lamarque, Eric C. Apel, James C. Bresch, Teresa Campos, Frank M. Flocke, Samuel R. Hall, Shawn B. Honomichl, Rebecca Hornbrook, Jørgen B. Jensen, Richard Lueb, Denise D. Montzka, Laura L. Pan, J. Michael Reeves, Sue M. Schauffler, Kirk Ullmann, Andrew J. Weinheimer, Elliot L. Atlas, Valeria Donets, Maria A. Navarro, Daniel Riemer, Nicola J. Blake, Dexian Chen, L. Gregory Huey, David J. Tanner, Thomas F. Hanisco, and Glenn M. Wolfe
Atmos. Chem. Phys., 17, 15245–15270, https://doi.org/10.5194/acp-17-15245-2017, https://doi.org/10.5194/acp-17-15245-2017, 2017
Short summary
Short summary
Tropospheric inorganic bromine (BrO and Bry) shows a C-shaped profile over the tropical western Pacific Ocean, and supports previous speculation that marine convection is a source for inorganic bromine from sea salt to the upper troposphere. The Bry profile in the tropical tropopause layer (TTL) is complex, suggesting that the total Bry budget in the TTL is not closed without considering aerosol bromide. The implications for atmospheric composition and bromine sources are discussed.
Katherine R. Travis, Daniel J. Jacob, Christoph A. Keller, Shi Kuang, Jintai Lin, Michael J. Newchurch, and Anne M. Thompson
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-596, https://doi.org/10.5194/acp-2017-596, 2017
Preprint retracted
Short summary
Short summary
Models severely overestimate surface ozone in the Southeast US during summertime which has implications for the design of air quality regulations. We use a model (GEOS-Chem) to interpret ozone observations from a suite of observations taken during August–September 2013. The model is unbiased relative to observations below 1 km but is biased high at the surface. We attribute this bias to model representation error, an underestimate in low-cloud, and insufficient treatment of vertical mixing.
Viral Shah and Lyatt Jaeglé
Atmos. Chem. Phys., 17, 8999–9017, https://doi.org/10.5194/acp-17-8999-2017, https://doi.org/10.5194/acp-17-8999-2017, 2017
Short summary
Short summary
We use a model of mercury chemistry and transport in the atmosphere, along with ground- and aircraft-based mercury observations, to learn that oxidized mercury chemically produced in the free troposphere descends in the subtropical anticyclones and makes up much of the mercury depositing to the Earth's surface. Our findings imply that mercury chemistry in the free troposphere and transport in the subtropics are important links between global emissions and surface deposition of mercury.
Christopher Chan Miller, Daniel J. Jacob, Eloise A. Marais, Karen Yu, Katherine R. Travis, Patrick S. Kim, Jenny A. Fisher, Lei Zhu, Glenn M. Wolfe, Thomas F. Hanisco, Frank N. Keutsch, Jennifer Kaiser, Kyung-Eun Min, Steven S. Brown, Rebecca A. Washenfelder, Gonzalo González Abad, and Kelly Chance
Atmos. Chem. Phys., 17, 8725–8738, https://doi.org/10.5194/acp-17-8725-2017, https://doi.org/10.5194/acp-17-8725-2017, 2017
Short summary
Short summary
The use of satellite glyoxal observations for estimating isoprene emissions has been limited by knowledge of the glyoxal yield from isoprene. We use SENEX aircraft observations over the southeast US to evaluate glyoxal yields from isoprene in a 3-D atmospheric model. The SENEX observations support a pathway for glyoxal formation in pristine regions that we propose here, which may have implications for improving isoprene emissions estimates from upcoming high-resolution geostationary satellites.
A. Anthony Bloom, Kevin W. Bowman, Meemong Lee, Alexander J. Turner, Ronny Schroeder, John R. Worden, Richard Weidner, Kyle C. McDonald, and Daniel J. Jacob
Geosci. Model Dev., 10, 2141–2156, https://doi.org/10.5194/gmd-10-2141-2017, https://doi.org/10.5194/gmd-10-2141-2017, 2017
Short summary
Short summary
Wetland emissions are a principal source of uncertainty in the global atmospheric methane budget due to poor knowledge of wetland processes. We construct a wetland methane emission and uncertainty dataset for use in global atmospheric methane models. Our wetland model ensemble is based on static wetland maps, satellite-derived inundation and carbon cycle models. The ensemble performs favourably against regional flux estimates and atmospheric methane measurements relative to previous studies.
Hannah M. Horowitz, Daniel J. Jacob, Yanxu Zhang, Theodore S. Dibble, Franz Slemr, Helen M. Amos, Johan A. Schmidt, Elizabeth S. Corbitt, Eloïse A. Marais, and Elsie M. Sunderland
Atmos. Chem. Phys., 17, 6353–6371, https://doi.org/10.5194/acp-17-6353-2017, https://doi.org/10.5194/acp-17-6353-2017, 2017
Short summary
Short summary
Mercury is a toxic, global pollutant released to the air from human activities like coal burning. Chemical reactions in air determine how far mercury is transported before it is deposited to the environment, where it may be converted to a form that accumulates in fish. We use a 3-D atmospheric model to evaluate a new set of chemical reactions and its effects on mercury deposition. We find it is consistent with observations and leads to increased deposition to oceans, especially in the tropics.
Rachel F. Silvern, Daniel J. Jacob, Patrick S. Kim, Eloise A. Marais, Jay R. Turner, Pedro Campuzano-Jost, and Jose L. Jimenez
Atmos. Chem. Phys., 17, 5107–5118, https://doi.org/10.5194/acp-17-5107-2017, https://doi.org/10.5194/acp-17-5107-2017, 2017
Short summary
Short summary
We identify a fundamental discrepancy between thermodynamic equilibrium theory and observations of inorganic aerosol composition in the eastern US in summer that shows low ammonium sulfate aerosol ratios. In addition, from 2003 to 2013, while SO2 emissions have declined due to US emission controls, aerosols have become more acidic in the southeastern US. To explain these observations, we suggest that the large and increasing source of organic aerosol may be affecting thermodynamic equilibrium.
Sebastian D. Eastham and Daniel J. Jacob
Atmos. Chem. Phys., 17, 2543–2553, https://doi.org/10.5194/acp-17-2543-2017, https://doi.org/10.5194/acp-17-2543-2017, 2017
Short summary
Short summary
Intercontinental atmospheric transport can disrupt local chemistry and cause air quality issues thousands of kilometers from the source, complicating correct attribution of air quality exceedances. This transport occurs in long, thin plumes which current-generation models consistently fail to reproduce. Our study investigates the cause of this failure, finding that greater vertical resolution than is currently available is required to reliably resolve the plumes and their effects.
Daniel J. Jacob, Alexander J. Turner, Joannes D. Maasakkers, Jianxiong Sheng, Kang Sun, Xiong Liu, Kelly Chance, Ilse Aben, Jason McKeever, and Christian Frankenberg
Atmos. Chem. Phys., 16, 14371–14396, https://doi.org/10.5194/acp-16-14371-2016, https://doi.org/10.5194/acp-16-14371-2016, 2016
Short summary
Short summary
Methane is a greenhouse gas emitted by a range of natural and anthropogenic sources. Atmospheric methane has been measured continuously from space since 2003, and new instruments are planned to launch in the near future that will greatly expand the capabilities of space-based observations. We review the value of current, future, and proposed satellite observations to better quantify methane emissions from the global scale down to the scale of point sources.
Katherine R. Travis, Daniel J. Jacob, Jenny A. Fisher, Patrick S. Kim, Eloise A. Marais, Lei Zhu, Karen Yu, Christopher C. Miller, Robert M. Yantosca, Melissa P. Sulprizio, Anne M. Thompson, Paul O. Wennberg, John D. Crounse, Jason M. St. Clair, Ronald C. Cohen, Joshua L. Laughner, Jack E. Dibb, Samuel R. Hall, Kirk Ullmann, Glenn M. Wolfe, Illana B. Pollack, Jeff Peischl, Jonathan A. Neuman, and Xianliang Zhou
Atmos. Chem. Phys., 16, 13561–13577, https://doi.org/10.5194/acp-16-13561-2016, https://doi.org/10.5194/acp-16-13561-2016, 2016
Short summary
Short summary
Ground-level ozone pollution in the Southeast US involves complex chemistry driven by anthropogenic emissions of nitrogen oxides (NOx) and biogenic emissions of isoprene. We find that US NOx emissions are overestimated nationally by as much as 50 % and that reducing model emissions by this amount results in good agreement with SEAC4RS aircraft measurements in August and September 2013. Observations of nitrate wet deposition fluxes and satellite NO2 columns further support this result.
Lei Zhu, Daniel J. Jacob, Patrick S. Kim, Jenny A. Fisher, Karen Yu, Katherine R. Travis, Loretta J. Mickley, Robert M. Yantosca, Melissa P. Sulprizio, Isabelle De Smedt, Gonzalo González Abad, Kelly Chance, Can Li, Richard Ferrare, Alan Fried, Johnathan W. Hair, Thomas F. Hanisco, Dirk Richter, Amy Jo Scarino, James Walega, Petter Weibring, and Glenn M. Wolfe
Atmos. Chem. Phys., 16, 13477–13490, https://doi.org/10.5194/acp-16-13477-2016, https://doi.org/10.5194/acp-16-13477-2016, 2016
Short summary
Short summary
HCHO column data are widely used as a proxy for VOCs emissions, but validation of the data has been extremely limited. We use accurate aircraft observations to validate and intercompare 6 HCHO retrievals with GEOS-Chem as the intercomparison platform. Retrievals are interconsistent in spatial variability over the SE US and in daily variability, but are biased low by 20–51 %. Our work supports the use of HCHO column as a quantitative proxy for isoprene emission after correction of the low bias.
Xuan Wang, Colette L. Heald, Arthur J. Sedlacek, Suzane S. de Sá, Scot T. Martin, M. Lizabeth Alexander, Thomas B. Watson, Allison C. Aiken, Stephen R. Springston, and Paulo Artaxo
Atmos. Chem. Phys., 16, 12733–12752, https://doi.org/10.5194/acp-16-12733-2016, https://doi.org/10.5194/acp-16-12733-2016, 2016
Short summary
Short summary
We describe a new approach to estimate the absorption of brown carbon (BrC) from multiple-wavelength absorption measurements. By applying this method to column and surface observations globally, we find that BrC contributes up to 40 % of the absorption measured at 440 nm. The analysis of two surface sites also suggests that BrC absorptivity decreases with photochemical aging in biomass burning plumes, but not in typical urban conditions.
Tomás Sherwen, Johan A. Schmidt, Mat J. Evans, Lucy J. Carpenter, Katja Großmann, Sebastian D. Eastham, Daniel J. Jacob, Barbara Dix, Theodore K. Koenig, Roman Sinreich, Ivan Ortega, Rainer Volkamer, Alfonso Saiz-Lopez, Cristina Prados-Roman, Anoop S. Mahajan, and Carlos Ordóñez
Atmos. Chem. Phys., 16, 12239–12271, https://doi.org/10.5194/acp-16-12239-2016, https://doi.org/10.5194/acp-16-12239-2016, 2016
Short summary
Short summary
We present a simulation of tropospheric Cl, Br, I chemistry within the GEOS-Chem CTM. We find a decrease in tropospheric ozone burden of 18.6 % and a 8.2 % decrease in global mean OH concentrations. Cl oxidation of some VOCs range from 15 to 27 % of the total loss. Bromine plays a small role in oxidising oVOCs. Surface ozone, ozone sondes, and methane lifetime are in general improved by the inclusion of halogens. We argue that simulated bromine and chlorine represent a lower limit.
Xing Qin An, Shi Xian Zhai, Min Jin, Sunling Gong, and Yu Wang
Geosci. Model Dev., 9, 2153–2165, https://doi.org/10.5194/gmd-9-2153-2016, https://doi.org/10.5194/gmd-9-2153-2016, 2016
Short summary
Short summary
The aerosol adjoint module of the atmospheric chemical modeling system GRAPES–CUACE was developed, tested for its correctness, and used in a receptor–source sensitivity test. The results showed that controlling critical emission sources during critical time intervals on the basis of adjoint sensitivity analysis is much more efficient than controlling administrative specified regions during an experiential time period.
Jenny A. Fisher, Daniel J. Jacob, Katherine R. Travis, Patrick S. Kim, Eloise A. Marais, Christopher Chan Miller, Karen Yu, Lei Zhu, Robert M. Yantosca, Melissa P. Sulprizio, Jingqiu Mao, Paul O. Wennberg, John D. Crounse, Alex P. Teng, Tran B. Nguyen, Jason M. St. Clair, Ronald C. Cohen, Paul Romer, Benjamin A. Nault, Paul J. Wooldridge, Jose L. Jimenez, Pedro Campuzano-Jost, Douglas A. Day, Weiwei Hu, Paul B. Shepson, Fulizi Xiong, Donald R. Blake, Allen H. Goldstein, Pawel K. Misztal, Thomas F. Hanisco, Glenn M. Wolfe, Thomas B. Ryerson, Armin Wisthaler, and Tomas Mikoviny
Atmos. Chem. Phys., 16, 5969–5991, https://doi.org/10.5194/acp-16-5969-2016, https://doi.org/10.5194/acp-16-5969-2016, 2016
Short summary
Short summary
We use new airborne and ground-based observations from two summer 2013 campaigns in the southeastern US, interpreted with a chemical transport model, to understand the impact of isoprene and monoterpene chemistry on the atmospheric NOx budget via production of organic nitrates (RONO2). We find that a diversity of species contribute to observed RONO2. Our work implies that the NOx sink to RONO2 production is only sensitive to NOx emissions in regions where they are already low.
Christopher Chan Miller, Daniel J. Jacob, Gonzalo González Abad, and Kelly Chance
Atmos. Chem. Phys., 16, 4631–4639, https://doi.org/10.5194/acp-16-4631-2016, https://doi.org/10.5194/acp-16-4631-2016, 2016
Short summary
Short summary
Volatile organic compounds (VOCs) are important precursors for photochemical smog.
Glyoxal is an organic compound produced in the atmosphere from reactions of larger VOCs. OMI satellite observations of glyoxal show a large hotspot over the Pearl River delta. The hotspot can be explained by industrial paint and solvent emissions of aromatic VOCs. Our work shows OMI observations are consistent with current VOC emissions estimates, whereas previous work has suggested large underestimates.
Karen Yu, Daniel J. Jacob, Jenny A. Fisher, Patrick S. Kim, Eloise A. Marais, Christopher C. Miller, Katherine R. Travis, Lei Zhu, Robert M. Yantosca, Melissa P. Sulprizio, Ron C. Cohen, Jack E. Dibb, Alan Fried, Tomas Mikoviny, Thomas B. Ryerson, Paul O. Wennberg, and Armin Wisthaler
Atmos. Chem. Phys., 16, 4369–4378, https://doi.org/10.5194/acp-16-4369-2016, https://doi.org/10.5194/acp-16-4369-2016, 2016
Short summary
Short summary
Increasing the spatial resolution of a chemical transport model may improve simulations but can be computationally expensive. Using observations from the SEAC4RS aircraft campaign, we find that at higher spatial resolutions, models are better able to simulate the chemical pathways of ozone precursors, but the overall effect on regional mean concentrations is small. This implies that for continental boundary layer applications, coarse resolution models are adequate.
E. A. Marais, D. J. Jacob, J. L. Jimenez, P. Campuzano-Jost, D. A. Day, W. Hu, J. Krechmer, L. Zhu, P. S. Kim, C. C. Miller, J. A. Fisher, K. Travis, K. Yu, T. F. Hanisco, G. M. Wolfe, H. L. Arkinson, H. O. T. Pye, K. D. Froyd, J. Liao, and V. F. McNeill
Atmos. Chem. Phys., 16, 1603–1618, https://doi.org/10.5194/acp-16-1603-2016, https://doi.org/10.5194/acp-16-1603-2016, 2016
Short summary
Short summary
Isoprene secondary organic aerosol (SOA) is a dominant aerosol component in the southeast US, but models routinely underestimate isoprene SOA with traditional schemes based on chamber studies operated under conditions not representative of isoprene-emitting forests. We develop a new irreversible uptake mechanism to reproduce isoprene SOA yields (3.3 %) and composition, and find a factor of 2 co-benefit of SO2 emission controls on reducing sulfate and organic aerosol in the southeast US.
V. Shah, L. Jaeglé, L. E. Gratz, J. L. Ambrose, D. A. Jaffe, N. E. Selin, S. Song, T. L. Campos, F. M. Flocke, M. Reeves, D. Stechman, M. Stell, J. Festa, J. Stutz, A. J. Weinheimer, D. J. Knapp, D. D. Montzka, G. S. Tyndall, E. C. Apel, R. S. Hornbrook, A. J. Hills, D. D. Riemer, N. J. Blake, C. A. Cantrell, and R. L. Mauldin III
Atmos. Chem. Phys., 16, 1511–1530, https://doi.org/10.5194/acp-16-1511-2016, https://doi.org/10.5194/acp-16-1511-2016, 2016
Short summary
Short summary
We present airborne observations of mercury over the southeastern USA during summer. Higher concentrations of oxidized mercury were observed in clean, dry air masses descending in the subtropical anti-cyclones. We used an atmospheric model to simulate the chemistry and transport of mercury. We found reasonable agreement with the observations when the modeled oxidation of elemental mercury was increased, suggesting fast cycling between elemental and oxidized mercury.
H.-M. Lee, F. Paulot, D. K. Henze, K. Travis, D. J. Jacob, L. H. Pardo, and B. A. Schichtel
Atmos. Chem. Phys., 16, 525–540, https://doi.org/10.5194/acp-16-525-2016, https://doi.org/10.5194/acp-16-525-2016, 2016
Short summary
Short summary
Sources of nitrogen deposition (Ndep) in Federal Class I areas in the US are investigated, identifying unique features in contributions from different species, sectors and locations. Ndep in many parks is impacted by emissions several hundred km away; the role of oxidized vs reduced sources varies regionally. Emissions reductions in the western US most effectively reduce the extent of areas in critical load exceedance, while reductions in the east most effectively reduce exceedance magnitudes.
P. S. Kim, D. J. Jacob, J. A. Fisher, K. Travis, K. Yu, L. Zhu, R. M. Yantosca, M. P. Sulprizio, J. L. Jimenez, P. Campuzano-Jost, K. D. Froyd, J. Liao, J. W. Hair, M. A. Fenn, C. F. Butler, N. L. Wagner, T. D. Gordon, A. Welti, P. O. Wennberg, J. D. Crounse, J. M. St. Clair, A. P. Teng, D. B. Millet, J. P. Schwarz, M. Z. Markovic, and A. E. Perring
Atmos. Chem. Phys., 15, 10411–10433, https://doi.org/10.5194/acp-15-10411-2015, https://doi.org/10.5194/acp-15-10411-2015, 2015
J. Kaiser, G. M. Wolfe, K. E. Min, S. S. Brown, C. C. Miller, D. J. Jacob, J. A. deGouw, M. Graus, T. F. Hanisco, J. Holloway, J. Peischl, I. B. Pollack, T. B. Ryerson, C. Warneke, R. A. Washenfelder, and F. N. Keutsch
Atmos. Chem. Phys., 15, 7571–7583, https://doi.org/10.5194/acp-15-7571-2015, https://doi.org/10.5194/acp-15-7571-2015, 2015
A. J. Turner and D. J. Jacob
Atmos. Chem. Phys., 15, 7039–7048, https://doi.org/10.5194/acp-15-7039-2015, https://doi.org/10.5194/acp-15-7039-2015, 2015
A. J. Turner, D. J. Jacob, K. J. Wecht, J. D. Maasakkers, E. Lundgren, A. E. Andrews, S. C. Biraud, H. Boesch, K. W. Bowman, N. M. Deutscher, M. K. Dubey, D. W. T. Griffith, F. Hase, A. Kuze, J. Notholt, H. Ohyama, R. Parker, V. H. Payne, R. Sussmann, C. Sweeney, V. A. Velazco, T. Warneke, P. O. Wennberg, and D. Wunch
Atmos. Chem. Phys., 15, 7049–7069, https://doi.org/10.5194/acp-15-7049-2015, https://doi.org/10.5194/acp-15-7049-2015, 2015
M. S. Long, R. Yantosca, J. E. Nielsen, C. A. Keller, A. da Silva, M. P. Sulprizio, S. Pawson, and D. J. Jacob
Geosci. Model Dev., 8, 595–602, https://doi.org/10.5194/gmd-8-595-2015, https://doi.org/10.5194/gmd-8-595-2015, 2015
Short summary
Short summary
This paper presents results from the modularization of the GEOS-Chem chemical transport model, and its coupling as the chemical operator within the NASA-GMAO GEOS-5 Earth system model (ESM). The key findings are that chemistry within the modular GEOS-Chem system shows consistent, high strong-scaling properties across the range of distributed processors, transport is the limiting component prohibiting efficient scalability, and GEOS-Chem is able to generate suitable chemical results in an ESM.
C. Chan Miller, G. Gonzalez Abad, H. Wang, X. Liu, T. Kurosu, D. J. Jacob, and K. Chance
Atmos. Meas. Tech., 7, 3891–3907, https://doi.org/10.5194/amt-7-3891-2014, https://doi.org/10.5194/amt-7-3891-2014, 2014
X. Wang, C. L. Heald, D. A. Ridley, J. P. Schwarz, J. R. Spackman, A. E. Perring, H. Coe, D. Liu, and A. D. Clarke
Atmos. Chem. Phys., 14, 10989–11010, https://doi.org/10.5194/acp-14-10989-2014, https://doi.org/10.5194/acp-14-10989-2014, 2014
K. J. Wecht, D. J. Jacob, M. P. Sulprizio, G. W. Santoni, S. C. Wofsy, R. Parker, H. Bösch, and J. Worden
Atmos. Chem. Phys., 14, 8173–8184, https://doi.org/10.5194/acp-14-8173-2014, https://doi.org/10.5194/acp-14-8173-2014, 2014
C. A. Keller, M. S. Long, R. M. Yantosca, A. M. Da Silva, S. Pawson, and D. J. Jacob
Geosci. Model Dev., 7, 1409–1417, https://doi.org/10.5194/gmd-7-1409-2014, https://doi.org/10.5194/gmd-7-1409-2014, 2014
P. Zoogman, D. J. Jacob, K. Chance, X. Liu, M. Lin, A. Fiore, and K. Travis
Atmos. Chem. Phys., 14, 6261–6271, https://doi.org/10.5194/acp-14-6261-2014, https://doi.org/10.5194/acp-14-6261-2014, 2014
L. Zhang, D. J. Jacob, X. Yue, N. V. Downey, D. A. Wood, and D. Blewitt
Atmos. Chem. Phys., 14, 5295–5309, https://doi.org/10.5194/acp-14-5295-2014, https://doi.org/10.5194/acp-14-5295-2014, 2014
E. V. Fischer, D. J. Jacob, R. M. Yantosca, M. P. Sulprizio, D. B. Millet, J. Mao, F. Paulot, H. B. Singh, A. Roiger, L. Ries, R.W. Talbot, K. Dzepina, and S. Pandey Deolal
Atmos. Chem. Phys., 14, 2679–2698, https://doi.org/10.5194/acp-14-2679-2014, https://doi.org/10.5194/acp-14-2679-2014, 2014
P. S. Kim, D. J. Jacob, X. Liu, J. X. Warner, K. Yang, K. Chance, V. Thouret, and P. Nedelec
Atmos. Chem. Phys., 13, 9321–9335, https://doi.org/10.5194/acp-13-9321-2013, https://doi.org/10.5194/acp-13-9321-2013, 2013
J. Mao, S. Fan, D. J. Jacob, and K. R. Travis
Atmos. Chem. Phys., 13, 509–519, https://doi.org/10.5194/acp-13-509-2013, https://doi.org/10.5194/acp-13-509-2013, 2013
Related subject area
Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Bacteria in clouds biodegrade atmospheric formic and acetic acids
Long-term variability in immersion-mode marine ice-nucleating particles from climate model simulations and observations
Trifluoroacetic acid deposition from emissions of HFO-1234yf in India, China, and the Middle East
Convective uplift of pollution from the Sichuan Basin into the Asian monsoon anticyclone during the StratoClim aircraft campaign
Biodegradation by bacteria in clouds: an underestimated sink for some organics in the atmospheric multiphase system
Modeling the partitioning of organic chemical species in cloud phases with CLEPS (1.1)
Thermodynamic derivation of the activation energy for ice nucleation
Effects of aerosols on precipitation in north-eastern North America
The role of horizontal model resolution in assessing the transport of CO in a middle latitude cyclone using WRF-Chem
Structure–activity relationship for the estimation of OH-oxidation rate constants of carbonyl compounds in the aqueous phase
Explicit modeling of volatile organic compounds partitioning in the atmospheric aqueous phase
Possible catalytic effects of ice particles on the production of NOx by lightning discharges
Evaluation of cloud convection and tracer transport in a three-dimensional chemical transport model
Regional scale effects of the aerosol cloud interaction simulated with an online coupled comprehensive chemistry model
Representation of tropical deep convection in atmospheric models – Part 1: Meteorology and comparison with satellite observations
Structure-activity relationships to estimate the effective Henry's law constants of organics of atmospheric interest
Uncertainties in atmospheric chemistry modelling due to convection parameterisations and subsequent scavenging
A meteorological overview of the ARCTAS 2008 mission
Leslie Nuñez López, Pierre Amato, and Barbara Ervens
Atmos. Chem. Phys., 24, 5181–5198, https://doi.org/10.5194/acp-24-5181-2024, https://doi.org/10.5194/acp-24-5181-2024, 2024
Short summary
Short summary
Living bacteria comprise a small particle fraction in the atmosphere. Our model study shows that atmospheric bacteria in clouds may efficiently biodegrade formic and acetic acids that affect the acidity of rain. We conclude that current atmospheric models underestimate losses of these acids as they only consider chemical processes. We suggest that biodegradation can affect atmospheric concentration not only of formic and acetic acids but also of other volatile, moderately soluble organics.
Aishwarya Raman, Thomas Hill, Paul J. DeMott, Balwinder Singh, Kai Zhang, Po-Lun Ma, Mingxuan Wu, Hailong Wang, Simon P. Alexander, and Susannah M. Burrows
Atmos. Chem. Phys., 23, 5735–5762, https://doi.org/10.5194/acp-23-5735-2023, https://doi.org/10.5194/acp-23-5735-2023, 2023
Short summary
Short summary
Ice-nucleating particles (INPs) play an important role in cloud processes and associated precipitation. Yet, INPs are not accurately represented in climate models. This study attempts to uncover these gaps by comparing model-simulated INP concentrations against field campaign measurements in the SO for an entire year, 2017–2018. Differences in INP concentrations and variability between the model and observations have major implications for modeling cloud properties in high latitudes.
Liji M. David, Mary Barth, Lena Höglund-Isaksson, Pallav Purohit, Guus J. M. Velders, Sam Glaser, and A. R. Ravishankara
Atmos. Chem. Phys., 21, 14833–14849, https://doi.org/10.5194/acp-21-14833-2021, https://doi.org/10.5194/acp-21-14833-2021, 2021
Short summary
Short summary
We calculated the expected concentrations of trifluoroacetic acid (TFA) from the atmospheric breakdown of HFO-1234yf (CF3CF=CH2), a substitute for global warming hydrofluorocarbons, emitted now and in the future by India, China, and the Middle East. We used two chemical transport models. We conclude that the projected emissions through 2040 would not be detrimental, given the current knowledge of the effects of TFA on humans and ecosystems.
Keun-Ok Lee, Brice Barret, Eric L. Flochmoën, Pierre Tulet, Silvia Bucci, Marc von Hobe, Corinna Kloss, Bernard Legras, Maud Leriche, Bastien Sauvage, Fabrizio Ravegnani, and Alexey Ulanovsky
Atmos. Chem. Phys., 21, 3255–3274, https://doi.org/10.5194/acp-21-3255-2021, https://doi.org/10.5194/acp-21-3255-2021, 2021
Short summary
Short summary
This paper focuses on the emission sources and pathways of pollution from the boundary layer to the Asian monsoon anticyclone (AMA) during the StratoClim aircraft campaign period. Simulations with the Meso-NH cloud-chemistry model at a horizontal resolution of 15 km are performed over the Asian region to characterize the impact of monsoon deep convection on the composition of AMA and on the formation of the Asian tropopause aerosol layer during the StratoClim campaign.
Amina Khaled, Minghui Zhang, Pierre Amato, Anne-Marie Delort, and Barbara Ervens
Atmos. Chem. Phys., 21, 3123–3141, https://doi.org/10.5194/acp-21-3123-2021, https://doi.org/10.5194/acp-21-3123-2021, 2021
Clémence Rose, Nadine Chaumerliac, Laurent Deguillaume, Hélène Perroux, Camille Mouchel-Vallon, Maud Leriche, Luc Patryl, and Patrick Armand
Atmos. Chem. Phys., 18, 2225–2242, https://doi.org/10.5194/acp-18-2225-2018, https://doi.org/10.5194/acp-18-2225-2018, 2018
Short summary
Short summary
A detailed aqueous phase mechanism CLEPS 1.1 is coupled with warm microphysics including activation of aerosol particles into cloud droplets. Simulated aqueous concentrations of carboxylic acids are close to the long-term measurements conducted at Puy de Dôme (France). Sensitivity tests show that formic and acetic acids mainly originate from the gas phase with highly variable aqueous-phase reactivity depending on cloud pH, while C3–C4 carboxylic acids mainly originate from the particulate phase.
D. Barahona
Atmos. Chem. Phys., 15, 13819–13831, https://doi.org/10.5194/acp-15-13819-2015, https://doi.org/10.5194/acp-15-13819-2015, 2015
Short summary
Short summary
This paper describes the process of the transfer of water molecules between liquid and the ice during the early stages of ice formation. Using concepts of nonreversible thermodynamics, it is shown that the activation energy can be defined in terms of the bulk self-diffusivity of water and the probability of interface transfer. The application of this model to classical nucleation theory shows good agreement of measured nucleation rates with experimental results for temperatures as low as 190K.
R. Mashayekhi and J. J. Sloan
Atmos. Chem. Phys., 14, 5111–5125, https://doi.org/10.5194/acp-14-5111-2014, https://doi.org/10.5194/acp-14-5111-2014, 2014
C. A. Klich and H. E. Fuelberg
Atmos. Chem. Phys., 14, 609–627, https://doi.org/10.5194/acp-14-609-2014, https://doi.org/10.5194/acp-14-609-2014, 2014
J.-F. Doussin and A. Monod
Atmos. Chem. Phys., 13, 11625–11641, https://doi.org/10.5194/acp-13-11625-2013, https://doi.org/10.5194/acp-13-11625-2013, 2013
C. Mouchel-Vallon, P. Bräuer, M. Camredon, R. Valorso, S. Madronich, H. Herrmann, and B. Aumont
Atmos. Chem. Phys., 13, 1023–1037, https://doi.org/10.5194/acp-13-1023-2013, https://doi.org/10.5194/acp-13-1023-2013, 2013
H. S. Peterson and W. H. Beasley
Atmos. Chem. Phys., 11, 10259–10268, https://doi.org/10.5194/acp-11-10259-2011, https://doi.org/10.5194/acp-11-10259-2011, 2011
W. Feng, M. P. Chipperfield, S. Dhomse, B. M. Monge-Sanz, X. Yang, K. Zhang, and M. Ramonet
Atmos. Chem. Phys., 11, 5783–5803, https://doi.org/10.5194/acp-11-5783-2011, https://doi.org/10.5194/acp-11-5783-2011, 2011
M. Bangert, C. Kottmeier, B. Vogel, and H. Vogel
Atmos. Chem. Phys., 11, 4411–4423, https://doi.org/10.5194/acp-11-4411-2011, https://doi.org/10.5194/acp-11-4411-2011, 2011
M. R. Russo, V. Marécal, C. R. Hoyle, J. Arteta, C. Chemel, M. P. Chipperfield, O. Dessens, W. Feng, J. S. Hosking, P. J. Telford, O. Wild, X. Yang, and J. A. Pyle
Atmos. Chem. Phys., 11, 2765–2786, https://doi.org/10.5194/acp-11-2765-2011, https://doi.org/10.5194/acp-11-2765-2011, 2011
T. Raventos-Duran, M. Camredon, R. Valorso, C. Mouchel-Vallon, and B. Aumont
Atmos. Chem. Phys., 10, 7643–7654, https://doi.org/10.5194/acp-10-7643-2010, https://doi.org/10.5194/acp-10-7643-2010, 2010
H. Tost, M. G. Lawrence, C. Brühl, P. Jöckel, The GABRIEL Team, and The SCOUT-O3-DARWIN/ACTIVE Team
Atmos. Chem. Phys., 10, 1931–1951, https://doi.org/10.5194/acp-10-1931-2010, https://doi.org/10.5194/acp-10-1931-2010, 2010
H. E. Fuelberg, D. L. Harrigan, and W. Sessions
Atmos. Chem. Phys., 10, 817–842, https://doi.org/10.5194/acp-10-817-2010, https://doi.org/10.5194/acp-10-817-2010, 2010
Cited articles
Aber, J. D., Nadelhoffer, K. J., Steudler, P., and Melillo, J. M.: Nitrogen
Saturation in Northern Forest Ecosystems, BioScience, 39, 378–386,
https://doi.org/10.2307/1311067, 1989.
Alexander, B., Park, R. J., Jacob, D. J., Li, Q. B., Yantosca, R. M.,
Savarino, J., Lee, C. C. W., and Thiemens, M. H.: Sulfate formation in
sea-salt aerosols: Constraints from oxygen isotopes, J. Geophys. Res.-Atmos., 110, D10307, https://doi.org/10.1029/2004JD005659, 2005.
Alexander, B., Park, R. J., Jacob, D. J., and Gong, S.: Transition
metal-catalyzed oxidation of atmospheric sulfur: Global implications for the
sulfur budget, J. Geophys. Res., 114, D02309, https://doi.org/10.1029/2008JD010486, 2009.
Alexander, B., Allman, D. J., Amos, H. M., Fairlie, T. D., Dachs, J., Hegg,
D. A., and Sletten, R. S.: Isotopic constraints on the formation pathways of
sulfate aerosol in the marine boundary layer of the subtropical northeast
Atlantic Ocean, J. Geophys. Res.-Atmos., 117, D06304,
https://doi.org/10.1029/2011JD016773, 2012.
Amos, H. M., Jacob, D. J., Holmes, C. D., Fisher, J. A., Wang, Q., Yantosca, R. M., Corbitt, E. S., Galarneau, E., Rutter, A. P., Gustin, M. S., Steffen, A., Schauer, J. J., Graydon, J. A., Louis, V. L. St., Talbot, R. W., Edgerton, E. S., Zhang, Y., and Sunderland, E. M.: Gas-particle partitioning of atmospheric Hg(II) and its effect on global mercury deposition, Atmos. Chem. Phys., 12, 591–603, https://doi.org/10.5194/acp-12-591-2012, 2012.
Andreae, M. O., Talbot, R. W., Berresheim, H., and Beecher, K. M.:
Precipitation chemistry in central Amazonia, J. Geophys. Res., 95,
16987, https://doi.org/10.1029/JD095iD10p16987, 1990.
Arlander, D. W., Cronn, D. R., Farmer, J. C., Menzia, F. A., and Westberg, H.
H.: Gaseous oxygenated hydrocarbons in the remote marine troposphere, J.
Geophys. Res., 95, 16391, https://doi.org/10.1029/JD095iD10p16391, 1990.
Ayers, G. P. and Gillett, R. W.: First observations of cloud water acidity
in tropical Australia, Clean Air Aust., 22, 53–57, 1988.
Baboukas, E. D., Kanakidou, M., and Mihalopoulos, N.: Carboxylic acids in gas
and particulate phase above the Atlantic Ocean, J. Geophys. Res.-Atmos., 105, 14459–14471, https://doi.org/10.1029/1999JD900977, 2000.
Benedict, K. B., Lee, T., and Collett, J. L.: Cloud water composition over
the southeastern Pacific Ocean during the VOCALS regional experiment, Atmos.
Environ., 46, 104–114, https://doi.org/10.1016/j.atmosenv.2011.10.029, 2012.
Błaś, M., Polkowska, Ż., Sobik, M., Klimaszewska, K.,
Nowiński, K., and Namieśnik, J.: Fog water chemical composition in
different geographic regions of Poland, Atmos. Res., 95, 455–469,
https://doi.org/10.1016/j.atmosres.2009.11.008, 2010.
Boris, A. J., Lee, T., Park, T., Choi, J., Seo, S. J., and Collett Jr., J. L.: Fog composition at Baengnyeong Island in the eastern Yellow Sea: detecting markers of aqueous atmospheric oxidations, Atmos. Chem. Phys., 16, 437–453, https://doi.org/10.5194/acp-16-437-2016, 2016.
Bormann, B. T., Tarrant, R. F., McClellan, M. H., and Savage, T.: Chemistry
of Rainwater and Cloud Water at Remote Sites in Alaska and Oregon, J.
Environ. Qual., 18, 149, https://doi.org/10.2134/jeq1989.00472425001800020003x, 1989.
Bouwman, A. F., Lee, D. S., Asman, W. A. H., Dentener, F. J., Van Der Hoek,
K. W., and Olivier, J. G. J.: A global high-resolution emission inventory for
ammonia, Global Biogeochem. Cycles, 11, 561–587, https://doi.org/10.1029/97GB02266,
1997.
Bouwman, A. F., Van Vuuren, D. P., Derwent, R. G., and Posch, M.: A global
analysis of acidification and eutrophication of terrestrial ecosystems,
Water Air. Soil Pollut., 141, 349–382, https://doi.org/10.1023/A:1021398008726,
2002.
Breider, T. J., Mickley, L. J., Jacob, D. J., Ge, C., Wang, J., Payer
Sulprizio, M., Croft, B., Ridley, D. A., McConnell, J. R., Sharma, S.,
Husain, L., Dutkiewicz, V. A., Eleftheriadis, K., Skov, H., and Hopke, P. K.:
Multidecadal trends in aerosol radiative forcing over the Arctic:
Contribution of changes in anthropogenic aerosol to Arctic warming since
1980: The 1980–2010 Trends in Arctic Aerosol RF, J. Geophys. Res.-Atmos., 122, 3573–3594, https://doi.org/10.1002/2016JD025321, 2017.
Budhavant, K. B., Rao, P. S. P., Safai, P. D., Granat, L., and Rodhe, H.:
Chemical composition of the inorganic fraction of cloud-water at a high
altitude station in West India, Atmos. Environ., 88, 59–65,
https://doi.org/10.1016/j.atmosenv.2014.01.039, 2014.
Calvert, J. G., Lazrus, A., Kok, G. L., Heikes, B. G., Walega, J. G., Lind,
J., and Cantrell, C. A.: Chemical mechanisms of acid generation in the
troposphere, Nature, 317, 27–35, https://doi.org/10.1038/317027a0, 1985.
Carmichael, G. R., Peters, L. K., and Saylor, R. D.: The STEM-II regional
scale acid deposition and photochemical oxidant model – I. An overview of
model development and applications, Atmos. Environ., 25,
2077–2090, https://doi.org/10.1016/0960-1686(91)90085-L, 1991.
Castillo, R. A., Jiusto, J. E., and Mclaren, E.: The pH and ionic composition
of stratiform cloud water, Atmos. Environ., 17, 1497–1505,
https://doi.org/10.1016/0004-6981(83)90303-7, 1983.
Chang, J. S., Brost, R. A., Isaksen, I. S. A., Madronich, S., Middleton, P.,
Stockwell, W. R., and Walcek, C. J.: A three-dimensional Eulerian acid
deposition model: Physical concepts and formulation, J. Geophys. Res.,
92, 14681, https://doi.org/10.1029/JD092iD12p14681, 1987.
Chen, Q., Schmidt, J. A., Shah, V., Jaeglé, L., Sherwen, T., and
Alexander, B.: Sulfate production by reactive bromine: Implications for the
global sulfur and reactive bromine budgets, Geophys. Res. Lett., 44,
7069–7078, https://doi.org/10.1002/2017GL073812, 2017.
Chen, Y., Xie, S., Luo, B., and Zhai, C.: Particulate pollution in urban
Chongqing of southwest China: Historical trends of variation, chemical
characteristics and source apportionment, Sci. Total Environ., 584–585,
523–534, https://doi.org/10.1016/j.scitotenv.2017.01.060, 2017.
Collett, J. L., Oberholzer, B., Mosimann, L., Staehelin, J., and Waldvogel,
A.: Contributions of cloud processes to precipitation chemistry in mixed
phase clouds, Water. Air. Soil Pollut., 68, 43–57,
https://doi.org/10.1007/BF00479392, 1993.
Collett, J. L., Hoag, K. J., Rao, X., and Pandis, S. N.: Internal acid
buffering in San Joaquin Valley fog drops and its influence on aerosol
processing, Atmos. Environ., 33, 4833–4847,
https://doi.org/10.1016/S1352-2310(99)00221-6, 1999.
Deguillaume, L., Charbouillot, T., Joly, M., Vaïtilingom, M., Parazols, M., Marinoni, A., Amato, P., Delort, A.-M., Vinatier, V., Flossmann, A., Chaumerliac, N., Pichon, J. M., Houdier, S., Laj, P., Sellegri, K., Colomb, A., Brigante, M., and Mailhot, G.: Classification of clouds sampled at the puy de Dôme (France) based on 10 yr of monitoring of their physicochemical properties, Atmos. Chem. Phys., 14, 1485–1506, https://doi.org/10.5194/acp-14-1485-2014, 2014.
Dentener, F. J. and Crutzen, P. J.: A three-dimensional model of the global
ammonia cycle, J. Atmos. Chem., 19, 331–369,
https://doi.org/10.1007/BF00694492, 1994.
Driscoll, C. T., Lawrence, G. B., Bulger, A. J., Butler, T. J., Cronan, C.
S., Eagar, C., Lambert, K. F., Likens, G. E., Stoddard, J. L., and Weathers,
K. C.: Acidic Deposition in the Northeastern United States: Sources and
Inputs, Ecosystem Effects, and Management Strategies, BioScience, 51,
180, https://doi.org/10.1641/0006-3568(2001)051[0180:ADITNU]2.0.CO;2, 2001.
Duan, L., Yu, Q., Zhang, Q., Wang, Z., Pan, Y., Larssen, T., Tang, J., and
Mulder, J.: Acid deposition in Asia: Emissions, deposition, and ecosystem
effects, Atmos. Environ., 146, 55–69, https://doi.org/10.1016/j.atmosenv.2016.07.018,
2016.
EANET: The Third Periodic Report on the State of Acid Deposition in East
Asia. Part II: National Assessments, available at:
https://www.eanet.asia/wp-content/uploads/2019/03/3_PRSAD2.pdf (last access: 30 March 2020), 2016.
EANET: EANET Data on the Acid Deposition in the East Asian Region, available at: https://monitoring.eanet.asia/document/public/index,
last access: 9 October 2019.
ECCC: Monitoring of Atmospheric Precipitation Chemistry, available
at:
http://donnees.ec.gc.ca/data/air/monitor/monitoring-of-atmospheric-precipitation-chemistry/?lang=en
(last access: 18 October 2019), 2018.
EEA: National Emission Ceilings (NEC) Directive emission inventory data,
available at:
https://www.eea.europa.eu/data-and-maps/data/national-emission-ceilings-nec-directive-inventory-16,
last access: 15 November 2019.
EMEP: EMEP measurement data online, available at:
https://projects.nilu.no//ccc/emepdata.html (last access: 1 April 2020), 2015.
Engelbrecht, J. P., Moosmüller, H., Pincock, S., Jayanty, R. K. M., Lersch, T., and Casuccio, G.: Technical note: Mineralogical, chemical, morphological, and optical interrelationships of mineral dust re-suspensions, Atmos. Chem. Phys., 16, 10809–10830, https://doi.org/10.5194/acp-16-10809-2016, 2016.
Ervens, B., Turpin, B. J., and Weber, R. J.: Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): a review of laboratory, field and model studies, Atmos. Chem. Phys., 11, 11069–11102, https://doi.org/10.5194/acp-11-11069-2011, 2011.
Ervens, B., Wang, Y., Eagar, J., Leaitch, W. R., Macdonald, A. M., Valsaraj, K. T., and Herckes, P.: Dissolved organic carbon (DOC) and select aldehydes in cloud and fog water: the role of the aqueous phase in impacting trace gas budgets, Atmos. Chem. Phys., 13, 5117–5135, https://doi.org/10.5194/acp-13-5117-2013, 2013.
Eyring, V., Köhler, H. W., van Aardenne, J., and Lauer, A.: Emissions
from international shipping: 1. The last 50 years, J. Geophys. Res.-Atmos., 110, D17305, https://doi.org/10.1029/2004JD005619, 2005.
Fairlie, T. D., Jacob, D. J., and Park, R. J.: The impact of transpacific
transport of mineral dust in the United States, Atmos. Environ., 41,
1251–1266, https://doi.org/10.1016/j.atmosenv.2006.09.048, 2007.
Fernández-González, R., Yebra-Pimentel, I., Martínez-Carballo,
E., Simal-Gándara, J., and Pontevedra-Pombal, X.: Atmospheric pollutants
in fog and rain events at the northwestern mountains of the Iberian
Peninsula, Sci. Total Environ., 497–498, 188–199,
https://doi.org/10.1016/j.scitotenv.2014.07.093, 2014.
Fisak, J., Stoyanova, V., Tesar, M., Petrova, P., Daskalova, N., Tsacheva,
T., and Marinov, M.: The pollutants in rime and fog water and in air at
Milesovka Observatory (Czech Republic), Biologia, 64, 492–495,
https://doi.org/10.2478/s11756-009-0080-0, 2009.
Fisher, J. A., Jacob, D. J., Wang, Q., Bahreini, R., Carouge, C. C.,
Cubison, M. J., Dibb, J. E., Diehl, T., Jimenez, J. L., Leibensperger, E.
M., Lu, Z., Meinders, M. B. J., Pye, H. O. T., Quinn, P. K., Sharma, S.,
Streets, D. G., van Donkelaar, A., and Yantosca, R. M.: Sources,
distribution, and acidity of sulfate–ammonium aerosol in the Arctic in
winter–spring, Atmos. Environ., 45, 7301–7318,
https://doi.org/10.1016/j.atmosenv.2011.08.030, 2011.
Franco, B., Clarisse, L., Stavrakou, T., Müller, J. -F., Taraborrelli,
D., Hadji-Lazaro, J., Hannigan, J. W., Hase, F., Hurtmans, D., Jones, N.,
Lutsch, E., Mahieu, E., Ortega, I., Schneider, M., Strong, K., Vigouroux,
C., Clerbaux, C., and Coheur, P. -F.: Spaceborne Measurements of Formic and
Acetic Acids: A Global View of the Regional Sources, Geophys. Res. Lett.,
47, e2019GL086239, https://doi.org/10.1029/2019GL086239, 2020.
Galloway, J. N.: Acid deposition: Perspectives in time and space, Water.
Air. Soil Pollut., 85, 15–24, https://doi.org/10.1007/BF00483685, 1995.
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs,
L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan,
K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A.,
da Silva, A. M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D.,
Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M.,
Schubert, S. D., Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective
Analysis for Research and Applications, Version 2 (MERRA-2), J. Climate,
30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017.
Gillett, R. W. and Ayers, G. P.: Maritime Cloudwater Acidity Near Tasmania,
Clean Air Aust., 23, 106–109, 1989.
Gioda, A., Reyes-Rodríguez, G. J., Santos-Figueroa, G., Collett, J. L.,
Decesari, S., Ramos, M. da C. K. V., Bezerra Netto, H. J. C., de Aquino
Neto, F. R., and Mayol-Bracero, O. L.: Speciation of water-soluble inorganic,
organic, and total nitrogen in a background marine environment: Cloud water,
rainwater, and aerosol particles, J. Geophys. Res., 116, D05203,
https://doi.org/10.1029/2010JD015010, 2011.
Graedel, T. E. and Goldberg, K. I.: Kinetic studies of raindrop chemistry:
1. Inorganic and organic processes, J. Geophys. Res., 88, 10865,
https://doi.org/10.1029/JC088iC15p10865, 1983.
Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., and Wang, X.: The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions, Geosci. Model Dev., 5, 1471–1492, https://doi.org/10.5194/gmd-5-1471-2012, 2012.
Gundersen, P., Schmidt, I. K., and Raulund-Rasmussen, K.: Leaching of nitrate
from temperate forests: effects of air pollution and forest management,
Environ. Rev., 14, 1–57, https://doi.org/10.1139/a05-015, 2006.
Guo, J., Wang, Y., Shen, X., Wang, Z., Lee, T., Wang, X., Li, P., Sun, M.,
Collett, J. L., Wang, W., and Wang, T.: Characterization of cloud water
chemistry at Mount Tai, China: Seasonal variation, anthropogenic impact, and
cloud processing, Atmos. Environ., 60, 467–476,
https://doi.org/10.1016/j.atmosenv.2012.07.016, 2012.
Hass, H., Ebel, A., Feldmann, H., Jakobs, H. J., and Memmesheimer, M.:
Evaluation studies with a regional chemical transport model (EURAD) using
air quality data from the EMEP monitoring network, Atmos. Environ., 27, 867–887, https://doi.org/10.1016/0960-1686(93)90007-L, 1993.
Heald, C. L., Jacob, D. J., Turquety, S., Hudman, R. C., Weber, R. J.,
Sullivan, A. P., Peltier, R. E., Atlas, E. L., de Gouw, J. A., Warneke, C.,
Holloway, J. S., Neuman, J. A., Flocke, F. M., and Seinfeld, J. H.:
Concentrations and sources of organic carbon aerosols in the free
troposphere over North America, J. Geophys. Res.-Atmos., 111,
D23S47, https://doi.org/10.1029/2006JD007705, 2006.
Hegg, D. A., Hobbs, P. V., and Radke, L. F.: Measurements of the scavenging
of sulfate and nitrate in clouds, Atmos. Environ., 1967, 18, 1939–1946,
https://doi.org/10.1016/0004-6981(84)90371-8, 1984.
Helas, G., Bingemer, H., and Andreae, M. O.: Organic acids over equatorial
Africa: Results from DECAFE 88, J. Geophys. Res., 97, 6187,
https://doi.org/10.1029/91JD01438, 1992.
Herrmann, H., Schaefer, T., Tilgner, A., Styler, S. A., Weller, C., Teich,
M., and Otto, T.: Tropospheric Aqueous-Phase Chemistry: Kinetics, Mechanisms,
and Its Coupling to a Changing Gas Phase, Chem. Rev., 115, 4259–4334,
https://doi.org/10.1021/cr500447k, 2015.
Hill, K. A., Shepson, P. B., Galbavy, E. S., Anastasio, C., Kourtev, P. S.,
Konopka, A., and Stirm, B. H.: Processing of atmospheric nitrogen by clouds
above a forest environment, J. Geophys. Res., 112, D11301,
https://doi.org/10.1029/2006JD008002, 2007.
Hoesly, R. M., Smith, S. J., Feng, L., Klimont, Z., Janssens-Maenhout, G., Pitkanen, T., Seibert, J. J., Vu, L., Andres, R. J., Bolt, R. M., Bond, T. C., Dawidowski, L., Kholod, N., Kurokawa, J.-I., Li, M., Liu, L., Lu, Z., Moura, M. C. P., O'Rourke, P. R., and Zhang, Q.: Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS), Geosci. Model Dev., 11, 369–408, https://doi.org/10.5194/gmd-11-369-2018, 2018.
Holmes, C. D., Prather, M. J., and Vinken, G. C. M.: The climate impact of ship NOx emissions: an improved estimate accounting for plume chemistry, Atmos. Chem. Phys., 14, 6801–6812, https://doi.org/10.5194/acp-14-6801-2014, 2014.
Holmes, C. D., Bertram, T. H., Confer, K. L., Graham, K. A., Ronan, A. C.,
Wirks, C. K., and Shah, V.: The Role of Clouds in the Tropospheric NOx
Cycle: A New Modeling Approach for Cloud Chemistry and Its Global
Implications, Geophys. Res. Lett., 46, 4980–4990,
https://doi.org/10.1029/2019GL081990, 2019.
Hu, L., Millet, D. B., Baasandorj, M., Griffis, T. J., Turner, P., Helmig,
D., Curtis, A. J., and Hueber, J.: Isoprene emissions and impacts over an
ecological transition region in the U.S. Upper Midwest inferred from tall
tower measurements: Isoprene emissions in US Upper Midwest, J. Geophys. Res.-Atmos., 120, 3553–3571, https://doi.org/10.1002/2014JD022732, 2015.
Huang, J., Jaeglé, L., and Shah, V.: Using CALIOP to constrain blowing snow emissions of sea salt aerosols over Arctic and Antarctic sea ice, Atmos. Chem. Phys., 18, 16253–16269, https://doi.org/10.5194/acp-18-16253-2018, 2018.
Hudman, R. C., Moore, N. E., Mebust, A. K., Martin, R. V., Russell, A. R., Valin, L. C., and Cohen, R. C.: Steps towards a mechanistic model of global soil nitric oxide emissions: implementation and space based-constraints, Atmos. Chem. Phys., 12, 7779–7795, https://doi.org/10.5194/acp-12-7779-2012, 2012.
Huijnen, V., Williams, J., van Weele, M., van Noije, T., Krol, M., Dentener, F., Segers, A., Houweling, S., Peters, W., de Laat, J., Boersma, F., Bergamaschi, P., van Velthoven, P., Le Sager, P., Eskes, H., Alkemade, F., Scheele, R., Nédélec, P., and Pätz, H.-W.: The global chemistry transport model TM5: description and evaluation of the tropospheric chemistry version 3.0, Geosci. Model Dev., 3, 445–473, https://doi.org/10.5194/gmd-3-445-2010, 2010.
Hutchings, J. W., Robinson, M. S., McIlwraith, H., Triplett Kingston, J., and
Herckes, P.: The Chemistry of Intercepted Clouds in Northern Arizona during
the North American Monsoon Season, Water Air. Soil Pollut., 199,
191–202, https://doi.org/10.1007/s11270-008-9871-0, 2009.
Jaeglé, L., Quinn, P. K., Bates, T. S., Alexander, B., and Lin, J.-T.: Global distribution of sea salt aerosols: new constraints from in situ and remote sensing observations, Atmos. Chem. Phys., 11, 3137–3157, https://doi.org/10.5194/acp-11-3137-2011, 2011.
Kawamura, K., Steinberg, S., and Kaplan, I. R.: Concentrations of monocarboxylic and
dicarboxylic acids and aldehydes in southern California wet precipitations: Comparison of
urban and nonurban samples and compositional changes during scavenging, Atmos. Environ., 30, 1035–1052,
https://doi.org/10.1016/1352-2310(95)00404-1, 1996.
Keene, W. C. and Galloway, J. N.: Organic acidity in precipitation of North
America, Atmos. Environ. 1967, 18, 2491–2497,
https://doi.org/10.1016/0004-6981(84)90020-9, 1984.
Keene, W. C., Galloway, J. N., and Holden, J. D.: Measurement of weak organic
acidity in precipitation from remote areas of the world, J. Geophys. Res.-Oceans, 88, 5122–5130, https://doi.org/10.1029/JC088iC09p05122, 1983.
Keene, W. C., Galloway, J. N., Likens, G. E., Deviney, F. A., Mikkelsen, K.
N., Moody, J. L., and Maben, J. R.: Atmospheric Wet Deposition in Remote
Regions: Benchmarks for Environmental Change, J. Atmos. Sci., 72,
2947–2978, https://doi.org/10.1175/JAS-D-14-0378.1, 2015.
Keller, C. A., Long, M. S., Yantosca, R. M., Da Silva, A. M., Pawson, S., and Jacob, D. J.: HEMCO v1.0: a versatile, ESMF-compliant component for calculating emissions in atmospheric models, Geosci. Model Dev., 7, 1409–1417, https://doi.org/10.5194/gmd-7-1409-2014, 2014.
Khan, M. A. H., Lyons, K., Chhantyal-Pun, R., McGillen, M. R., Caravan, R.
L., Taatjes, C. A., Orr-Ewing, A. J., Percival, C. J., and Shallcross, D. E.:
Investigating the Tropospheric Chemistry of Acetic Acid Using the Global 3-D
Chemistry Transport Model, STOCHEM-CRI, J. Geophys. Res.-Atmos.,
123, 6267–6281, https://doi.org/10.1029/2018JD028529, 2018.
Khare, P., Kumar, N., Kumari, K. M., and Srivastava, S. S.: Atmospheric
formic and acetic acids: An overview, Rev. Geophys., 37, 227–248,
https://doi.org/10.1029/1998RG900005, 1999.
Kim, H. J., Lee, T., Park, T., Park, G., Collett, J. L., Park, K., Ahn, J.
Y., Ban, J., Kang, S., Kim, K., Park, S.-M., Jho, E. H., and Choi, Y.:
Ship-borne observations of sea fog and rain chemistry over the North and
South Pacific Ocean, J. Atmos. Chem., 76, 315–326,
https://doi.org/10.1007/s10874-020-09403-8, 2019.
Kim, P. S., Jacob, D. J., Fisher, J. A., Travis, K., Yu, K., Zhu, L., Yantosca, R. M., Sulprizio, M. P., Jimenez, J. L., Campuzano-Jost, P., Froyd, K. D., Liao, J., Hair, J. W., Fenn, M. A., Butler, C. F., Wagner, N. L., Gordon, T. D., Welti, A., Wennberg, P. O., Crounse, J. D., St. Clair, J. M., Teng, A. P., Millet, D. B., Schwarz, J. P., Markovic, M. Z., and Perring, A. E.: Sources, seasonality, and trends of southeast US aerosol: an integrated analysis of surface, aircraft, and satellite observations with the GEOS-Chem chemical transport model, Atmos. Chem. Phys., 15, 10411–10433, https://doi.org/10.5194/acp-15-10411-2015, 2015.
Kuylenstierna, J. C. I., Rodhe, H., Cinderby, S., and Hicks, K.:
Acidification in Developing Countries: Ecosystem Sensitivity and the
Critical Load Approach on a Global Scale, AMBIO J. Hum. Environ., 30,
20–28, https://doi.org/10.1579/0044-7447-30.1.20, 2001.
Lamarque, J.-F., Emmons, L. K., Hess, P. G., Kinnison, D. E., Tilmes, S., Vitt, F., Heald, C. L., Holland, E. A., Lauritzen, P. H., Neu, J., Orlando, J. J., Rasch, P. J., and Tyndall, G. K.: CAM-chem: description and evaluation of interactive atmospheric chemistry in the Community Earth System Model, Geosci. Model Dev., 5, 369–411, https://doi.org/10.5194/gmd-5-369-2012, 2012.
Lamarque, J.-F., Dentener, F., McConnell, J., Ro, C.-U., Shaw, M., Vet, R., Bergmann, D., Cameron-Smith, P., Dalsoren, S., Doherty, R., Faluvegi, G., Ghan, S. J., Josse, B., Lee, Y. H., MacKenzie, I. A., Plummer, D., Shindell, D. T., Skeie, R. B., Stevenson, D. S., Strode, S., Zeng, G., Curran, M., Dahl-Jensen, D., Das, S., Fritzsche, D., and Nolan, M.: Multi-model mean nitrogen and sulfur deposition from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): evaluation of historical and projected future changes, Atmos. Chem. Phys., 13, 7997–8018, https://doi.org/10.5194/acp-13-7997-2013, 2013.
Langner, J., Bergström, R., and Foltescu, V.: Impact of climate change on
surface ozone and deposition of sulphur and nitrogen in Europe, Atmos.
Environ., 39, 1129–1141, https://doi.org/10.1016/j.atmosenv.2004.09.082, 2005.
Legrand, M., Preunkert, S., Jourdain, B., and Aumont, B.: Year-round records
of gas and particulate formic and acetic acids in the boundary layer at
Dumont d'Urville, coastal Antarctica, J. Geophys. Res.-Atmos., 109,
D06313, https://doi.org/10.1029/2003JD003786, 2004.
Li, J., Wang, X., Chen, J., Zhu, C., Li, W., Li, C., Liu, L., Xu, C., Wen, L., Xue, L., Wang, W., Ding, A., and Herrmann, H.: Chemical composition and droplet size distribution of cloud at the summit of Mount Tai, China, Atmos. Chem. Phys., 17, 9885–9896, https://doi.org/10.5194/acp-17-9885-2017, 2017.
Li, M., Zhang, Q., Kurokawa, J.-I., Woo, J.-H., He, K., Lu, Z., Ohara, T., Song, Y., Streets, D. G., Carmichael, G. R., Cheng, Y., Hong, C., Huo, H., Jiang, X., Kang, S., Liu, F., Su, H., and Zheng, B.: MIX: a mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP, Atmos. Chem. Phys., 17, 935–963, https://doi.org/10.5194/acp-17-935-2017, 2017.
Li, T., Wang, Z., Wang, Y., Wu, C., Liang, Y., Xia, M., Yu, C., Yun, H., Wang, W., Wang, Y., Guo, J., Herrmann, H., and Wang, T.: Chemical characteristics of cloud water and the impacts on aerosol properties at a subtropical mountain site in Hong Kong SAR, Atmos. Chem. Phys., 20, 391–407, https://doi.org/10.5194/acp-20-391-2020, 2020.
Liljestrand, H. M.: Average rainwater pH, concepts of atmospheric acidity,
and buffering in open systems, Atmos. Environ., 1967, 487–499,
https://doi.org/10.1016/0004-6981(85)90169-6, 1985.
Liu, H., Jacob, D. J., Bey, I., and Yantosca, R. M.: Constraints from 210Pb
and 7Be on wet deposition and transport in a global three-dimensional
chemical, J. Geophys. Res., 106, 12109–12128,
https://doi.org/10.1029/2000JD900839, 2001.
Mahowald, N. M., Baker, A. R., Bergametti, G., Brooks, N., Duce, R. A.,
Jickells, T. D., Kubilay, N., Prospero, J. M., and Tegen, I.: Atmospheric
global dust cycle and iron inputs to the ocean, Global Biogeochem. Cycles,
19, GB4025, https://doi.org/10.1029/2004GB002402, 2005.
Makowski Giannoni, S., Rollenbeck, R., Fabian, P., and Bendix, J.: Complex
topography influences atmospheric nitrate deposition in a neotropical
mountain rainforest, Atmos. Environ., 79, 385–394,
https://doi.org/10.1016/j.atmosenv.2013.06.023, 2013.
Makowski Giannoni, S., Trachte, K., Rollenbeck, R., Lehnert, L., Fuchs, J., and Bendix, J.: Atmospheric salt deposition in a tropical mountain rainforest at the eastern Andean slopes of south Ecuador – Pacific or Atlantic origin?, Atmos. Chem. Phys., 16, 10241–10261, https://doi.org/10.5194/acp-16-10241-2016, 2016.
Mao, J., Paulot, F., Jacob, D. J., Cohen, R. C., Crounse, J. D., Wennberg,
P. O., Keller, C. A., Hudman, R. C., Barkley, M. P., and Horowitz, L. W.:
Ozone and organic nitrates over the eastern United States: Sensitivity to
isoprene chemistry, J. Geophys. Res.-Atmos., 118, 11256–11268,
https://doi.org/10.1002/jgrd.50817, 2013.
Marais, E. A. and Wiedinmyer, C.: Air Quality Impact of Diffuse and
Inefficient Combustion Emissions in Africa (DICE-Africa), Environ. Sci.
Technol., 50, 10739–10745, https://doi.org/10.1021/acs.est.6b02602, 2016.
Martin, L. R., Damschen, D. E., and Judekis, H. S.: Sulfur oxide oxidation
reaction in aqueous solution, US Environmental Protection Agency, Research
Triangle Park, NC, 1981.
McDuffie, E. E., Fibiger, D. L., Dubé, W. P., Lopez-Hilfiker, F., Lee,
B. H., Thornton, J. A., Shah, V., Jaeglé, L., Guo, H., Weber, R. J.,
Michael Reeves, J., Weinheimer, A. J., Schroder, J. C., Campuzano-Jost, P.,
Jimenez, J. L., Dibb, J. E., Veres, P., Ebben, C., Sparks, T. L.,
Wooldridge, P. J., Cohen, R. C., Hornbrook, R. S., Apel, E. C., Campos, T.,
Hall, S. R., Ullmann, K., and Brown, S. S.: Heterogeneous N2O5 Uptake During
Winter: Aircraft Measurements During the 2015 WINTER Campaign and Critical
Evaluation of Current Parameterizations, J. Geophys. Res.-Atmos.,
123, 4345–4372, https://doi.org/10.1002/2018JD028336, 2018.
Meyer-Christoffer, A., Becker, A., Finger, P., Schneider, U., and Ziese, M.:
GPCC Climatology Version 2018 at 0.5∘: Monthly Land-Surface
Precipitation Climatology for Every Month and the Total Year from
Rain-Gauges built on GTS-based and Historical Data,
https://doi.org/10.5676/DWD_GPCC/CLIM_M_V2018_050, 2018.
Michna, P., Werner, R. A., and Eugster, W.: Does fog chemistry in Switzerland
change with altitude?, Atmos. Res., 151, 31–44,
https://doi.org/10.1016/j.atmosres.2014.02.008, 2015.
Millet, D. B., Baasandorj, M., Farmer, D. K., Thornton, J. A., Baumann, K., Brophy, P., Chaliyakunnel, S., de Gouw, J. A., Graus, M., Hu, L., Koss, A., Lee, B. H., Lopez-Hilfiker, F. D., Neuman, J. A., Paulot, F., Peischl, J., Pollack, I. B., Ryerson, T. B., Warneke, C., Williams, B. J., and Xu, J.: A large and ubiquitous source of atmospheric formic acid, Atmos. Chem. Phys., 15, 6283–6304, https://doi.org/10.5194/acp-15-6283-2015, 2015.
Moch, J. M., Dovrou, L. J., Mickley, L. J., Keutsch, F. N., Liu, Z., Wang,
Y., Dombek, T. L., Kuwata, M., Budisulistiorini, S. H., Yang, L., Decesari,
S., Paglione, M., Alexander, B., Shao, J., Munger, J. W., and Jacob, D. J.:
Global importance of hydroxymethanesulfonate in ambient particulate matter:
Implications for air quality, J. Geophys. Res.-Atmos., 125,
e2020JD032706, https://doi.org/10.1029/2020JD032706, 2020.
Morgan, J. J.: Factors Governing the pH, Availability of H+, and Oxidation
Capacity of Rain, in: Atmospheric Chemistry, edited by: Goldberg, E. D., pp.
17–40, Springer Berlin Heidelberg, Berlin, Heidelberg, 1982.
Murray, G. L. D., Kimball, K. D., Hill, L. B., Hislop, J. E., and Weathers,
K. C.: Long-Term Trends in Cloud and Rain Chemistry on Mount Washington, New
Hampshire, Water. Air. Soil Pollut., 224, 1653, https://doi.org/10.1007/s11270-013-1653-7,
2013.
Murray, L. T., Jacob, D. J., Logan, J. A., Hudman, R. C., and Koshak, W. J.:
Optimized regional and interannual variability of lightning in a global
chemical transport model constrained by LIS/OTD satellite data, J. Geophys. Res.-Atmos., 117, D20307, https://doi.org/10.1029/2012JD017934, 2012.
Myriokefalitakis, S., Tsigaridis, K., Mihalopoulos, N., Sciare, J., Nenes, A., Kawamura, K., Segers, A., and Kanakidou, M.: In-cloud oxalate formation in the global troposphere: a 3-D modeling study, Atmos. Chem. Phys., 11, 5761–5782, https://doi.org/10.5194/acp-11-5761-2011, 2011.
NADP: NTN data for all sites, available at:
http://nadp.slh.wisc.edu/data/NTN/ntnAllsites.aspx, last access: 11 October 2019.
Nieberding, F., Breuer, B., Braeckevelt, E., Klemm, O., Song, Q., and Zhang,
Y.: Fog Water Chemical Composition on Ailaoshan Mountain, Yunnan Province,
SW China, Aerosol Air Qual. Res., 18, 37–48,
https://doi.org/10.4209/aaqr.2017.01.0060, 2018.
Niu, Y., Li, X., Pu, J., and Huang, Z.: Organic acids contribute to rainwater
acidity at a rural site in eastern China, Air Qual. Atmosphere Health,
11, 459–469, https://doi.org/10.1007/s11869-018-0553-9, 2018.
Nordstrom, D. K., Plummer, L. N., Langmuir, D., Busenberg, E., May, H. M.,
Jones, B. F., and Parkhurst, D. L.: Revised Chemical Equilibrium Data for
Major Water–Mineral Reactions and Their Limitations, in: Chemical Modeling
of Aqueous Systems II, vol. 416, edited by: Melchior, D. C. and Bassett, R. L.,
pp. 398–413, American Chemical Society, Washington, D.C., 1990.
NRC: Acid Deposition: Atmospheric Processes in Eastern North America,
National Academies Press, Washington, D.C., 1983.
Ogren, J. and Rodhe, H.: Measurements of the chemical composition of
cloudwater at a clean air site in central Scandinavia, Tellus B, 38, 190–196, https://doi.org/10.3402/tellusb.v38i3-4.15128, 1986.
Olendrzynski, K., Jonson, J. E., Bartnicki, J., Jakobsen, H. A., and Berge,
E.: EMEP Eulerian model for acid deposition over Europe, Int. J. Environ.
Pollut., 14, 391, https://doi.org/10.1504/IJEP.2000.000561, 2000.
Overton, J. H., Aneja, V. P., and Durham, J. L.: Production of sulfate in
rain and raindrops in polluted atmospheres, Atmos. Environ., 13,
355–367, https://doi.org/10.1016/0004-6981(79)90292-0, 1979.
Pandis, S. N. and Seinfeld, J. H.: Sensitivity analysis of a chemical
mechanism for aqueous-phase atmospheric chemistry, J. Geophys. Res., 94,
1105–1126, https://doi.org/10.1029/JD094iD01p01105, 1989.
Parungo, F., Nagamoto, C., Nolt, I., Dias, M., and Nickerson, E.: Chemical
analysis of cloud water collected over Hawaii, J. Geophys. Res., 87,
8805, https://doi.org/10.1029/JC087iC11p08805, 1982.
Paulot, F., Wunch, D., Crounse, J. D., Toon, G. C., Millet, D. B., DeCarlo, P. F., Vigouroux, C., Deutscher, N. M., González Abad, G., Notholt, J., Warneke, T., Hannigan, J. W., Warneke, C., de Gouw, J. A., Dunlea, E. J., De Mazière, M., Griffith, D. W. T., Bernath, P., Jimenez, J. L., and Wennberg, P. O.: Importance of secondary sources in the atmospheric budgets of formic and acetic acids, Atmos. Chem. Phys., 11, 1989–2013, https://doi.org/10.5194/acp-11-1989-2011, 2011.
Paulot, F., Malyshev, S., Nguyen, T., Crounse, J. D., Shevliakova, E., and Horowitz, L. W.: Representing sub-grid scale variations in nitrogen deposition associated with land use in a global Earth system model: implications for present and future nitrogen deposition fluxes over North America, Atmos. Chem. Phys., 18, 17963–17978, https://doi.org/10.5194/acp-18-17963-2018, 2018.
Peña, R. M., García, S., Herrero, C., Losada, M., Vázquez, A., and
Lucas, T.: Organic acids and aldehydes in rainwater in a northwest region of
Spain, Atmos. Environ., 36, 5277–5288,
https://doi.org/10.1016/S1352-2310(02)00648-9, 2002.
Philip, S., Martin, R. V., Snider, G., Weagle, C. L., van Donkelaar, A.,
Brauer, M., Henze, D. K., Klimont, Z., Venkataraman, C., Guttikunda, S. K.,
and Zhang, Q.: Anthropogenic fugitive, combustion and industrial dust is a
significant, underrepresented fine particulate matter source in global
atmospheric models, Environ. Res. Lett., 12, 044018,
https://doi.org/10.1088/1748-9326/aa65a4, 2017.
Platt, U. and Hönninger, G.: The role of halogen species in the
troposphere, Chemosphere, 52, 325–338,
https://doi.org/10.1016/S0045-6535(03)00216-9, 2003.
Prabhakar, G., Ervens, B., Wang, Z., Maudlin, L. C., Coggon, M. M., Jonsson,
H. H., Seinfeld, J. H., and Sorooshian, A.: Sources of nitrate in
stratocumulus cloud water: Airborne measurements during the 2011 E-PEACE and
2013 NiCE studies, Atmos. Environ., 97, 166–173,
https://doi.org/10.1016/j.atmosenv.2014.08.019, 2014.
Pye, H. O. T., Nenes, A., Alexander, B., Ault, A. P., Barth, M. C., Clegg, S. L., Collett Jr., J. L., Fahey, K. M., Hennigan, C. J., Herrmann, H., Kanakidou, M., Kelly, J. T., Ku, I.-T., McNeill, V. F., Riemer, N., Schaefer, T., Shi, G., Tilgner, A., Walker, J. T., Wang, T., Weber, R., Xing, J., Zaveri, R. A., and Zuend, A.: The acidity of atmospheric particles and clouds, Atmos. Chem. Phys., 20, 4809–4888, https://doi.org/10.5194/acp-20-4809-2020, 2020.
Reuss, J. O. and Johnson, D. W.: Acid Deposition and the Acidification of
Soils and Waters, Springer New York, New York, NY, 1986.
Ridley, D. A., Heald, C. L., Pierce, J. R., and Evans, M. J.: Toward
resolution-independent dust emissions in global models: Impacts on the
seasonal and spatial distribution of dust, Geophys. Res. Lett., 40,
2873–2877, https://doi.org/10.1002/grl.50409, 2013.
Rodhe, H., Langner, J., Gallardo, L., and Kjellström, E.: Global scale
transport of acidifying pollutants, Water Air. Soil Pollut., 85, 37–50,
https://doi.org/10.1007/BF00483687, 1995.
Rodhe, H., Dentener, F., and Schulz, M.: The Global Distribution of
Acidifying Wet Deposition, Environ. Sci. Technol., 36, 4382–4388,
https://doi.org/10.1021/es020057g, 2002.
Sander, R.: Compilation of Henry's law constants (version 4.0) for water as solvent, Atmos. Chem. Phys., 15, 4399–4981, https://doi.org/10.5194/acp-15-4399-2015, 2015.
Sanhueza, E., Arias, M. C., Donoso, L., Graterol, N., Hermoso, M., Marti,
I., Romero, J., Rondon, A., and Santana, M.: Chemical composition of acid
rains in the Venezuelan savannah region, Tellus B, 44, 54–62,
https://doi.org/10.1034/j.1600-0889.1992.00005.x, 1992.
Saxena, V. K. and Lin, N.-H.: Cloud chemistry measurements and estimates of
acidic deposition on an above cloudbase coniferous forest, Atmos. Environ., 24, 329–352, https://doi.org/10.1016/0960-1686(90)90113-2, 1990.
Schunk, C., Trautwein, P., Hruschka, H., Frost, E., Dodson, L., Derhem, A.,
Bargach, J., and Menzel, A.: Testing Water Yield, Efficiency of Different
Meshes and Water Quality with a Novel Fog Collector for High Wind Speeds,
Aerosol Air Qual. Res., 18, 240–253, https://doi.org/10.4209/aaqr.2016.12.0528,
2018.
Schwab, J. J., Casson, P., Brandt, R., Husain, L., Dutkewicz, V., Wolfe, D.,
Demerjian, K. L., Civerolo, K. L., Rattigan, O. V., Felton, H. D., and
Dukett, J. E.: Atmospheric Chemistry Measurements at Whiteface Mountain, NY:
Cloud Water Chemistry, Precipitation Chemistry, and Particulate Matter,
Aerosol Air Qual. Res., 16, 841–854, https://doi.org/10.4209/aaqr.2015.05.0344,
2016.
Sherwen, T., Schmidt, J. A., Evans, M. J., Carpenter, L. J., Großmann, K., Eastham, S. D., Jacob, D. J., Dix, B., Koenig, T. K., Sinreich, R., Ortega, I., Volkamer, R., Saiz-Lopez, A., Prados-Roman, C., Mahajan, A. S., and Ordóñez, C.: Global impacts of tropospheric halogens (Cl, Br, I) on oxidants and composition in GEOS-Chem, Atmos. Chem. Phys., 16, 12239–12271, https://doi.org/10.5194/acp-16-12239-2016, 2016.
Sheu, G.-R. and Lin, N.-H.: Characterizations of wet mercury deposition to a
remote islet (Pengjiayu) in the subtropical Northwest Pacific Ocean, Atmos.
Environ., 77, 474–481, https://doi.org/10.1016/j.atmosenv.2013.05.038, 2013.
Sigha-Nkamdjou, L., Galy-Lacaux, C., Pont, V., Richard, S., Sighomnou, D.,
and Lacaux, J. P.: Rainwater Chemistry and Wet Deposition over the
Equatorial Forested Ecosystem of Zoétélé (Cameroon), J. Atmos.
Chem., 46, 173–198, https://doi.org/10.1023/A:1026057413640, 2003.
Simon, S., Klemm, O., Tarek, E.-M., Joschka, W., Katharina, A., Po-Hsiung,
L., Shih-Chieh, C., Neng-Huei, L., Guenter, E., Shih-Chieh, H., Tsong-Huei,
W., Ya-Nan, W., and Yu-Chi, L.: Chemical Composition of Fog Water at Four
Sites in Taiwan, Aerosol Air Qual. Res., 16, 618–631,
https://doi.org/10.4209/aaqr.2015.03.0154, 2016.
Simpson, D., Benedictow, A., Berge, H., Bergström, R., Emberson, L. D., Fagerli, H., Flechard, C. R., Hayman, G. D., Gauss, M., Jonson, J. E., Jenkin, M. E., Nyíri, A., Richter, C., Semeena, V. S., Tsyro, S., Tuovinen, J.-P., Valdebenito, Á., and Wind, P.: The EMEP MSC-W chemical transport model – technical description, Atmos. Chem. Phys., 12, 7825–7865, https://doi.org/10.5194/acp-12-7825-2012, 2012.
Søvde, O. A., Prather, M. J., Isaksen, I. S. A., Berntsen, T. K., Stordal, F., Zhu, X., Holmes, C. D., and Hsu, J.: The chemical transport model Oslo CTM3, Geosci. Model Dev., 5, 1441–1469, https://doi.org/10.5194/gmd-5-1441-2012, 2012.
Stavrakou, T., Müller, J.-F., Peeters, J., Razavi, A., Clarisse, L.,
Clerbaux, C., Coheur, P.-F., Hurtmans, D., De Mazière, M., Vigouroux,
C., Deutscher, N. M., Griffith, D. W. T., Jones, N., and Paton-Walsh, C.:
Satellite evidence for a large source of formic acid from boreal and
tropical forests, Nat. Geosci., 5, 26–30, https://doi.org/10.1038/ngeo1354, 2012.
Stettler, M. E. J., Eastham, S., and Barrett, S. R. H.: Air quality and
public health impacts of UK airports. Part I: Emissions, Atmos. Environ.,
45, 5415–5424, https://doi.org/10.1016/j.atmosenv.2011.07.012, 2011.
Straub, D. J., Lee, T., and Collett Jr., J. L.: Chemical composition of
marine stratocumulus clouds over the eastern Pacific Ocean, J. Geophys. Res.-Atmos., 112, D04307, https://doi.org/10.1029/2006JD007439, 2007.
Stumm, W., Sigg, L., and Schnoor, J. L.: Aquatic chemistry of acid
deposition, Environ. Sci. Technol., 21, 8–13, https://doi.org/10.1021/es00155a001,
1987.
Sun, L., Wang, Y., Yue, T., Yang, X., Xue, L., and Wang, W.: Evaluation of
the behavior of clouds in a region of severe acid rain pollution in southern
China: species, complexes, and variations, Environ. Sci. Pollut. Res.,
22, 14280–14290, https://doi.org/10.1007/s11356-015-4674-5, 2015.
Sun, M., Wang, Y., Wang, T., Fan, S., Wang, W., Li, P., Guo, J., and Li, Y.:
Cloud and the corresponding precipitation chemistry in south China:
Water-soluble components and pollution transport, J. Geophys. Res.,
115, D22303, https://doi.org/10.1029/2010JD014315, 2010.
Talbot, R. W., Andreae, M. O., Berresheim, H., Jacob, D. J., and Beecher, K.
M.: Sources and sinks of formic, acetic, and pyruvic acids over central
Amazonia: 2. Wet season, J. Geophys. Res., 95, 16799,
https://doi.org/10.1029/JD095iD10p16799, 1990.
Talbot, R. W., Dibb, J. E., Lefer, B. L., Scheuer, E. M., Bradshaw, J. D.,
Sandholm, S. T., Smyth, S., Blake, D. R., Blake, N. J., Sachse, G. W.,
Collins, J. E., and Gregory, G. L.: Large-scale distributions of tropospheric
nitric, formic, and acetic acids over the western Pacific basin during
wintertime, J. Geophys. Res.-Atmos., 102, 28303–28313,
https://doi.org/10.1029/96JD02975, 1997.
Tost, H., Jöckel, P., Kerkweg, A., Pozzer, A., Sander, R., and Lelieveld, J.: Global cloud and precipitation chemistry and wet deposition: tropospheric model simulations with ECHAM5/MESSy1, Atmos. Chem. Phys., 7, 2733–2757, https://doi.org/10.5194/acp-7-2733-2007, 2007.
Travis, K. R., Jacob, D. J., Fisher, J. A., Kim, P. S., Marais, E. A., Zhu, L., Yu, K., Miller, C. C., Yantosca, R. M., Sulprizio, M. P., Thompson, A. M., Wennberg, P. O., Crounse, J. D., St. Clair, J. M., Cohen, R. C., Laughner, J. L., Dibb, J. E., Hall, S. R., Ullmann, K., Wolfe, G. M., Pollack, I. B., Peischl, J., Neuman, J. A., and Zhou, X.: Why do models overestimate surface ozone in the Southeast United States?, Atmos. Chem. Phys., 16, 13561–13577, https://doi.org/10.5194/acp-16-13561-2016, 2016.
U.S. Environmental Protection Agency: 2011 National Emissions Inventory
(NEI) Data, available at:
https://www.epa.gov/air-emissions-inventories/2011-national-emissions-inventory-nei-data,
last access: 23 March 2018.
van der Werf, G. R., Randerson, J. T., Giglio, L., van Leeuwen, T. T., Chen, Y., Rogers, B. M., Mu, M., van Marle, M. J. E., Morton, D. C., Collatz, G. J., Yokelson, R. J., and Kasibhatla, P. S.: Global fire emissions estimates during 1997–2016, Earth Syst. Sci. Data, 9, 697–720, https://doi.org/10.5194/essd-9-697-2017, 2017.
van Donkelaar, A., Martin, R. V., Leaitch, W. R., Macdonald, A. M., Walker, T. W., Streets, D. G., Zhang, Q., Dunlea, E. J., Jimenez, J. L., Dibb, J. E., Huey, L. G., Weber, R., and Andreae, M. O.: Analysis of aircraft and satellite measurements from the Intercontinental Chemical Transport Experiment (INTEX-B) to quantify long-range transport of East Asian sulfur to Canada, Atmos. Chem. Phys., 8, 2999–3014, https://doi.org/10.5194/acp-8-2999-2008, 2008.
van Pinxteren, D., Fomba, K. W., Mertes, S., Müller, K., Spindler, G., Schneider, J., Lee, T., Collett, J. L., and Herrmann, H.: Cloud water composition during HCCT-2010: Scavenging efficiencies, solute concentrations, and droplet size dependence of inorganic ions and dissolved organic carbon, Atmos. Chem. Phys., 16, 3185–3205, https://doi.org/10.5194/acp-16-3185-2016, 2016.
Venkatram, A., Karamchandani, P. K., and Misra, P. K.: Testing a
comprehensive acid deposition model, Atmos. Environ., 22, 737–747,
https://doi.org/10.1016/0004-6981(88)90011-X, 1988.
Vet, R., Artz, R. S., Carou, S., Shaw, M., Ro, C.-U., Aas, W., Baker, A.,
Bowersox, V. C., Dentener, F., Galy-Lacaux, C., Hou, A., Pienaar, J. J.,
Gillett, R., Forti, M. C., Gromov, S., Hara, H., Khodzher, T., Mahowald, N.
M., Nickovic, S., Rao, P. S. P., and Reid, N. W.: A global assessment of
precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base
cations, organic acids, acidity and pH, and phosphorus, Atmos. Environ., 93,
3–100, https://doi.org/10.1016/j.atmosenv.2013.10.060, 2014.
Vinken, G. C. M., Boersma, K. F., Jacob, D. J., and Meijer, E. W.: Accounting for non-linear chemistry of ship plumes in the GEOS-Chem global chemistry transport model, Atmos. Chem. Phys., 11, 11707–11722, https://doi.org/10.5194/acp-11-11707-2011, 2011.
Vong, R. J., Baker, B. M., Brechtel, F. J., Collier, R. T., Harris, J. M.,
Kowalski, A. S., McDonald, N. C., and Mcinnes, L. M.: Ionic and trace element
composition of cloud water collected on the Olympic Peninsula of Washington
State, Atmos. Environ., 31, 1991–2001,
https://doi.org/10.1016/S1352-2310(96)00337-8, 1997.
von Glasow, R. and Crutzen, P. J.: 4.02 – Tropospheric Halogen Chemistry, in Treatise on
Geochemistry, edited by: Holland, H. D. and Turekian, K. K., pp. 1–67, Pergamon, Oxford,
2003.
Wang, C., Corbett, J. J., and Firestone, J.: Improving Spatial Representation
of Global Ship Emissions Inventories, Environ. Sci. Technol., 42,
193–199, https://doi.org/10.1021/es0700799, 2008.
Wang, Q., Jacob, D. J., Fisher, J. A., Mao, J., Leibensperger, E. M., Carouge, C. C., Le Sager, P., Kondo, Y., Jimenez, J. L., Cubison, M. J., and Doherty, S. J.: Sources of carbonaceous aerosols and deposited black carbon in the Arctic in winter–spring: implications for radiative forcing, Atmos. Chem. Phys., 11, 12453–12473, https://doi.org/10.5194/acp-11-12453-2011, 2011.
Wang, W., Xu, W., Collett, J. L., Liu, D., Zheng, A., Dore, A. J., and Liu,
X.: Chemical compositions of fog and precipitation at Sejila Mountain in the
southeast Tibetan Plateau, China, Environ. Pollut., 253, 560–568,
https://doi.org/10.1016/j.envpol.2019.07.055, 2019.
Wang, X., Jacob, D. J., Eastham, S. D., Sulprizio, M. P., Zhu, L., Chen, Q., Alexander, B., Sherwen, T., Evans, M. J., Lee, B. H., Haskins, J. D., Lopez-Hilfiker, F. D., Thornton, J. A., Huey, G. L., and Liao, H.: The role of chlorine in global tropospheric chemistry, Atmos. Chem. Phys., 19, 3981–4003, https://doi.org/10.5194/acp-19-3981-2019, 2019.
Wang, Y., Jacob, D. J., and Logan, J. A.: Global simulation of tropospheric
O3-NOx-hydrocarbon chemistry: 1. Model formulation, J. Geophys. Res.-Atmos., 103, 10713–10725, https://doi.org/10.1029/98JD00158, 1998.
Wang, Z., Sorooshian, A., Prabhakar, G., Coggon, M. M., and Jonsson, H. H.:
Impact of emissions from shipping, land, and the ocean on stratocumulus
cloud water elemental composition during the 2011 E-PEACE field campaign,
Atmos. Environ., 89, 570–580, https://doi.org/10.1016/j.atmosenv.2014.01.020, 2014.
Warneck, P.: Chemistry of the Natural Atmosphere (2nd ed.), pp. 451–510, Academic
Press, San Diego, 2000.
Watanabe, K., Honoki, H., Iwai, A., Tomatsu, A., Noritake, K., Miyashita,
N., Yamada, K., Yamada, H., Kawamura, H., and Aoki, K.: Chemical
Characteristics of Fog Water at Mt. Tateyama, Near the Coast of the Japan
Sea in Central Japan, Water Air. Soil Pollut., 211, 379–393,
https://doi.org/10.1007/s11270-009-0307-2, 2010.
Watanabe, S., Hajima, T., Sudo, K., Nagashima, T., Takemura, T., Okajima, H., Nozawa, T., Kawase, H., Abe, M., Yokohata, T., Ise, T., Sato, H., Kato, E., Takata, K., Emori, S., and Kawamiya, M.: MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments, Geosci. Model Dev., 4, 845–872, https://doi.org/10.5194/gmd-4-845-2011, 2011.
Watmough, S. A., Aherne, J., Alewell, C., Arp, P., Bailey, S., Clair, T.,
Dillon, P., Duchesne, L., Eimers, C., Fernandez, I., Foster, N., Larssen,
T., Miller, E., Mitchell, M., and Page, S.: Sulphate, Nitrogen and Base
Cation Budgets at 21 Forested Catchments in Canada, the United States and
Europe, Environ. Monit. Assess., 109, 1–36,
https://doi.org/10.1007/s10661-005-4336-z, 2005.
Weathers, K. C., Likens, G. E., Bormann, F. Herbert., Bicknell, S. H.,
Bormann, B. T., Daube, B. C., Eaton, J. S., Galloway, J. N., Keene, W. C., Kimball, K. D., McDowell, W. H., Siccama, T.
G., Smiley, D., and Tarrant, R. A.: Cloudwater chemistry from ten sites in North America,
Environ. Sci. Technol., 22, 1018–1026, https://doi.org/10.1021/es00174a004, 1988.
Wesely, M.: Parameterization of surface resistances to gaseous dry
deposition in regional-scale numerical models, Atmos. Environ., 23,
1293–1304, https://doi.org/10.1016/0004-6981(89)90153-4, 1989.
Xu, G., Lee, X., Lü, Y., Chen, Y., and Huang, D.: Seasonal variations of
carboxylic acids and their contributions to the rainwater acidity: A case
study of Guiyang and Shangzhong, China, Chin. Sci. Bull., 55,
1667–1673, https://doi.org/10.1007/s11434-009-3343-9, 2010.
Yoboué, V., Galy-Lacaux, C., Lacaux, J. P., and Silué, S.: Rainwater
Chemistry and Wet Deposition over the Wet Savanna Ecosystem of Lamto
(Côte d'Ivoire), J. Atmos. Chem., 52, 117–141,
https://doi.org/10.1007/s10874-005-0281-z, 2005.
Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., Li, H., Li, X., Peng, L., Qi, J., Yan, L., Zhang, Y., Zhao, H., Zheng, Y., He, K., and Zhang, Q.: Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions, Atmos. Chem. Phys., 18, 14095–14111, https://doi.org/10.5194/acp-18-14095-2018, 2018.
Zhu, C., Chen, J., Wang, X., Li, J., Wei, M., Xu, C., Xu, X., Ding, A., and
Collett, J. L.: Chemical Composition and Bacterial Community in
Size-Resolved Cloud Water at the Summit of Mt. Tai, China, Aerosol Air Qual.
Res., 18, 1–14, https://doi.org/10.4209/aaqr.2016.11.0493, 2018.
Zinder, B., Schumann, T., and Waldvogel, A.: Aerosol and hydrometeor
concentrations and their chemical composition during winter precipitation
along a mountain slope – II. Enhancement of below-cloud scavenging in a
stably stratified atmosphere, Atmos. Environ., 22, 2741–2750,
https://doi.org/10.1016/0004-6981(88)90441-6, 1988.
Short summary
Cloud water pH affects atmospheric chemistry, and acid rain damages ecosystems. We use model simulations along with observations to present a global view of cloud water and precipitation pH. Sulfuric acid, nitric acid, and ammonia control the pH in the northern midlatitudes, but carboxylic acids and dust cations are important in the tropics and subtropics. The acid inputs to many nitrogen-saturated ecosystems are high enough to cause acidification, with ammonium as the main acidifying species.
Cloud water pH affects atmospheric chemistry, and acid rain damages ecosystems. We use model...
Altmetrics
Final-revised paper
Preprint