Research article
30 Jan 2020
Research article
| 30 Jan 2020
Retrieval of the vertical evolution of the cloud effective radius from the Chinese FY-4 (Feng Yun 4) next-generation geostationary satellites
Yilun Chen et al.
Related authors
No articles found.
Aoqi Zhang, Chen Chen, Yilun Chen, Weibiao Li, Shumin Chen, and Yunfei Fu
Earth Syst. Sci. Data, 14, 1433–1445, https://doi.org/10.5194/essd-14-1433-2022, https://doi.org/10.5194/essd-14-1433-2022, 2022
Short summary
Short summary
We constructed an event-based precipitation dataset with life cycle evolution based on coordinated application of observations from spaceborne active precipitation radar and geostationary satellites. The dataset provides both three-dimensional structures of the precipitation system and its corresponding life cycle evolution. The dataset greatly reduces the data size and avoids complex data processing algorithms for studying the life cycle evolution of precipitation microphysics.
Wengang Zhang, Ling Wang, Yang Yu, Guirong Xu, Xiuqing Hu, Zhikang Fu, and Chunguang Cui
Atmos. Meas. Tech., 14, 7821–7834, https://doi.org/10.5194/amt-14-7821-2021, https://doi.org/10.5194/amt-14-7821-2021, 2021
Short summary
Short summary
Global precipitable water vapor (PWV) derived from MERSI-II (Medium Resolution Spectral Imager) is compared with PWV from the Integrated Global Radiosonde Archive (IGRA). Our results show a good agreement between PWV from MERSI-II and IGRA and that MERSI-II PWV is slightly underestimated on the whole, especially in summer. The bias between MERSI-II and IGRA grows with a larger spatial distance between the footprint of the satellite and the IGRA station, as well as increasing PWV.
Lilu Sun and Yunfei Fu
Earth Syst. Sci. Data, 13, 2293–2306, https://doi.org/10.5194/essd-13-2293-2021, https://doi.org/10.5194/essd-13-2293-2021, 2021
Short summary
Short summary
Multi-source dataset use is hampered by use of different spatial and temporal resolutions. We merged Tropical Rainfall Measuring Mission precipitation radar and visible and infrared scanner measurements with ERA5 reanalysis. The statistical results indicate this process has no unacceptable influence on the original data. The merged dataset can help in studying characteristics of and changes in cloud and precipitation systems and provides an opportunity for data analysis and model simulations.
Ziyu Huang, Lei Zhong, Yaoming Ma, and Yunfei Fu
Geosci. Model Dev., 14, 2827–2841, https://doi.org/10.5194/gmd-14-2827-2021, https://doi.org/10.5194/gmd-14-2827-2021, 2021
Short summary
Short summary
Spectral nudging is an effective dynamical downscaling method used to improve precipitation simulations of regional climate models (RCMs). However, the biases of the driving fields over the Tibetan Plateau (TP) would possibly introduce extra biases when spectral nudging is applied. The results show that the precipitation simulations were significantly improved when limiting the application of spectral nudging toward the potential temperature and water vapor mixing ratio over the TP.
Chao Yu, Tianliang Zhao, Yongqing Bai, Lei Zhang, Shaofei Kong, Xingna Yu, Jinhai He, Chunguang Cui, Jie Yang, Yinchang You, Guoxu Ma, Ming Wu, and Jiacheng Chang
Atmos. Chem. Phys., 20, 7217–7230, https://doi.org/10.5194/acp-20-7217-2020, https://doi.org/10.5194/acp-20-7217-2020, 2020
Short summary
Short summary
This study investigated the ambient PM2.5 variations over Wuhan, a typical urban Yangtze River middle basin (YRMB) region in central eastern China in January 2016. Through an analysis of observational data of the environment and meteorology, as well as via a FLEXPART-WRF simulation, it heavy air pollution is revealed with the unique “non-stagnant” atmospheric boundary layer in the YRMB region aggravated by regional transport of PM2.5 over central and eastern China.
Meixin Zhang, Chun Zhao, Zhiyuan Cong, Qiuyan Du, Mingyue Xu, Yu Chen, Ming Chen, Rui Li, Yunfei Fu, Lei Zhong, Shichang Kang, Delong Zhao, and Yan Yang
Atmos. Chem. Phys., 20, 5923–5943, https://doi.org/10.5194/acp-20-5923-2020, https://doi.org/10.5194/acp-20-5923-2020, 2020
Short summary
Short summary
Analysis of multiple numerical experiments over the Himalayas and Tibetan Plateau (TP) shows that the complex topography results in 50 % stronger overall cross-Himalayan transport during the pre-monsoon season primarily due to the strengthened efficiency of near-surface meridional transport towards the TP, enhanced wind speed in some valleys and deeper valley channels associated with larger transported BC mass volume, which leads to 30–50 % stronger BC radiative heating over the TP.
Lei Zhong, Yaoming Ma, Zeyong Hu, Yunfei Fu, Yuanyuan Hu, Xian Wang, Meilin Cheng, and Nan Ge
Atmos. Chem. Phys., 19, 5529–5541, https://doi.org/10.5194/acp-19-5529-2019, https://doi.org/10.5194/acp-19-5529-2019, 2019
Short summary
Short summary
Fine-temporal-resolution turbulent heat fluxes at the plateau scale have significant importance for studying diurnal variation characteristics of atmospheric boundary and weather systems in the Tibetan Plateau (TP) and its surroundings. Time series of land surface heat fluxes with high temporal resolution over the entire TP were derived. The derived surface heat fluxes proved to be in good agreement with in situ measurements and were superior to GLDAS flux products.
Renmin Yuan, Tao Luo, Jianning Sun, Hao Liu, Yunfei Fu, and Zhien Wang
Atmos. Meas. Tech., 9, 1925–1937, https://doi.org/10.5194/amt-9-1925-2016, https://doi.org/10.5194/amt-9-1925-2016, 2016
Short summary
Short summary
Atmospheric aerosol has a great influence on the natural environment. Despite consistent research efforts, there are still uncertainties in our understanding of its effects due to poor knowledge of aerosol vertical transport. In this paper, a new method for measuring atmospheric aerosol mass vertical transport flux is developed based on the similarity theory, the theory of light propagation, and the observations and studies of the atmospheric equivalent refractive index.
X. Y. Zheng, Y. F. Fu, Y. J. Yang, and G. S. Liu
Atmos. Chem. Phys., 15, 12115–12138, https://doi.org/10.5194/acp-15-12115-2015, https://doi.org/10.5194/acp-15-12115-2015, 2015
Short summary
Short summary
We systematically examined that how various large-scale atmospheric conditions (ACs) affects the distributions of aerosol optical depth (AOD) over eastern China. We extract and depict nine main types for AOD (six polluted types and three clean types) in autumn over eastern China. The results provide convincing evidence that the general characteristics of atmospheric circulations contribute significantly to the different types of regional pollution.
R. Yuan, T. Luo, J. Sun, Z. Zeng, C. Ge, and Y. Fu
Atmos. Chem. Phys., 15, 2521–2531, https://doi.org/10.5194/acp-15-2521-2015, https://doi.org/10.5194/acp-15-2521-2015, 2015
Short summary
Short summary
This study developed a theoretical framework to analyse the contribution of absorption to scintillation, which can be used to derive the imaginary part of the ARISP in the urban atmospheric boundary layer from scintillation measurements. In this study, a simple expression for the imaginary part of the ARISP is obtained, which can be conveniently used to determine the imaginary part of the ARISP from LAS measurements. The experimental results showed good agreement with the presented theory.
Related subject area
Subject: Clouds and Precipitation | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Lightning activity in northern Europe during a stormy winter: disruptions of weather patterns originating in global climate phenomena
A climatology of open and closed mesoscale cellular convection over the Southern Ocean derived from Himawari-8 observations
Methodology to determine the coupling of continental clouds with surface and boundary layer height under cloudy conditions from lidar and meteorological data
Albedo susceptibility of northeastern Pacific stratocumulus: the role of covarying meteorological conditions
Opportunistic experiments to constrain aerosol effective radiative forcing
Environmental effects on aerosol–cloud interaction in non-precipitating marine boundary layer (MBL) clouds over the eastern North Atlantic
Hemispheric contrasts in ice formation in stratiform mixed-phase clouds: disentangling the role of aerosol and dynamics with ground-based remote sensing
Microphysical process of precipitating hydrometeors from warm-front mid-level stratiform clouds revealed by ground-based lidar observations
Overview: Fusion of radar polarimetry and numerical atmospheric modelling towards an improved understanding of cloud and precipitation processes
A climatology of trade-wind cumulus cold pools and their link to mesoscale cloud organization
Stability dependent increases in liquid water with droplet number in the Arctic
Global evidence of aerosol-induced invigoration in marine cumulus clouds
Impacts of the Saharan air layer on the physical properties of the Atlantic tropical cyclone cloud systems: 2003–2019
Two-year statistics of columnar-ice production in stratiform clouds over Hyytiälä, Finland: environmental conditions and the relevance to secondary ice production
Changes in cirrus cloud properties and occurrence over Europe during the COVID-19-caused air traffic reduction
A new conceptual model for adiabatic fog
Deciphering organization of GOES-16 green cumulus through the empirical orthogonal function (EOF) lens
Satellite retrieval of cloud base height and geometric thickness of low-level cloud based on CALIPSO
Lightning occurrences and intensity over the Indian region: long-term trends and future projections
Contrasting ice formation in Arctic clouds: surface-coupled vs. surface-decoupled clouds
Evaluation of the CMIP6 marine subtropical stratocumulus cloud albedo and its controlling factors
Identifying meteorological influences on marine low-cloud mesoscale morphology using satellite classifications
Optically thin clouds in the trades
Lidar observations of cirrus clouds in Palau (7°33′ N, 134°48′ E)
Observing the timescales of aerosol–cloud interactions in snapshot satellite images
Potential impact of aerosols on convective clouds revealed by Himawari-8 observations over different terrain types in eastern China
How frequent is natural cloud seeding from ice cloud layers ( < −35 °C) over Switzerland?
Processes contributing to cloud dissipation and formation events on the North Slope of Alaska
Characterisation and surface radiative impact of Arctic low clouds from the IAOOS field experiment
A-Train estimates of the sensitivity of the cloud-to-rainwater ratio to cloud size, relative humidity, and aerosols
Ice injected into the tropopause by deep convection – Part 2: Over the Maritime Continent
3D radiative heating of tropical upper tropospheric cloud systems derived from synergistic A-Train observations and machine learning
The potential of increasing man-made air pollution to reduce rainfall over southern West Africa
The dual-field-of-view polarization lidar technique: a new concept in monitoring aerosol effects in liquid-water clouds – theoretical framework
The dual-field-of-view polarization lidar technique: a new concept in monitoring aerosol effects in liquid-water clouds – case studies
Constraining the Twomey effect from satellite observations: issues and perspectives
Microphysical properties of three types of snow clouds: implication for satellite snowfall retrievals
Properties of ice cloud over Beijing from surface Ka-band radar observations during 2014–2017
Linkage among ice crystal microphysics, mesoscale dynamics, and cloud and precipitation structures revealed by collocated microwave radiometer and multifrequency radar observations
Possible mechanisms of summer cirrus clouds over the Tibetan Plateau
Mid-level clouds are frequent above the southeast Atlantic stratocumulus clouds
Towards the connection between snow microphysics and melting layer: insights from multifrequency and dual-polarization radar observations during BAECC
Cloud phase characteristics over Southeast Asia from A-Train satellite observations
Cloud regimes over the Amazon Basin: perspectives from the GoAmazon2014/5 campaign
Microphysics and dynamics of snowfall associated with a warm conveyor belt over Korea
Linking large-scale circulation patterns to low-cloud properties
Quantifying cloud adjustments and the radiative forcing due to aerosol–cloud interactions in satellite observations of warm marine clouds
Small-scale structure of thermodynamic phase in Arctic mixed-phase clouds observed by airborne remote sensing during a cold air outbreak and a warm air advection event
The influence of water vapor anomalies on clouds and their radiative effect at Ny-Ålesund
Variability in cirrus cloud properties using a PollyXT Raman lidar over high and tropical latitudes
Ivana Kolmašová, Ondřej Santolík, and Kateřina Rosická
Atmos. Chem. Phys., 22, 3379–3389, https://doi.org/10.5194/acp-22-3379-2022, https://doi.org/10.5194/acp-22-3379-2022, 2022
Short summary
Short summary
The 2014–2015 winter brought an enormous number of lightning strokes to northern Europe, about 4 times more than their long-term median over the last decade. This unusual production of lightning, concentrated above the ocean and along the western coastal areas, was probably due to a combination of large-scale climatic events like El Niño and the North Atlantic Oscillation, causing increased sea surface temperatures and updraft strengths, which acted as additional thundercloud-charging drivers.
Francisco Lang, Luis Ackermann, Yi Huang, Son C. H. Truong, Steven T. Siems, and Michael J. Manton
Atmos. Chem. Phys., 22, 2135–2152, https://doi.org/10.5194/acp-22-2135-2022, https://doi.org/10.5194/acp-22-2135-2022, 2022
Short summary
Short summary
Marine low-level clouds cover vast areas of the Southern Ocean, and they are essential to the Earth system energy balance. We use 3 years of satellite observations to group low-level clouds by their spatial structure using a pattern-recognizing program. We studied two primary cloud type patterns, i.e. open and closed clouds. Open clouds are uniformly distributed over the storm track, while closed clouds are most predominant in the southeastern Indian Ocean. Closed clouds exhibit a daily cycle.
Tianning Su, Youtong Zheng, and Zhanqing Li
Atmos. Chem. Phys., 22, 1453–1466, https://doi.org/10.5194/acp-22-1453-2022, https://doi.org/10.5194/acp-22-1453-2022, 2022
Short summary
Short summary
To enrich our understanding of coupling of continental clouds, we developed a novel methodology to determine cloud coupling state from a lidar and a suite of surface meteorological instruments. This method is built upon advancement in our understanding of fundamental boundary layer processes and clouds. As the first remote sensing method for determining the coupling state of low clouds over land, this methodology paves a solid ground for further investigating the coupled land–atmosphere system.
Jianhao Zhang, Xiaoli Zhou, Tom Goren, and Graham Feingold
Atmos. Chem. Phys., 22, 861–880, https://doi.org/10.5194/acp-22-861-2022, https://doi.org/10.5194/acp-22-861-2022, 2022
Short summary
Short summary
Oceanic liquid-form clouds are effective sunlight reflectors. Their brightness is highly sensitive to changes in the amount of aerosol particles in the atmosphere and the state of the atmosphere they reside in. This study quantifies this sensitivity using long-term satellite observations and finds an overall cloud brightening (a cooling effect) potential and an essential role of the covarying meteorological conditions in governing this sensitivity for northeastern Pacific stratocumulus.
Matthew W. Christensen, Andrew Gettelman, Jan Cermak, Guy Dagan, Michael Diamond, Alyson Douglas, Graham Feingold, Franziska Glassmeier, Tom Goren, Daniel P. Grosvenor, Edward Gryspeerdt, Ralph Kahn, Zhanqing Li, Po-Lun Ma, Florent Malavelle, Isabel L. McCoy, Daniel T. McCoy, Greg McFarquhar, Johannes Mülmenstädt, Sandip Pal, Anna Possner, Adam Povey, Johannes Quaas, Daniel Rosenfeld, Anja Schmidt, Roland Schrödner, Armin Sorooshian, Philip Stier, Velle Toll, Duncan Watson-Parris, Robert Wood, Mingxi Yang, and Tianle Yuan
Atmos. Chem. Phys., 22, 641–674, https://doi.org/10.5194/acp-22-641-2022, https://doi.org/10.5194/acp-22-641-2022, 2022
Short summary
Short summary
Trace gases and aerosols (tiny airborne particles) are released from a variety of point sources around the globe. Examples include volcanoes, industrial chimneys, forest fires, and ship stacks. These sources provide opportunistic experiments with which to quantify the role of aerosols in modifying cloud properties. We review the current state of understanding on the influence of aerosol on climate built from the wide range of natural and anthropogenic laboratories investigated in recent decades.
Xiaojian Zheng, Baike Xi, Xiquan Dong, Peng Wu, Timothy Logan, and Yuan Wang
Atmos. Chem. Phys., 22, 335–354, https://doi.org/10.5194/acp-22-335-2022, https://doi.org/10.5194/acp-22-335-2022, 2022
Short summary
Short summary
This study uses ground-based observations to investigate the physical processes in the aerosol–cloud interactions in non-precipitating marine boundary layer clouds, over the eastern North Atlantic Ocean. Results show that the cloud responses to the aerosols are diminished with limited water vapor supply, while they are enhanced with increasing water vapor availability. The clouds are found to be most sensitive to the aerosols under sufficient water vapor and strong boundary layer turbulence.
Martin Radenz, Johannes Bühl, Patric Seifert, Holger Baars, Ronny Engelmann, Boris Barja González, Rodanthi-Elisabeth Mamouri, Félix Zamorano, and Albert Ansmann
Atmos. Chem. Phys., 21, 17969–17994, https://doi.org/10.5194/acp-21-17969-2021, https://doi.org/10.5194/acp-21-17969-2021, 2021
Short summary
Short summary
This study brings together long-term ground-based remote-sensing observations of mixed-phase clouds at three key locations of aerosol–cloud interactions in the Northern and Southern Hemisphere midlatitudes. The findings contribute several new aspects on the nature of the excess of supercooled liquid clouds in the Southern Hemisphere, such as a long-term lidar-based estimate of ice-nucleating particle profiles as well as the effects of boundary layer coupling and gravity waves on ice formation.
Yang Yi, Fan Yi, Fuchao Liu, Yunpeng Zhang, Changming Yu, and Yun He
Atmos. Chem. Phys., 21, 17649–17664, https://doi.org/10.5194/acp-21-17649-2021, https://doi.org/10.5194/acp-21-17649-2021, 2021
Short summary
Short summary
Our lidar observations reveal the complete microphysical process of hydrometeors falling from mid-level stratiform clouds. We find that the surface rainfall begins as supercooled mixed-phase hydrometeors fall out of a liquid parent cloud base. We find also that the collision–coalescence growth of precipitating raindrops and subsequent spontaneous breakup always occur around 0.6 km altitude during surface rainfalls. Our findings provide new insights into stratiform precipitation formation.
Silke Trömel, Clemens Simmer, Ulrich Blahak, Armin Blanke, Sabine Doktorowski, Florian Ewald, Michael Frech, Mathias Gergely, Martin Hagen, Tijana Janjic, Heike Kalesse-Los, Stefan Kneifel, Christoph Knote, Jana Mendrok, Manuel Moser, Gregor Köcher, Kai Mühlbauer, Alexander Myagkov, Velibor Pejcic, Patric Seifert, Prabhakar Shrestha, Audrey Teisseire, Leonie von Terzi, Eleni Tetoni, Teresa Vogl, Christiane Voigt, Yuefei Zeng, Tobias Zinner, and Johannes Quaas
Atmos. Chem. Phys., 21, 17291–17314, https://doi.org/10.5194/acp-21-17291-2021, https://doi.org/10.5194/acp-21-17291-2021, 2021
Short summary
Short summary
The article introduces the ACP readership to ongoing research in Germany on cloud- and precipitation-related process information inherent in polarimetric radar measurements, outlines pathways to inform atmospheric models with radar-based information, and points to remaining challenges towards an improved fusion of radar polarimetry and atmospheric modelling.
Raphaela Vogel, Heike Konow, Hauke Schulz, and Paquita Zuidema
Atmos. Chem. Phys., 21, 16609–16630, https://doi.org/10.5194/acp-21-16609-2021, https://doi.org/10.5194/acp-21-16609-2021, 2021
Short summary
Short summary
The shallow cumulus clouds that populate the trade-wind regions can produce substantial amounts of rain. Before reaching the surface, part of the rain can evaporate and form pools of cold air that spread at the surface as density currents. We use 10 years of data from Barbados to show that such cold pools occur on 3 out of 4 d, that cold-pool periods are 90 % cloudier relative to the average winter conditions, and that they are connected to specific patterns of mesoscale cloud organization.
Rebecca Jonette Murray-Watson and Edward Gryspeerdt
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-861, https://doi.org/10.5194/acp-2021-861, 2021
Revised manuscript accepted for ACP
Short summary
Short summary
Clouds are important to the Arctic surface energy budget, but the impact of aerosols on their properties is largely uncertain. This work uses satellite data to measure the liquid water path-droplet number relationship, a key aspect of how aerosols affect clouds. The lower tropospheric stability (LTS) strongly influences the relationship, with lower cloud water at lower stability. As the Arctic warms, LTS is projected to decrease, potentially resulting in clouds with a weaker cooling effect.
Alyson Douglas and Tristan L'Ecuyer
Atmos. Chem. Phys., 21, 15103–15114, https://doi.org/10.5194/acp-21-15103-2021, https://doi.org/10.5194/acp-21-15103-2021, 2021
Short summary
Short summary
When aerosols enter the atmosphere, they interact with the clouds above in what we term aerosol–cloud interactions and lead to a series of reactions which delay the onset of rain. This delay may lead to increased rain rates, or invigoration, when the cloud eventually rains. We show that aerosol leads to invigoration in certain environments. The strength of the invigoration depends on how large the cloud is, which suggests that it is highly tied to the organization of the cloud system.
Hao Luo and Yong Han
Atmos. Chem. Phys., 21, 15171–15184, https://doi.org/10.5194/acp-21-15171-2021, https://doi.org/10.5194/acp-21-15171-2021, 2021
Short summary
Short summary
The various feedbacks of Atlantic tropical cyclones (TCs) to the Saharan air layer (SAL) are determined by the combined effects of dry air masses, the dust aerosols as ice nuclei, and dynamic, thermodynamic, and moisture conditions. The specific influence mechanisms of SAL on the three intensities of TCs (tropical depression, tropical storm, and hurricane) are different. The conclusions are beneficial to our recognition of the physical process and evolution of TCs in the Atlantic region.
Haoran Li, Ottmar Möhler, Tuukka Petäjä, and Dmitri Moisseev
Atmos. Chem. Phys., 21, 14671–14686, https://doi.org/10.5194/acp-21-14671-2021, https://doi.org/10.5194/acp-21-14671-2021, 2021
Short summary
Short summary
In natural clouds, ice-nucleating particles are expected to be rare above –10 °C. In the current paper, we found that the formation of ice columns is frequent in stratiform clouds and is associated with increased precipitation intensity and liquid water path. In single-layer shallow clouds, the production of ice columns was attributed to secondary ice production, despite the rime-splintering process not being expected to take place in such clouds.
Qiang Li and Silke Groß
Atmos. Chem. Phys., 21, 14573–14590, https://doi.org/10.5194/acp-21-14573-2021, https://doi.org/10.5194/acp-21-14573-2021, 2021
Short summary
Short summary
Aircraft emit exhaust gases and particles directly into the atmosphere, which may contribute to climate change. We present a significant reduction in the occurrence rate and particle linear depolarization ratio of cirrus clouds based on the analysis of measurements with the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite during COVID-19 when air traffic was significantly reduced. The findings imply that these clouds formed with less influence from aviation.
Felipe Toledo, Martial Haeffelin, Eivind Wærsted, and Jean-Charles Dupont
Atmos. Chem. Phys., 21, 13099–13117, https://doi.org/10.5194/acp-21-13099-2021, https://doi.org/10.5194/acp-21-13099-2021, 2021
Short summary
Short summary
The article presents a new conceptual model to describe the temporal evolution of continental fog layers, developed based on 7 years of fog measurements performed at the SIRTA observatory, France. This new paradigm relates the visibility reduction caused by fog to its vertical thickness and liquid water path and provides diagnostic variables that could substantially improve the reliability of fog dissipation nowcasting at a local scale, based on real-time profiling observation.
Tom Dror, Mickaël D. Chekroun, Orit Altaratz, and Ilan Koren
Atmos. Chem. Phys., 21, 12261–12272, https://doi.org/10.5194/acp-21-12261-2021, https://doi.org/10.5194/acp-21-12261-2021, 2021
Short summary
Short summary
A part of continental shallow convective cumulus (Cu) was shown to share properties such as organization and formation over vegetated areas, thus named green Cu. Mechanisms behind the formed patterns are not understood. We use different metrics and an empirical orthogonal function (EOF) to decompose the dataset and quantify organization factors (cloud streets and gravity waves). We show that clouds form a highly organized grid structure over hundreds of kilometers at the field lifetime.
Xin Lu, Feiyue Mao, Daniel Rosenfeld, Yannian Zhu, Zengxin Pan, and Wei Gong
Atmos. Chem. Phys., 21, 11979–12003, https://doi.org/10.5194/acp-21-11979-2021, https://doi.org/10.5194/acp-21-11979-2021, 2021
Short summary
Short summary
In this paper, a novel method for retrieving cloud base height and geometric thickness is developed and applied to produce a global climatology of boundary layer clouds with a high accuracy. The retrieval is based on the 333 m resolution low-level cloud distribution as obtained from the CALIPSO lidar data. The main part of the study describes the variability of cloud vertical geometrical properties in space, season, and time of the day. Resultant new insights are presented.
Rohit Chakraborty, Arindam Chakraborty, Ghouse Basha, and Madineni Venkat Ratnam
Atmos. Chem. Phys., 21, 11161–11177, https://doi.org/10.5194/acp-21-11161-2021, https://doi.org/10.5194/acp-21-11161-2021, 2021
Short summary
Short summary
In this study, urbanization-induced surface warming has been found to trigger prominent changes in upper-troposphere–lower-stratosphere regions leading to stronger and more frequent lightning extremes over India. Consequently, the implementation of this hypothesis in global climate models reveals that lightning frequency and intensity values across India will rise by ~10–25 % and 15–50 %, respectively, by 2100 at the current urbanization rate, which should be alarming for present policymakers.
Hannes J. Griesche, Kevin Ohneiser, Patric Seifert, Martin Radenz, Ronny Engelmann, and Albert Ansmann
Atmos. Chem. Phys., 21, 10357–10374, https://doi.org/10.5194/acp-21-10357-2021, https://doi.org/10.5194/acp-21-10357-2021, 2021
Short summary
Short summary
Heterogeneous ice formation in Arctic mixed-phase clouds under consideration of their surface-coupling state is investigated. Cloud phase and macrophysical properties were determined by means of lidar and cloud radar measurements, the coupling state, and cloud minimum temperature by radiosonde profiles. Above −15 °C cloud minimum temperature, surface-coupled clouds are more likely to contain ice by a factor of 2–6. By means of a literature survey, causes of the observed effects are discussed.
Bida Jian, Jiming Li, Guoyin Wang, Yuxin Zhao, Yarong Li, Jing Wang, Min Zhang, and Jianping Huang
Atmos. Chem. Phys., 21, 9809–9828, https://doi.org/10.5194/acp-21-9809-2021, https://doi.org/10.5194/acp-21-9809-2021, 2021
Short summary
Short summary
We evaluate the performance of the AMIP6 model in simulating cloud albedo over marine subtropical regions and the impacts of different aerosol types and meteorological factors on the cloud albedo based on multiple satellite datasets and reanalysis data. The results show that AMIP6 demonstrates moderate improvement over AMIP5 in simulating the monthly variation in cloud albedo, and changes in different aerosol types and meteorological factors can explain ~65 % of the changes in the cloud albedo.
Johannes Mohrmann, Robert Wood, Tianle Yuan, Hua Song, Ryan Eastman, and Lazaros Oreopoulos
Atmos. Chem. Phys., 21, 9629–9642, https://doi.org/10.5194/acp-21-9629-2021, https://doi.org/10.5194/acp-21-9629-2021, 2021
Short summary
Short summary
Observations of marine-boundary-layer conditions are composited by cloud type, based on a new classification dataset. It is found that two cloud types, representing regions of clustered and suppressed low-level clouds, occur in very similar large-scale conditions but are distinguished from each other by considering low-level circulation and surface wind fields, validating prior results from modeling.
Theresa Mieslinger, Bjorn Stevens, Tobias Kölling, Manfred Brath, Martin Wirth, and Stefan A. Buehler
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-453, https://doi.org/10.5194/acp-2021-453, 2021
Revised manuscript accepted for ACP
Short summary
Short summary
The trades are home to a plethora of small cumulus clouds, often barely visible to the human eye and difficult to detect with active and passive remote sensing methods. With the help of a new method and by means of high-resolution data we can detect small and particularly thin clouds. We find that optically thin clouds are a common phenomenon in the trades covering a large area and influencing the radiative effect of clouds if they are undetected and contaminate the clear-sky signal.
Francesco Cairo, Mauro De Muro, Marcel Snels, Luca Di Liberto, Silvia Bucci, Bernard Legras, Ajil Kottayil, Andrea Scoccione, and Stefano Ghisu
Atmos. Chem. Phys., 21, 7947–7961, https://doi.org/10.5194/acp-21-7947-2021, https://doi.org/10.5194/acp-21-7947-2021, 2021
Short summary
Short summary
A lidar was used in Palau from February–March 2016. Clouds were observed peaking at 3 km below the high cold-point tropopause (CPT). Their occurrence was linked with cold anomalies, while in warm cases, cirrus clouds were restricted to 5 km below the CPT. Thin subvisible cirrus (SVC) near the CPT had distinctive characteristics. They were linked to wave-induced cold anomalies. Back trajectories are mostly compatible with convective outflow, while some distinctive SVC may originate in situ.
Edward Gryspeerdt, Tom Goren, and Tristan W. P. Smith
Atmos. Chem. Phys., 21, 6093–6109, https://doi.org/10.5194/acp-21-6093-2021, https://doi.org/10.5194/acp-21-6093-2021, 2021
Short summary
Short summary
Cloud responses to aerosol are time-sensitive, but this development is rarely observed. This study uses isolated aerosol perturbations from ships to measure this development and shows that macrophysical (width, cloud fraction, detectability) and microphysical (droplet number) properties of ship tracks vary strongly with time since emission, background cloud and meteorological state. This temporal development should be considered when constraining aerosol–cloud interactions with observations.
Tianmeng Chen, Zhanqing Li, Ralph A. Kahn, Chuanfeng Zhao, Daniel Rosenfeld, Jianping Guo, Wenchao Han, and Dandan Chen
Atmos. Chem. Phys., 21, 6199–6220, https://doi.org/10.5194/acp-21-6199-2021, https://doi.org/10.5194/acp-21-6199-2021, 2021
Short summary
Short summary
A convective cloud identification process is developed using geostationary satellite data from Himawari-8.
Convective cloud fraction is generally larger before noon and smaller in the afternoon under polluted conditions, but megacities and complex topography can influence the pattern.
A robust relationship between convective cloud and aerosol loading is found. This pattern varies with terrain height and is modulated by varying thermodynamic, dynamical, and humidity conditions during the day.
Ulrike Proske, Verena Bessenbacher, Zane Dedekind, Ulrike Lohmann, and David Neubauer
Atmos. Chem. Phys., 21, 5195–5216, https://doi.org/10.5194/acp-21-5195-2021, https://doi.org/10.5194/acp-21-5195-2021, 2021
Short summary
Short summary
Ice crystals falling out of one cloud can initiate freezing in a second cloud below. We estimate the occurrence frequency of this natural cloud seeding over Switzerland from satellite data and sublimation calculations. We find that such situations with an ice cloud above another cloud are frequent and that the falling crystals survive the fall between two clouds in a significant number of cases, suggesting that natural cloud seeding is an important phenomenon over Switzerland.
Joseph Sedlar, Adele Igel, and Hagen Telg
Atmos. Chem. Phys., 21, 4149–4167, https://doi.org/10.5194/acp-21-4149-2021, https://doi.org/10.5194/acp-21-4149-2021, 2021
Julia Maillard, François Ravetta, Jean-Christophe Raut, Vincent Mariage, and Jacques Pelon
Atmos. Chem. Phys., 21, 4079–4101, https://doi.org/10.5194/acp-21-4079-2021, https://doi.org/10.5194/acp-21-4079-2021, 2021
Short summary
Short summary
Clouds remain a major source of uncertainty in understanding the Arctic climate, due in part to the lack of measurements over the sea ice. In this paper, we exploit a series of lidar profiles acquired from autonomous drifting buoys deployed in the Arctic Ocean and derive a statistic of low cloud frequency and macrophysical properties. We also show that clouds contribute to warm the surface in the shoulder seasons but not significantly from May to September.
Kevin M. Smalley and Anita D. Rapp
Atmos. Chem. Phys., 21, 2765–2779, https://doi.org/10.5194/acp-21-2765-2021, https://doi.org/10.5194/acp-21-2765-2021, 2021
Short summary
Short summary
We use satellite observations of shallow cumulus clouds to investigate the influence of cloud size on the ratio of cloud water path to rainwater (WRR) in different environments. For a fixed temperature and relative humidity, WRR increases with cloud size, but it varies little with aerosols. These results imply that increasing WRR with rising temperature relates not only to deeper clouds but also to more frequent larger clouds.
Iris-Amata Dion, Cyrille Dallet, Philippe Ricaud, Fabien Carminati, Thibaut Dauhut, and Peter Haynes
Atmos. Chem. Phys., 21, 2191–2210, https://doi.org/10.5194/acp-21-2191-2021, https://doi.org/10.5194/acp-21-2191-2021, 2021
Short summary
Short summary
Ice in the tropopause has a strong radiative effect on climate. The amount of ice injected (∆IWC) up to the tropical tropopause layer has been shown to be the highest over the Maritime Continent (MC), a region that includes Indonesia. ∆IWC is studied over islands and sea of the MC. Space-borne observations of ice, precipitation and lightning are used to estimate ∆IWC and are compared to ∆IWC estimated from the ERA5 reanalyses. It is shown that Java is the area of the greatest ∆IWC over the MC.
Claudia J. Stubenrauch, Giacomo Caria, Sofia E. Protopapadaki, and Friederike Hemmer
Atmos. Chem. Phys., 21, 1015–1034, https://doi.org/10.5194/acp-21-1015-2021, https://doi.org/10.5194/acp-21-1015-2021, 2021
Short summary
Short summary
Tropical anvils formed by convective outflow play a crucial role in modulating the Earth’s energy budget and heat transport. To explore the relation between these anvils and convection, we built 3D radiative heating fields, based on machine learning employed on cloud and atmospheric properties from IR sounder and meteorological reanalyses, trained on lidar–radar retrievals. The 15-year time series reveals colder convective systems during warm periods, affecting the atmospheric heating structure.
Gregor Pante, Peter Knippertz, Andreas H. Fink, and Anke Kniffka
Atmos. Chem. Phys., 21, 35–55, https://doi.org/10.5194/acp-21-35-2021, https://doi.org/10.5194/acp-21-35-2021, 2021
Short summary
Short summary
Seasonal rainfall amounts along the densely populated West African Guinea coast have been decreasing during the past 35 years, with recently accelerating trends. We find strong indications that this is in part related to increasing human air pollution in the region. Given the fast increase in emissions, the political implications of this work are significant. Reducing air pollution locally and regionally would mitigate an imminent health crisis and socio-economic damage from reduced rainfall.
Cristofer Jimenez, Albert Ansmann, Ronny Engelmann, David Donovan, Aleksey Malinka, Jörg Schmidt, Patric Seifert, and Ulla Wandinger
Atmos. Chem. Phys., 20, 15247–15263, https://doi.org/10.5194/acp-20-15247-2020, https://doi.org/10.5194/acp-20-15247-2020, 2020
Short summary
Short summary
A novel lidar method to study cloud microphysical properties (of liquid water clouds) and to study aerosol–cloud interaction (ACI) is developed and presented in this paper. In Part 1, the theoretical framework including an error analysis is given together with an overview of the aerosol information that the same lidar system can obtain. The ACI concept based on aerosol and cloud information is also explained. Applications of the proposed approach to lidar measurements are presented in Part 2.
Cristofer Jimenez, Albert Ansmann, Ronny Engelmann, David Donovan, Aleksey Malinka, Patric Seifert, Robert Wiesen, Martin Radenz, Zhenping Yin, Johannes Bühl, Jörg Schmidt, Boris Barja, and Ulla Wandinger
Atmos. Chem. Phys., 20, 15265–15284, https://doi.org/10.5194/acp-20-15265-2020, https://doi.org/10.5194/acp-20-15265-2020, 2020
Short summary
Short summary
Part 2 presents the application of the dual-FOV polarization lidar technique introduced in Part 1. A lidar system was upgraded with a second polarization telescope, and it was deployed at the southernmost tip of South America. A comparison with alternative remote sensing techniques and the evaluation of the aerosol–cloud–wind relation in a convective boundary layer in pristine marine conditions are presented in two case studies, demonstrating the potential of the approach for ACI studies.
Johannes Quaas, Antti Arola, Brian Cairns, Matthew Christensen, Hartwig Deneke, Annica M. L. Ekman, Graham Feingold, Ann Fridlind, Edward Gryspeerdt, Otto Hasekamp, Zhanqing Li, Antti Lipponen, Po-Lun Ma, Johannes Mülmenstädt, Athanasios Nenes, Joyce E. Penner, Daniel Rosenfeld, Roland Schrödner, Kenneth Sinclair, Odran Sourdeval, Philip Stier, Matthias Tesche, Bastiaan van Diedenhoven, and Manfred Wendisch
Atmos. Chem. Phys., 20, 15079–15099, https://doi.org/10.5194/acp-20-15079-2020, https://doi.org/10.5194/acp-20-15079-2020, 2020
Short summary
Short summary
Anthropogenic pollution particles – aerosols – serve as cloud condensation nuclei and thus increase cloud droplet concentration and the clouds' reflection of sunlight (a cooling effect on climate). This Twomey effect is poorly constrained by models and requires satellite data for better quantification. The review summarizes the challenges in properly doing so and outlines avenues for progress towards a better use of aerosol retrievals and better retrievals of droplet concentrations.
Hwayoung Jeoung, Guosheng Liu, Kwonil Kim, Gyuwon Lee, and Eun-Kyoung Seo
Atmos. Chem. Phys., 20, 14491–14507, https://doi.org/10.5194/acp-20-14491-2020, https://doi.org/10.5194/acp-20-14491-2020, 2020
Short summary
Short summary
Radar and radiometer observations were used to study cloud liquid and snowfall in three types of snow clouds. While near-surface and shallow clouds have an area fraction of 90 %, deep clouds contribute half of the total snowfall volume. Deeper clouds have heavier snowfall, although cloud liquid is equally abundant in all three cloud types. The skills of a GMI Bayesian algorithm are examined. Snowfall in deep clouds may be reasonably retrieved, but it is challenging for near-surface clouds.
Juan Huo, Yufang Tian, Xue Wu, Congzheng Han, Bo Liu, Yongheng Bi, Shu Duan, and Daren Lyu
Atmos. Chem. Phys., 20, 14377–14392, https://doi.org/10.5194/acp-20-14377-2020, https://doi.org/10.5194/acp-20-14377-2020, 2020
Short summary
Short summary
A detailed analysis of ice cloud physical properties is presented based on 4 years of surface Ka-band radar measurements in Beijing, where the summer oceanic monsoon from the ocean and winter continental monsoon prevail alternately. More than 6000 ice cloud clusters were studied to investigate their physical properties, such as height, horizontal extent, temperature dependence and origination type, which can serve as a reference for parameterization and characterization in global climate models.
Jie Gong, Xiping Zeng, Dong L. Wu, S. Joseph Munchak, Xiaowen Li, Stefan Kneifel, Davide Ori, Liang Liao, and Donifan Barahona
Atmos. Chem. Phys., 20, 12633–12653, https://doi.org/10.5194/acp-20-12633-2020, https://doi.org/10.5194/acp-20-12633-2020, 2020
Short summary
Short summary
This work provides a novel way of using polarized passive microwave measurements to study the interlinked cloud–convection–precipitation processes. The magnitude of differences between polarized radiances is found linked to ice microphysics (shape, size, orientation and density), mesoscale dynamic and thermodynamic structures, and surface precipitation. We conclude that passive sensors with multiple polarized channel pairs may serve as cheaper and useful substitutes for spaceborne radar sensors.
Feng Zhang, Qiu-Run Yu, Jia-Li Mao, Chen Dan, Yanyu Wang, Qianshan He, Tiantao Cheng, Chunhong Chen, Dongwei Liu, and Yanping Gao
Atmos. Chem. Phys., 20, 11799–11808, https://doi.org/10.5194/acp-20-11799-2020, https://doi.org/10.5194/acp-20-11799-2020, 2020
Short summary
Short summary
In this work, we make the three main contributions. (1) We reveal the remarkable differences in the geographical distributions of cirrus over the Tibetan Plateau regarding the cloud top height. (2) The orography, gravity wave, and deep convection determine the formation of cirrus with a cloud top below 9, at 9–12, and above 12 km, respectively. (3) It is the first time the contributions of the Tibetan Plateau to the presence of cirrus on a regional scale are discussed.
Adeyemi A. Adebiyi, Paquita Zuidema, Ian Chang, Sharon P. Burton, and Brian Cairns
Atmos. Chem. Phys., 20, 11025–11043, https://doi.org/10.5194/acp-20-11025-2020, https://doi.org/10.5194/acp-20-11025-2020, 2020
Short summary
Short summary
Over the southeast Atlantic, interactions between the low-level clouds and the overlying smoke aerosols have previously been highlighted, but no study has yet focused on the presence of the mid-level clouds that complicate the aerosol–cloud interactions. Here we show that these optically thin super-cooled mid-level clouds are relatively common, and they frequently occur at the top of the smoke layer between August and October with significant radiative impacts on the low-level clouds.
Haoran Li, Jussi Tiira, Annakaisa von Lerber, and Dmitri Moisseev
Atmos. Chem. Phys., 20, 9547–9562, https://doi.org/10.5194/acp-20-9547-2020, https://doi.org/10.5194/acp-20-9547-2020, 2020
Short summary
Short summary
A method for classifying rimed and unrimed snow based on X- and Ka-band Doppler radar measurements is developed and applied to synergetic radar observations collected during BAECC 2014. The results show that the radar-observed melting layer properties are highly related to the precipitation intensity. The previously reported bright band sagging is mainly connected to the increase in precipitation intensity, while riming plays a secondary role.
Yulan Hong and Larry Di Girolamo
Atmos. Chem. Phys., 20, 8267–8291, https://doi.org/10.5194/acp-20-8267-2020, https://doi.org/10.5194/acp-20-8267-2020, 2020
Short summary
Short summary
Cloud phase plays a crucial role in Earth radiation budget but is not well understood. Using A-Train satellite observations, this study provides climatological studies of cloud phase characteristics over Southeast Asia on multiple meteorological scales. Results show that ice, liquid, and ice over liquid clouds display distinct spatial heterogeneity and spectral radiance features. The intraseasonal and interannual behaviors of cloud phases are useful to track the MJO and ENSO.
Scott E. Giangrande, Dié Wang, and David B. Mechem
Atmos. Chem. Phys., 20, 7489–7507, https://doi.org/10.5194/acp-20-7489-2020, https://doi.org/10.5194/acp-20-7489-2020, 2020
Short summary
Short summary
The Amazon basin experiences prolific and diverse cloud conditions that are strongly influenced by (and influence via feedbacks) seasonal shifts in the local conditions and larger-scale atmospheric circulations. The primary atmospheric regimes observed during a heavily instrumented 2-year Amazon deployment are classified. We assess the potential atmospheric controls on convective clouds, precipitation, and the propensity for these regimes to promote extremes in precipitation.
Josué Gehring, Annika Oertel, Étienne Vignon, Nicolas Jullien, Nikola Besic, and Alexis Berne
Atmos. Chem. Phys., 20, 7373–7392, https://doi.org/10.5194/acp-20-7373-2020, https://doi.org/10.5194/acp-20-7373-2020, 2020
Short summary
Short summary
In this study, we analyse how large-scale meteorological conditions influenced the local enhancement of snowfall during an intense precipitation event in Korea. We used atmospheric models, weather radars and snowflake images. We found out that a rising airstream in the warm sector of the low pressure system associated to this event influenced the evolution of snowfall. This study highlights the importance of interactions between large and local scales in this intense precipitation event.
Timothy W. Juliano and Zachary J. Lebo
Atmos. Chem. Phys., 20, 7125–7138, https://doi.org/10.5194/acp-20-7125-2020, https://doi.org/10.5194/acp-20-7125-2020, 2020
Short summary
Short summary
In this study, we use a machine learning method to examine the relationship between synoptic-scale changes in the North Pacific High structure and maritime cloud properties. Our novel approach suggests that there is a wide range (>30 W m−2, ~20 % of magnitude) of possible shortwave cloud radiative effect that is a clear function of the circulation pattern. We hope that this work will help improve fundamental understanding of the sensitivity of the climate system to various warm-cloud regimes.
Alyson Douglas and Tristan L'Ecuyer
Atmos. Chem. Phys., 20, 6225–6241, https://doi.org/10.5194/acp-20-6225-2020, https://doi.org/10.5194/acp-20-6225-2020, 2020
Short summary
Short summary
Aerosols, or small, suspended droplets in the atmosphere, are released from anthropogenic activity and interact with warm clouds, leading to changes in the clouds' brightness and size. Our study evaluates how aerosols alter warm clouds and their ability to cool the Earth's surface. We find aerosols make clouds brighter and grow larger in the atmosphere; however, the cooling effect due to whiter, brighter clouds is 5 times the cooling due to an increased extent.
Elena Ruiz-Donoso, André Ehrlich, Michael Schäfer, Evelyn Jäkel, Vera Schemann, Susanne Crewell, Mario Mech, Birte Solveig Kulla, Leif-Leonard Kliesch, Roland Neuber, and Manfred Wendisch
Atmos. Chem. Phys., 20, 5487–5511, https://doi.org/10.5194/acp-20-5487-2020, https://doi.org/10.5194/acp-20-5487-2020, 2020
Short summary
Short summary
Mixed-phase clouds, formed of water droplets and ice crystals, appear frequently in Arctic regions. Characterizing the distribution of liquid water and ice inside the cloud appropriately is important because it influences the cloud's impact on the surface temperature. In this study, we combined images of the cloud top with measurements inside the cloud to analyze in detail the 3D spatial distribution of liquid and ice in two mixed-phase clouds occurring under different meteorological scenarios.
Tatiana Nomokonova, Kerstin Ebell, Ulrich Löhnert, Marion Maturilli, and Christoph Ritter
Atmos. Chem. Phys., 20, 5157–5173, https://doi.org/10.5194/acp-20-5157-2020, https://doi.org/10.5194/acp-20-5157-2020, 2020
Short summary
Short summary
This paper presents an influence of water vapor anomalies on cloud properties and their radiative effect at Ny-Ålesund. The study is based on a 2.5-year active and passive cloud observation and a radiative transfer model. The results show that moist and dry conditions are related to strong changes in cloud occurrence, phase partitioning, water path, and, consequently, modulate the surface radiative budget.
Kalliopi Artemis Voudouri, Elina Giannakaki, Mika Komppula, and Dimitris Balis
Atmos. Chem. Phys., 20, 4427–4444, https://doi.org/10.5194/acp-20-4427-2020, https://doi.org/10.5194/acp-20-4427-2020, 2020
Short summary
Short summary
In this paper we present the variability in cirrus cloud properties using a PollyXT Raman lidar over high and tropical latitudes. The kind of information presented here can be rather useful in the cirrus parameterisations required as input to radiative transfer models and can be a complementary tool for satellite products that cannot provide cloud vertical structure.
Cited articles
Ackerman, S. A., Holz, R. E., Frey, R., Eloranta, E. W., Maddux, B. C., and Mcgill, M.: Cloud detection with MODIS. Part II: Validation, J.
Atmos. Ocean. Tech., 25, 1073–1086, https://doi.org/10.1175/2007JTECHA1053.1, 2008.
Andreae, M. O., Rosenfeld, D., Artaxo, P., Costa, A. A., Frank, G. P., Longo, K. M., and Silva-Dias, M. A. F.: Smoking rain clouds over the Amazon, Science,
303, 1337–1342, https://doi.org/10.1126/science.1092779, 2004.
Ansmann, A., Tesche, M., Althausen, D., Müller, D., Seifert, P., Freudenthaler, V., Heese, B., Wiegner, M., Pisani, G., Knippertz, P., and Dubovik, O.: Influence of Saharan dust on cloud glaciation in
southern Morocco during the Saharan Mineral Dust Experiment, J.
Geophys. Res., 113, D04210, https://doi.org/10.1029/2007JD008785, 2008.
Braga, R. C., Rosenfeld, D., Weigel, R., Jurkat, T., Andreae, M. O., Wendisch, M., Pöschl, U., Voigt, C., Mahnke, C., Borrmann, S., Albrecht, R. I., Molleker, S., Vila, D. A., Machado, L. A. T., and Grulich, L.: Further evidence for CCN aerosol concentrations determining the height of warm rain and ice initiation in convective clouds over the Amazon basin, Atmos. Chem. Phys., 17, 14433–14456, https://doi.org/10.5194/acp-17-14433-2017, 2017.
Chang, F. and Li, Z.: Estimating the vertical variation of cloud droplet
effective radius using multispectral near-infrared satellite measurements,
J. Geophys. Res., 107, 7-1–7-12, https://doi.org/10.1029/2001JD000766, 2002.
Chang, F. and Li, Z.: Retrieving vertical profiles of water-cloud droplet
effective radius: Algorithm modification and preliminary application,
J. Geophys. Res.-Atmos., 108, 4763–4773,
https://doi.org/10.1029/2003JD003906, 2003.
Chen, Y. and Fu, Y.: Characteristics of VIRS Signals within Pixels of TRMM
PR for Warm Rain in the Tropics and Subtropics, J. Appl. Meteorol. Clim., 56,
789–801, https://doi.org/10.1175/JAMC-D-16-0198.1, 2017.
Chen, Y., Fu, Y., Xian, T., and Pan, X.: Characteristics of cloud cluster over the steep southern
slopes of the Himalayas observed by CloudSat, Int. J. Climatol., 37,
4043–4052, https://doi.org/10.1002/joc.4992, 2017.
Chen, Y., Chong, K., and Fu, Y.: Impacts of distribution patterns of cloud optical depth on
the calculation of radiative forcing, Atmos. Res., 218, 70–77,
https://doi.org/10.1016/j.atmosres.2018.11.007, 2019.
Delanoe, J. and Hogan, R. J.: Combined CloudSat-CALIPSO-MODIS retrievals of
the properties of ice clouds, J. Geophys. Res., 115, D00H29, https://doi.org/10.1029/2009JD012346, 2010.
Deng, M., Mace, G. G., Wang, Z., and Paul Lawson, R.: Evaluation of Several A-Train Ice Cloud Retrieval Products
with In Situ Measurements Collected during the SPARTICUS Campaign, J. Appl.
Meteor. Climatol., 52, 1014–1030, https://doi.org/10.1175/JAMC-D-12-054.1, 2013.
Emde, C., Buras-Schnell, R., Kylling, A., Mayer, B., Gasteiger, J., Hamann, U., Kylling, J., Richter, B., Pause, C., Dowling, T., and Bugliaro, L.: The libRadtran software package for radiative transfer calculations (version 2.0.1), Geosci. Model Dev., 9, 1647–1672, https://doi.org/10.5194/gmd-9-1647-2016, 2016.
Ewald, F., Zinner, T., Kölling, T., and Mayer, B.: Remote sensing of cloud droplet radius profiles using solar reflectance from cloud sides – Part 1: Retrieval development and characterization, Atmos. Meas. Tech., 12, 1183–1206, https://doi.org/10.5194/amt-12-1183-2019, 2019.
Freud, E. and Rosenfeld, D.: Linear relation between convective cloud drop
number concentration and depth for rain initiation, J. Geophys.
Res.-Atmos., 117, D02207, https://doi.org/10.1029/2011JD016457, 2012.
Fu, Y.: Cloud parameters retrieved by the bispectral reflectance algorithm
and associated applications, J. Meteorol. Res., 28, 965–982,
https://doi.org/10.1007/s13351-014-3292-3, 2014.
Fu, Y., Chen, Y., Li, R., Qin, F., Xian, T., Yu, L., Zhang, A., Liu, G., and Zhang, X.: Lateral Boundary of Cirrus Cloud from CALIPSO Observations,
Sci. Rep.-UK, 7, 14221, https://doi.org/10.1038/s41598-017-14665-6, 2017.
Huang, Y., Meng, Z., Li, J., Li, W., Bai, L., Zhang, M., and Wang, X.: Distribution and variability of satellite-derived
signals of isolated convection initiation events over central eastern China,
J. Geophys. Res.-Atmos., 122, 11357–11373, https://doi.org/10.1002/2017JD026946, 2017.
Kawamoto, K. and Nakajima, T.: A global determination of cloud microphysics with
AVHRR remote sensing, J. Climate, 14, 2054–2068,
https://doi.org/10.1175/1520-0442(2001)014<2054:AGDOCM>2.0.CO;2,
2001.
King, N. J. and Vaughan, G.: Using passive remote sensing to retrieve the
vertical variation of cloud droplet size in marine stratocumulus: An
assessment of information content and the potential for improved retrievals
from hyperspectral measurements, J. Geophys. Res.-Atmos., 117, D15206, https://doi.org/10.1029/2012JD017896, 2012.
Lensky, I. M. and Rosenfeld, D.: The time-space exchangeability of satellite retrieved relations between cloud top temperature and particle effective radius, Atmos. Chem. Phys., 6, 2887–2894, https://doi.org/10.5194/acp-6-2887-2006, 2006.
Letu, H., Nagao, T. M, Nakajima, T. Y., Riedi, J., Ishimoto, H., Baran, A. J., Shang, H., Sekiguchi, M., and Kikuchi, M.: Ice cloud properties from Himawari-8/AHI next-generation
geostationary satellite: capability of the AHI to monitor the dc cloud
generation process, IEEE T. Geosci. Remote, 57, 3229–3239,
https://doi.org/10.1109/TGRS.2018.2882803, 2019.
Liou, K. N.: Influence of cirrus clouds on weather and climate processes: a
global perspective, Mon. Weather Rev., 114, 1167–1199, 1986.
Maddux, B. C., Ackerman, S. A., and Platnick, S.: Viewing Geometry Dependencies in MODIS Cloud
Products, J. Atmos. Ocean. Tech., 27, 1519–1528,
https://doi.org/10.1175/2010JTECHA1432.1, 2010.
Mapes, B. E. and Houze, R. A.: Cloud clusters and superclusters over the
oceanic warm pool, Mon. Weather Rev., 121, 1398–1415, 1993.
Martins, J. V., Marshak, A., Remer, L. A., Rosenfeld, D., Kaufman, Y. J., Fernandez-Borda, R., Koren, I., Correia, A. L., Zubko, V., and Artaxo, P.: Remote sensing the vertical profile of cloud droplet effective radius, thermodynamic phase, and temperature, Atmos. Chem. Phys., 11, 9485–9501, https://doi.org/10.5194/acp-11-9485-2011, 2011.
Mayer, B. and Kylling, A.: Technical note: The libRadtran software package for radiative transfer calculations – description and examples of use, Atmos. Chem. Phys., 5, 1855–1877, https://doi.org/10.5194/acp-5-1855-2005, 2005.
Menzel, P. and Strabala K.: Cloud top properties and cloud phase algorithm
theoretical basis document, University of Wisconsin-Madison, Madison, USA, 1997.
Min, M., Wu, C., Li, C., Liu, H., Xu, N., Wu, X., Chen, L., Wang, F., Sun, F., Qin, D., Wang, X., Li, B., Zheng, Z., Cao, G., and Dong, L.: Developing the Science Product Algorithm Testbed for
Chinese Next-Generation Geostationary Meteorological Satellites: Fengyun-4
Series, J. Meteorol. Res.-Prc., 31, 708–719, https://doi.org/10.1007/s13351-017-6161-z,
2017.
Nakajima, T. and King, M. D.: Determination of the optical-thickness and
effective particle radius of clouds from reflected solar-radiation
measurements. 1. Theory, J. Atmos. Sci., 47, 1878–1893,
https://doi.org/10.1175/1520-0469(1990)047<1878:DOTOTA>2.0.CO;2,
1990.
Oki, T. and Kanae, S.: Global hydrological cycles and world water resources,
Science, 313, 1068–1072, https://doi.org/10.1126/science.1128845, 2006.
Painemal, D. and Zuidema, P.: Assessment of MODIS cloud effective radius and
optical thickness retrievals over the Southeast Pacific with VOCALS-REx in
situ measurements, J. Geophys. Res.-Atmos., 116, D24206,
https://doi.org/10.1029/2011JD016155, 2011.
Pawlowska, H., Brenguier, J. L., and Burnet, F.: Microphysical properties of stratocumulus clouds,
Atmos. Res., 55, 15–33, https://doi.org/10.1016/S0169-8095(00)00054-5,
2000.
Platnick, S.: Vertical photon transport in cloud remote sensing problems,
J. Geophys. Res.-Atmos., 105, 22919–22935,
https://doi.org/10.1029/2000JD900333, 2000.
Prabha, T. V., Khain, A., Maheshkumar, R. S., Pandithurai, G., Kulkarni, J. R., Konwar, M., and Goswami, B. N.: Microphysics of premonsoon and monsoon clouds as seen
from in situ measurements during the Cloud Aerosol Interaction and
Precipitation Enhancement Experiment (CAIPEEX), J. Atmos. Sci., 68,
1882–1901, https://doi.org/10.1175/2011JAS3707.1, 2011.
Rangno, A. L. and Hobbs, P. V.: Microstructures and precipitation
development in cumulus and small cumulonimbus clouds over the warm pool of
the tropical Pacific Ocean, Q. J. Roy. Meteor. Soc., 131, 639–673, 2005.
Rosenfeld, D.: TRMM observed first direct evidence of smoke from forest
fires inhibiting rainfall, Geophys. Res. Lett., 26, 3105–3108,
https://doi.org/10.1029/1999GL006066, 1999.
Rosenfeld, D.: Suppression of rain and snow by urban and industrial air
pollution, Science, 287, 1793–1796, https://doi.org/10.1126/science.287.5459.1793,
2000.
Rosenfeld, D.: Chapter 6 – Cloud-aerosol-precipitation interactions based of
satellite retrieved vertical profiles of cloud microstructure, edited, pp.
129–152, Elsevier Inc, https://doi.org/10.1016/B978-0-12-810437-8.00006-2, 2018.
Rosenfeld, D. and Gutman, G.: Retrieving microphysical properties near the
tops of potential rain clouds by multispectral analysis of AVHRR data, Atmos.
Res., 34, 259–283, https://doi.org/10.1016/0169-8095(94)90096-5, 1994.
Rosenfeld, D. and Lensky, I. M.: Satellite-based insights into precipitation
formation processes in continental and maritime convective clouds, B. Am.
Meteorol. Soc., 79, 2457–2476, https://doi.org/10.1175/1520-0477(1998)079<2457:SBIIPF>2.0.CO;2, 1998.
Rosenfeld, D., Yu, X., and Dai, J.: Satellite-retrieved microstructure of AgI seeding
tracks in supercooled layer clouds, J. Appl. Meteorol., 44,
760–767, https://doi.org/10.1175/JAM2225.1, 2005.
Rosenfeld, D., Woodley, W. L., Krauss, T. W., and Makitov, V.: Aircraft microphysical documentation from cloud base
to anvils of hailstorm feeder clouds in Argentina, J. Appl. Meteorol. Clim.,
45, 1261–1281, https://doi.org/10.1175/JAM2403.1, 2006.
Rosenfeld, D., Dai, J., Yu, X., Yao, Z., Xu, X., Yang, X., and Du, C.: Inverse relations between amounts of air pollution
and orographic precipitation, Science, 315, 1396–1398, 2007.
Rosenfeld, D., Woodley, W. L., Lerner, A., Kelman, G., and Lindsey, D. T.: Satellite detection of severe convective storms by
their retrieved vertical profiles of cloud particle effective radius and
thermodynamic phase, J. Geophys. Res., 113, D04208,
https://doi.org/10.1029/2007JD008600, 2008.
Rosenfeld, D., Yu, X., Liu, G., Xu, X., Zhu, Y., Yue, Z., Dai, J., Dong, Z., Dong, Y., and Peng, Y.: Glaciation temperatures of convective clouds
ingesting desert dust, air pollution and smoke from forest fires, Geophys.
Res. Lett., 38, L21804, https://doi.org/10.1029/2011GL049423, 2011.
Rosenfeld, D., Wang, H., and Rasch, P. J.: The roles of cloud drop effective radius and LWP in
determining rain properties in marine stratocumulus, Geophys. Res. Lett.,
39, L13801, https://doi.org/10.1029/2012GL052028, 2012a.
Rosenfeld, D., Woodley, W. L., Khain, A., Cotton, W. R., Carrió, G., Ginis, I., and Golden, J. H.: Aerosol effects on microstructure and intensity of
tropical cyclones, B. Am. Meteorol. Soc., 93, 987–1001, 2012b.
Rossow, W. B. and Schiffer, R. A.: Advances in understanding clouds from
ISCCP, B. Am. Meteorol. Soc., 80, 2261–2287, 1999.
Suzuki, K., Nakajima, T. Y., and Stephens, G. L.: Particle growth and drop collection efficiency of warm
clouds as inferred from joint CloudSat and MODIS observations, J. Atmos. Sci.,
67, 3019–3032, https://doi.org/10.1175/2010JAS3463.1, 2010.
Suzuki, K., Stephens, G. L., Van Den Heever, S. C., and Nakajima, T. Y.: Diagnosis of the warm rain process in cloud-resolving
models using joint CloudSat and MODIS observations, J. Atmos. Sci., 68,
2655–2670, https://doi.org/10.1175/JAS-D-10-05026.1, 2011.
Twomey, S. and Seton, K. J.: Inferences of gross microphysical properties of
clouds from spectral reflectance measurements, J. Atmos. Sci., 37,
1065–1069, https://doi.org/10.1175/1520-0469(1980)037<1065:IOGMPO>2.0.CO;2, 1980.
Wendisch, M., Poschl, U., Andreae, M. O., MacHado, L. A. T., Albrecht, R., Schlager, H., Rosenfeld, D., Martin, S. T., Abdelmonem, A., Afchine, A., Araujo, A. C., Artaxo, P., Aufmhoff, H., Barbosa, H. M. J., Borrmann, S., Braga, R., Buchholz, B., Cecchini, M. A., Costa, A., Curtius, J., Dollner, M., Dorf, M., Dreiling, V., Ebert, V., Ehrlich, A., Ewald, F., Fisch, G., Fix, A., Frank, F., Futterer, D., Heckl, C., Heidelberg, F., Huneke, T., Jakel, E., Jarvinen, E., Jurkat, T., Kanter, S., Kastner, U., Kenntner, M., Kesselmeier, J., Klimach, T., Knecht, M., Kohl, R., Kolling, T., Kramer, M., Kruger, M., Krisna, T. C., Lavric, J. V., Longo, K., Mahnke, C., Manzi, A. O., Mayer, B., Mertes, S., Minikin, A., Molleker, S., Munch, S., Nillius, B., Pfeilsticker, K., Pohlker, C., Roiger, A., Rose, D., Rosenow, D., Sauer, D., Schnaiter, M., Schneider, J., Schulz, C., De Souza, R. A. F., Spanu, A., Stock, P., Vila, D., Voigt, C., Walser, A., Walter, D., Weigel, R., Weinzierl, B., Werner, F., Yamasoe, M. A., Ziereis, H., Zinner, T., and Zoger, M.: Acridicon–chuva campaign: studying tropical deep
convective clouds and precipitation over Amazonia using the new German
research aircraft HALO, B. Am. Meteorol. Soc., 97, 1885–1908,
https://doi.org/10.1175/BAMS-D-14-00255.1, 2016.
Wetherald, R. T. and Manabe, S.: Cloud feedback processes in a
general-circulation model, J. Atmos. Sci., 45, 1397–1415, 1988.
Williams, M. and Houze, R. A.: Satellite-observed characteristics of winter
monsoon cloud clusters, Mon. Weather Rev., 115, 505–519, 1987.
Yang, J., Zhang, Z., Wei, C., Lu, F., and Guo, Q.: Introducing the new generation of Chinese geostationary
weather satellites, FENGYUN-4, B. Am. Meteorol. Soc., 98, 1637–1658,
https://doi.org/10.1175/BAMS-D-16-0065.1, 2017 (data available at: http://fy4.nsmc.org.cn/data/en/code/FY4A.html#AGRI, last access: 28 January 2020).
Yang, P., Bi, L., Baum, B. A., Liou, K. N., and Cole, B.: Spectrally consistent scattering, absorption, and
polarization properties of atmospheric ice crystals at wavelengths from 0.2
to 100 µm, J. Atmos. Sci., 70, 330–347, https://doi.org/10.1175/JAS-D-12-039.1,
2013.
Zhang, A. and Fu, Y.: Life cycle effects on the vertical structure of
precipitation in east china measured by Himawari-8 and GPM DPR, Mon. Weather
Rev., 146, 2183–2199, 2018.
Zheng, Y. and Rosenfeld, D.: Linear relation between convective cloud base
height and updrafts and application to satellite retrievals, Geophys. Res.
Lett., 42, 6485–6491, https://doi.org/10.1002/2015GL064809, 2015.
Zhu, L., Li, J., Zhao, Y., Gong, H., and Li, W.: Retrieval of volcanic ash height from satellite-based
infrared measurements, J. Geophys. Res.-Atmos., 122, 5364–5379,
https://doi.org/10.1002/2016JD026263, 2017.
Zuidema, P.: Convective clouds over the Bay of Bengal, Mon. Weather Rev.,
131, 780–798, 2003.
Short summary
The vertical evolution of the cloud effective radius reflects the precipitation-forming process. We developed an algorithm for retrieving it based on objective cloud-cluster identification rather than the subjective polygon of the conventional method. The profile shows completely different morphologies in different life stages of the cloud cluster, which is important in the characterization of the formation of precipitation and the temporal evolution of microphysical processes.
The vertical evolution of the cloud effective radius reflects the precipitation-forming process....
Altmetrics
Final-revised paper
Preprint