Articles | Volume 20, issue 17
https://doi.org/10.5194/acp-20-10477-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-10477-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Changes in the surface broadband shortwave radiation budget during the 2017 eclipse
NASA/Goddard Space Flight Center, Code 613, Greenbelt, Maryland,
20771, USA
GESTAR/Morgan State University, Baltimore, Maryland, 21251, USA
Alexander Marshak
NASA/Goddard Space Flight Center, Code 613, Greenbelt, Maryland,
20771, USA
Si-Chee Tsay
NASA/Goddard Space Flight Center, Code 613, Greenbelt, Maryland,
20771, USA
Jay Herman
NASA/Goddard Space Flight Center, Code 613, Greenbelt, Maryland,
20771, USA
JCET, University of Maryland Baltimore County, Baltimore, Maryland,
21250, USA
Ukkyo Jeong
NASA/Goddard Space Flight Center, Code 613, Greenbelt, Maryland,
20771, USA
ESSIC, University of Maryland, College Park, Maryland, 20742, USA
Nader Abuhassan
NASA/Goddard Space Flight Center, Code 613, Greenbelt, Maryland,
20771, USA
JCET, University of Maryland Baltimore County, Baltimore, Maryland,
21250, USA
Robert Swap
NASA/Goddard Space Flight Center, Code 613, Greenbelt, Maryland,
20771, USA
NASA/Goddard Space Flight Center, Code 613, Greenbelt, Maryland,
20771, USA
Related authors
No articles found.
Jie Gong, Dong L. Wu, Michelle Badalov, Manisha Ganeshan, and Minghua Zheng
Atmos. Meas. Tech., 18, 4025–4043, https://doi.org/10.5194/amt-18-4025-2025, https://doi.org/10.5194/amt-18-4025-2025, 2025
Short summary
Short summary
Marine boundary layer (MABL) water vapor is among the key factors to couple the ocean and atmosphere, but it is also among the hardest to retrieve from a satellite remote sensing perspective. Here we propose a novel way to retrieve MABL specific humidity profiles using the GNSS (Global Navigation Satellite System) Level-1 signal-to-noise ratio. Using a machine learning approach, we successfully obtained a retrieval product that outperforms the ERA-5 reanalysis and operational Level-2 retrievals globally, except in the deep tropics.
Daniel J. Emmons, Cornelius Csar Jude H. Salinas, Dong L. Wu, Nimalan Swarnalingam, Eugene V. Dao, Jorge L. Chau, Yosuke Yamazaki, Kyle E. Fitch, and Victoriya V. Forsythe
EGUsphere, https://doi.org/10.5194/egusphere-2025-3731, https://doi.org/10.5194/egusphere-2025-3731, 2025
This preprint is open for discussion and under review for Annales Geophysicae (ANGEO).
Short summary
Short summary
The E-region of the Earth’s ionosphere plays an important role in atmospheric energy balance and High Frequency radio propagation. In this paper, we compare predictions from two recently developed ionospheric models to observations by ionospheric sounders (ionosondes). Overall, the models show reasonable agreement with the observations. However, there are several areas for improvement in the models as well as questions about the accuracy of the automatically processed ionosonde dataset.
Manisha Ganeshan, Dong L. Wu, Joseph A. Santanello, Jie Gong, Chi Ao, Panagiotis Vergados, and Kevin J. Nelson
Atmos. Meas. Tech., 18, 1389–1403, https://doi.org/10.5194/amt-18-1389-2025, https://doi.org/10.5194/amt-18-1389-2025, 2025
Short summary
Short summary
This study explores the potential of two newly launched commercial Global Navigation Satellite System (GNSS) radio occultation (RO) satellite missions for advancing Arctic lower-atmospheric studies. The products have a good sampling of the lower Arctic atmosphere and are useful to derive the planetary boundary layer (PBL) height during winter months. This research is a step towards closing the observation gap in polar regions due to the decomissioning of Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC-1) GNSS RO mission and the lack of high-latitude coverage by its successor (COSMIC-2).
Dong L. Wu, Valery A. Yudin, Kyu-Myong Kim, Mohar Chattopadhyay, Lawrence Coy, Ruth S. Lieberman, C. C. Jude H. Salinas, Jae N. Lee, Jie Gong, and Guiping Liu
Atmos. Meas. Tech., 18, 843–863, https://doi.org/10.5194/amt-18-843-2025, https://doi.org/10.5194/amt-18-843-2025, 2025
Short summary
Short summary
Global Navigation Satellite System radio occultation data help monitor climate and weather prediction but are affected by residual ionospheric errors (RIEs). A new excess-phase-gradient method detects and corrects RIEs, showing both positive and negative values, varying by latitude, time, and solar activity. Tests show that RIE impacts polar stratosphere temperatures in models, with differences up to 3–4 K. This highlights the need for RIE correction to improve the accuracy of data assimilation.
Min Huang, Gregory R. Carmichael, Kevin W. Bowman, Isabelle De Smedt, Andreas Colliander, Michael H. Cosh, Sujay V. Kumar, Alex B. Guenther, Scott J. Janz, Ryan M. Stauffer, Anne M. Thompson, Niko M. Fedkin, Robert J. Swap, John D. Bolten, and Alicia T. Joseph
Atmos. Chem. Phys., 25, 1449–1476, https://doi.org/10.5194/acp-25-1449-2025, https://doi.org/10.5194/acp-25-1449-2025, 2025
Short summary
Short summary
We use model simulations along with multiplatform, multidisciplinary observations and a range of analysis methods to estimate and understand the distributions, temporal changes, and impacts of reactive nitrogen and ozone over the most populous US region that has undergone significant environmental changes. Deposition, biogenic emissions, and extra-regional sources have been playing increasingly important roles in controlling pollutant budgets in this area as local anthropogenic emissions drop.
Xiaoyi Zhao, Vitali Fioletov, Debora Griffin, Chris McLinden, Ralf Staebler, Cristian Mihele, Kevin Strawbridge, Jonathan Davies, Ihab Abboud, Sum Chi Lee, Alexander Cede, Martin Tiefengraber, and Robert Swap
Atmos. Meas. Tech., 17, 6889–6912, https://doi.org/10.5194/amt-17-6889-2024, https://doi.org/10.5194/amt-17-6889-2024, 2024
Short summary
Short summary
This study explores differences between remote sensing and in situ instruments in terms of their vertical, horizontal, and temporal sampling differences. Understanding and resolving these differences are critical for future analyses linking satellite, ground-based remote sensing, and in situ observations in air quality monitoring. It shows that the meteorological conditions (wind directions, speed, and boundary layer conditions) will strongly affect the agreement between the two measurements.
Kyoung-Min Kim, Si-Wan Kim, Seunghwan Seo, Donald R. Blake, Seogju Cho, James H. Crawford, Louisa K. Emmons, Alan Fried, Jay R. Herman, Jinkyu Hong, Jinsang Jung, Gabriele G. Pfister, Andrew J. Weinheimer, Jung-Hun Woo, and Qiang Zhang
Geosci. Model Dev., 17, 1931–1955, https://doi.org/10.5194/gmd-17-1931-2024, https://doi.org/10.5194/gmd-17-1931-2024, 2024
Short summary
Short summary
Three emission inventories were evaluated for East Asia using data acquired during a field campaign in 2016. The inventories successfully reproduced the daily variations of ozone and nitrogen dioxide. However, the spatial distributions of model ozone did not fully agree with the observations. Additionally, all simulations underestimated carbon monoxide and volatile organic compound (VOC) levels. Increasing VOC emissions over South Korea resulted in improved ozone simulations.
Clark Jay Weaver, Jay Herman, Alexander Marshak, Steven R. Lorentz, Yinan Yu, Allan W. Smith, and Adam Szabo
EGUsphere, https://doi.org/10.5194/egusphere-2023-638, https://doi.org/10.5194/egusphere-2023-638, 2023
Preprint archived
Short summary
Short summary
We calculate the total amount of solar energy reflected by the earth from the EPIC camera onboard the DSCOVR satellite positioned 1.5 million km from earth. We compare it with another estimate of the reflected energy from the NISTAR instrument, that is also on the DSCOVR satellite. Both energy estimates agree within the uncertainties of each instrument. Finally, we compare with a third estimate of solar reflected energy from the CERES instruments that are on board low-earth orbit satellites.
Nick Gorkavyi, Nickolay Krotkov, and Alexander Marshak
Atmos. Meas. Tech., 16, 1527–1537, https://doi.org/10.5194/amt-16-1527-2023, https://doi.org/10.5194/amt-16-1527-2023, 2023
Short summary
Short summary
The article discusses topical issues of the visible (libration) motion of the Earth in the sky of the Moon in a rectangle measuring 13.4° × 15.8°. On the one hand, the librations of the Moon make these observations difficult. On the other hand, they can be used as a natural scanning mechanism for cameras and spectroscopes mounted on a fixed platform on the surface of the Moon.
Cornelius Csar Jude H. Salinas, Dong L. Wu, Jae N. Lee, Loren C. Chang, Liying Qian, and Hanli Liu
Atmos. Chem. Phys., 23, 1705–1730, https://doi.org/10.5194/acp-23-1705-2023, https://doi.org/10.5194/acp-23-1705-2023, 2023
Short summary
Short summary
Upper mesospheric carbon monoxide's (CO) photochemical lifetime is longer than dynamical timescales. This work uses satellite observations and model simulations to establish that the migrating diurnal tide and its seasonal and interannual variabilities drive CO primarily through vertical advection. Vertical advection is a transport process that is currently difficult to observe. This work thus shows that we can use CO as a tracer for vertical advection across seasonal and interannual timescales.
Ákos Horváth, James L. Carr, Dong L. Wu, Julia Bruckert, Gholam Ali Hoshyaripour, and Stefan A. Buehler
Atmos. Chem. Phys., 22, 12311–12330, https://doi.org/10.5194/acp-22-12311-2022, https://doi.org/10.5194/acp-22-12311-2022, 2022
Short summary
Short summary
We estimate plume heights for the April 2021 La Soufrière daytime eruptions using GOES-17 near-limb side views and GOES-16–MODIS stereo views. These geometric heights are then compared with brightness-temperature-based radiometric height estimates to characterize the biases of the latter. We also show that the side view method can be applied to infrared imagery and thus nighttime eruptions, albeit with larger uncertainty.
Ukkyo Jeong, Si-Chee Tsay, N. Christina Hsu, David M. Giles, John W. Cooper, Jaehwa Lee, Robert J. Swap, Brent N. Holben, James J. Butler, Sheng-Hsiang Wang, Somporn Chantara, Hyunkee Hong, Donghee Kim, and Jhoon Kim
Atmos. Chem. Phys., 22, 11957–11986, https://doi.org/10.5194/acp-22-11957-2022, https://doi.org/10.5194/acp-22-11957-2022, 2022
Short summary
Short summary
Ultraviolet (UV) measurements from satellite and ground are important for deriving information on several atmospheric trace and aerosol characteristics. Simultaneous retrievals of aerosol and trace gases in this study suggest that water uptake by aerosols is one of the important phenomena affecting aerosol properties over northern Thailand, which is important for regional air quality and climate. Obtained aerosol properties covering the UV are also important for various satellite algorithms.
Jay Herman, Liang Huang, David Hafner, and Adam Szabo
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-481, https://doi.org/10.5194/acp-2022-481, 2022
Publication in ACP not foreseen
Short summary
Short summary
The research object is to see if reflections from clouds by the DSCOVR satellite at the Earth-Sun Lagrange point are enhanced as the backscattering angle nears 180 degrees. The 388 nm wavelength channel sees almost nothing from the Earth's surface. The result is that the Southern Hemisphere radiance increase in December 2020 and 2021 is likely caused by cloud amount increase and not by enhanced reflectivity at a 178-degree backscatter angle.
Maria Tzortziou, Charlotte F. Kwong, Daniel Goldberg, Luke Schiferl, Róisín Commane, Nader Abuhassan, James J. Szykman, and Lukas C. Valin
Atmos. Chem. Phys., 22, 2399–2417, https://doi.org/10.5194/acp-22-2399-2022, https://doi.org/10.5194/acp-22-2399-2022, 2022
Short summary
Short summary
The COVID-19 pandemic created an extreme natural experiment in which sudden changes in human behavior significantly impacted urban air quality. Using a combination of model, satellite, and ground-based data, we examine the impact of multiple waves and phases of the pandemic on atmospheric nitrogen pollution in the New York metropolitan area, and address the role of weather as a key driver of high pollution episodes observed even during – and despite – the stringent early lockdowns.
Jie Gong, Dong L. Wu, and Patrick Eriksson
Earth Syst. Sci. Data, 13, 5369–5387, https://doi.org/10.5194/essd-13-5369-2021, https://doi.org/10.5194/essd-13-5369-2021, 2021
Short summary
Short summary
Launched from the International Space Station, the IceCube radiometer orbited the Earth for 15 months and collected the first spaceborne radiance measurements at 874–883 GHz. This channel is uniquely important to fill in the sensitivity gap between operational visible–infrared and microwave remote sensing for atmospheric cloud ice and snow. This paper delivers the IceCube Level 1 radiance data processing algorithm and provides a data quality evaluation and discussion on its scientific merit.
Ákos Horváth, James L. Carr, Olga A. Girina, Dong L. Wu, Alexey A. Bril, Alexey A. Mazurov, Dmitry V. Melnikov, Gholam Ali Hoshyaripour, and Stefan A. Buehler
Atmos. Chem. Phys., 21, 12189–12206, https://doi.org/10.5194/acp-21-12189-2021, https://doi.org/10.5194/acp-21-12189-2021, 2021
Short summary
Short summary
We give a detailed description of a new technique to estimate the height of volcanic eruption columns from near-limb geostationary imagery. Such oblique angle observations offer spectacular side views of eruption columns protruding from the Earth ellipsoid and thereby facilitate a height-by-angle estimation method. Due to its purely geometric nature, the new technique is unaffected by the limitations of traditional brightness-temperature-based height retrievals.
Ákos Horváth, Olga A. Girina, James L. Carr, Dong L. Wu, Alexey A. Bril, Alexey A. Mazurov, Dmitry V. Melnikov, Gholam Ali Hoshyaripour, and Stefan A. Buehler
Atmos. Chem. Phys., 21, 12207–12226, https://doi.org/10.5194/acp-21-12207-2021, https://doi.org/10.5194/acp-21-12207-2021, 2021
Short summary
Short summary
We demonstrate the side view plume height estimation technique described in Part 1 on seven volcanic eruptions from 2019 and 2020, including the 2019 Raikoke eruption. We explore the strengths and limitations of the new technique in comparison to height estimation from brightness temperatures, stereo observations, and ground-based video footage.
Jianfeng Li, Yuhang Wang, Ruixiong Zhang, Charles Smeltzer, Andrew Weinheimer, Jay Herman, K. Folkert Boersma, Edward A. Celarier, Russell W. Long, James J. Szykman, Ruben Delgado, Anne M. Thompson, Travis N. Knepp, Lok N. Lamsal, Scott J. Janz, Matthew G. Kowalewski, Xiong Liu, and Caroline R. Nowlan
Atmos. Chem. Phys., 21, 11133–11160, https://doi.org/10.5194/acp-21-11133-2021, https://doi.org/10.5194/acp-21-11133-2021, 2021
Short summary
Short summary
Comprehensive evaluations of simulated diurnal cycles of NO2 and NOy concentrations, vertical profiles, and tropospheric vertical column densities at two different resolutions with various measurements during the DISCOVER-AQ 2011 campaign show potential distribution biases of NOx emissions in the National Emissions Inventory 2011 at both 36 and 4 km resolutions, providing another possible explanation for the overestimation of model results.
Elena Spinei, Martin Tiefengraber, Moritz Müller, Manuel Gebetsberger, Alexander Cede, Luke Valin, James Szykman, Andrew Whitehill, Alexander Kotsakis, Fernando Santos, Nader Abbuhasan, Xiaoyi Zhao, Vitali Fioletov, Sum Chi Lee, and Robert Swap
Atmos. Meas. Tech., 14, 647–663, https://doi.org/10.5194/amt-14-647-2021, https://doi.org/10.5194/amt-14-647-2021, 2021
Short summary
Short summary
Plastics are widely used in everyday life and scientific equipment. This paper presents Delrin plastic off-gassing as a function of temperature on the atmospheric measurements of formaldehyde by Pandora spectroscopic instruments. The sealed telescope assembly containing Delrin components emitted large amounts of formaldehyde at 30–45 °C, interfering with the Pandora measurements. These results have a broader implication since electronic products often experience the same temperature.
Gaia Pinardi, Michel Van Roozendael, François Hendrick, Nicolas Theys, Nader Abuhassan, Alkiviadis Bais, Folkert Boersma, Alexander Cede, Jihyo Chong, Sebastian Donner, Theano Drosoglou, Anatoly Dzhola, Henk Eskes, Udo Frieß, José Granville, Jay R. Herman, Robert Holla, Jari Hovila, Hitoshi Irie, Yugo Kanaya, Dimitris Karagkiozidis, Natalia Kouremeti, Jean-Christopher Lambert, Jianzhong Ma, Enno Peters, Ankie Piters, Oleg Postylyakov, Andreas Richter, Julia Remmers, Hisahiro Takashima, Martin Tiefengraber, Pieter Valks, Tim Vlemmix, Thomas Wagner, and Folkard Wittrock
Atmos. Meas. Tech., 13, 6141–6174, https://doi.org/10.5194/amt-13-6141-2020, https://doi.org/10.5194/amt-13-6141-2020, 2020
Short summary
Short summary
We validate several GOME-2 and OMI tropospheric NO2 products with 23 MAX-DOAS and 16 direct sun instruments distributed worldwide, highlighting large horizontal inhomogeneities at several sites affecting the validation results. We propose a method for quantification and correction. We show the application of such correction reduces the satellite underestimation in almost all heterogeneous cases, but a negative bias remains over the MAX-DOAS and direct sun network ensemble for both satellites.
Laura M. Judd, Jassim A. Al-Saadi, James J. Szykman, Lukas C. Valin, Scott J. Janz, Matthew G. Kowalewski, Henk J. Eskes, J. Pepijn Veefkind, Alexander Cede, Moritz Mueller, Manuel Gebetsberger, Robert Swap, R. Bradley Pierce, Caroline R. Nowlan, Gonzalo González Abad, Amin Nehrir, and David Williams
Atmos. Meas. Tech., 13, 6113–6140, https://doi.org/10.5194/amt-13-6113-2020, https://doi.org/10.5194/amt-13-6113-2020, 2020
Short summary
Short summary
This paper evaluates Sentinel-5P TROPOMI v1.2 NO2 tropospheric columns over New York City using data from airborne mapping spectrometers and a network of ground-based spectrometers (Pandora) collected in 2018. These evaluations consider impacts due to cloud parameters, a priori profile assumptions, and spatial and temporal variability. Overall, TROPOMI tropospheric NO2 columns appear to have a low bias in this region.
Jie Gong, Xiping Zeng, Dong L. Wu, S. Joseph Munchak, Xiaowen Li, Stefan Kneifel, Davide Ori, Liang Liao, and Donifan Barahona
Atmos. Chem. Phys., 20, 12633–12653, https://doi.org/10.5194/acp-20-12633-2020, https://doi.org/10.5194/acp-20-12633-2020, 2020
Short summary
Short summary
This work provides a novel way of using polarized passive microwave measurements to study the interlinked cloud–convection–precipitation processes. The magnitude of differences between polarized radiances is found linked to ice microphysics (shape, size, orientation and density), mesoscale dynamic and thermodynamic structures, and surface precipitation. We conclude that passive sensors with multiple polarized channel pairs may serve as cheaper and useful substitutes for spaceborne radar sensors.
Clark J. Weaver, Pawan K. Bhartia, Dong L. Wu, Gordon J. Labow, and David E. Haffner
Atmos. Meas. Tech., 13, 5715–5723, https://doi.org/10.5194/amt-13-5715-2020, https://doi.org/10.5194/amt-13-5715-2020, 2020
Short summary
Short summary
Currently, we do not know whether clouds will accelerate or moderate climate. We look to the past and ask whether cloudiness has changed over the last 4 decades. Using a suite of nine satellite instruments, we need to ensure that the first satellite, which was launched in 1980 and died in 1991, observed the same measurement as the eight other satellite instruments used in the record. If the instruments were measuring length and observing a 1.00 m long stick, they would all see 0.99 to 1.01 m.
Bangsheng Yin, Qilong Min, Emily Morgan, Yuekui Yang, Alexander Marshak, and Anthony B. Davis
Atmos. Meas. Tech., 13, 5259–5275, https://doi.org/10.5194/amt-13-5259-2020, https://doi.org/10.5194/amt-13-5259-2020, 2020
Short summary
Short summary
Cloud-top pressure (CTP) is an important cloud property for climate and weather studies. Based on differential oxygen absorption, both oxygen A-band and B-band pairs can be used to retrieve CTP. However, it is currently very challenging to perform a CTP retrieval accurately due to the complicated in-cloud penetration effect. To address this issue, we propose an analytic transfer inverse model for DSCOVR EPIC observations to retrieve CTP considering in-cloud photon penetration.
Cited articles
Baum, B. A., Menzel, W. P., Frey, R. A., Tobin, D., Holz, R. E., Ackerman,
S. A., Heidinger, A. K., and Yang, P.: MODIS Cloud-Top Properties
Refinements for Collection 6, J. Appl. Meteorol. Clim., 51, 1145–1163,
2012.
Baum, B. A., Yang, P., Heymsfield, A. J., Platnick, S., King, M. D., Hu, Y.-X.,
and Bedka, S. T.: Bulk scattering models for the remote sensing of ice
clouds. Part 2: Narrowband models, J. Appl. Meteorol., 44, 1896–1911, 2005.
Bernhard, G. and Petkov, B.: Measurements of spectral irradiance during the solar eclipse of 21 August 2017: reassessment of the effect of solar limb darkening and of changes in total ozone, Atmos. Chem. Phys., 19, 4703–4719, https://doi.org/10.5194/acp-19-4703-2019, 2019.
Calamas, D. M., Nutter, C., and Guajardo, D. N.: Effect of 21 August 2017
solar eclipse on surface-level irradiance and ambient temperature,
International Journal of Energy and Environmental Engineering, 10, 147–156,
https://doi.org/10.1007/s40095-018-0290-8, 2019.
Cescatti, A.: Indirect estimates of canopy gap fraction based on the linear
conversion of hemispherical photographs: Methodology and comparison with
standard thresholding techniques, Agr. Forest Meteorol., 143, 1–12, 2007.
Emde, C. and Mayer, B.: Simulation of solar radiation during a total eclipse: a challenge for radiative transfer, Atmos. Chem. Phys., 7, 2259–2270, https://doi.org/10.5194/acp-7-2259-2007, 2007.
Espenak, F. and Anderson, J.: Total solar eclipse of 2006 March 29, Tech.
rep., Goddard Space Flight Centre, Greenbelt, Maryland, 2004.
Fu, Q. and Liou, K.-N.: On the correlated k-distribution method for radiative transfer in nonhomogenous atmospheres, J. Atmos. Sci., 49,
2139–2156, 1992.
Herman, J. R., Cede, A., Spinei, E., Mount, G., Tzortziou, M., and Abuhassan, M.:
NO2 Column Amounts from Ground-based Pandora and MFDOAS
Spectrometers using the Direct-Sun DOAS Technique: Intercomparisons and
Application to OMI Validation, J. Geophys. Res., 114, D13307,
https://doi.org/10.1029/2009JD011848, 2009.
Herman, J., Evans, R., Cede, A., Abuhassan, N., Petropavlovskikh, I., and McConville, G.: Comparison of ozone retrievals from the Pandora spectrometer system and Dobson spectrophotometer in Boulder, Colorado, Atmos. Meas. Tech., 8, 3407–3418, https://doi.org/10.5194/amt-8-3407-2015, 2015.
Herman, J., Wen, G., Marshak, A., Blank, K., Huang, L., Cede, A., Abuhassan, N., and Kowalewski, M.: Reduction in 317–780 nm radiance reflected from the sunlit Earth during the eclipse of 21 August 2017, Atmos. Meas. Tech., 11, 4373–4388, https://doi.org/10.5194/amt-11-4373-2018, 2018.
Hillger, D., Kopp, T., Lee, T., Lindsey, D., Seaman, C., Miller, S., Solbrig, J., Kidder, S., Bachmeier, S., Jasmin, T., and Rink, T.: First-light imagery from Suomi NPP VIIRS, B.
Am. Meteorol. Soc., 94, 1019–1029, https://doi.org/10.1175/BAMS-D-12-00097.1, 2013.
Holben, B. N., Eck, T. F., Slutsker, I., Tanre, D., Buis, J. P., Setzer, A., Vermote, E., Reagan, J. A., Kaufman, Y. J., Nakajima, T., Lavenu, F., Jankowiak, I., and Smirnov, A.: AERONET-A Federated Instrument Network and Data Archive for Aerosol Characterization, Remote Sens. Environ., 66, 1–16, 1998.
Jeong, U., Tsay, S.-C., Pantina, P., Butler, J. J., Loftus, A. M.,
Abuhassan, N., Herman, J. R., Dimov, A., Holben, B. N., and Swap, R. J.: Langley calibration analysis of solar spectroradiometric
measurements: Spectral aerosol
optical thickness retrievals, J. Geophys. Res.-Atmos.,
123, 4221–4238, https://doi.org/10.1002/2017JD028262, 2018.
Ji, Q. and Tsay, S.-C.: On the dome effect of Eppley pyrgeometers and
pyranometers, Geophys. Res. Lett., 27, 971–974, https://doi.org/10.1029/1999GL011093,
2000.
Ji, Q., Tsay, S.-C., Lau, K. M., Hansell, R. A., Butler, J. J., and Cooper,
J. W.: A novel nonintrusive method to resolve the thermal dome effect of
pyranometers: Radiometric calibration and implications, J. Geophys. Res.,
116, D24105, https://doi.org/10.1029/2011JD016466, 2011.
Kato, S., Rose, F. G., and Charlock, T. P.: Computation of Domain-Averaged
Irradiance Using Satellite-Derived Cloud Properties, J. Atmos. Ocean.
Tech., 22, 146–164, 2005.
Koepke, P., Reuder, J., and Schween, J.: Spectral variation of the solar
radiation during an eclipse, Meteorol. Z., 10, 179–186,
2001.
Kopp, G. and Lean, J. L.: A new, lower value of total solar irradiance:
Evidence and climate significance, Geophys. Res. Lett., 38, L01706,
https://doi.org/10.1029/2010GL045777, 2011.
Marshak, A., Herman, J., Szabo, A., Blank, K., Cede, A., Carn, S., Geogdzhaev, I., Huang, D., Huang, L.-K., Knyazikhin, Y., Kowalewski, M., Krotkov, N., Lyapustin, A., McPeters, R., Meyer, K., Torres, O., and Yang, Y.: Earth Observations from DSCOVR/EPIC Instrument, B. Am. Meteorol. Soc., 9, 1829–1850, https://doi.org/10.1175/BAMS-D-17-0223.1, 2018.
NASA EarthData:
https://earthdata.nasa.gov, last access: August 2020.
NASA Goddard Space Flight Center: AERONET, available at:
https://aeronet.gsfc.nasa.gov, last access: August 2020.
Neckel, H.: Analytical Reference Functions F(λ) for the Sun's Limb
Darkening and Its Absolute Continuum Intensities (λλ300 to 1100 nm), Sol. Phys., 229, 13–33, https://doi.org/10.1007/s11207-005-4081-z, 2005.
Ockenfuß, P., Emde, C., Mayer, B., and Bernhard, G.: Accurate 3-D radiative transfer simulation of spectral solar irradiance during the total solar eclipse of 21 August 2017, Atmos. Chem. Phys., 20, 1961–1976, https://doi.org/10.5194/acp-20-1961-2020, 2020.
Platnick, S., Ackerman, S., King, M., Wind, G., Meyer, K., Menzel, P., Frey, R., Holz, R., Baum, B., and Yang, P.: MODIS atmosphere L2 cloud product (06_L2), NASA MODIS Adaptive Processing System, Goddard Space Flight Center, https://doi.org/10.5067/MODIS/MOD06_L2.061, 2017a.
Platnick, S., Meyer, K., Wind, G., Arnold, T., Amras- inghe, N., Marchant, B., Wang, C., Ackerman, S., Heidinger, A., Holtz, B., Li, Y., and Frey, R.: Continu- ity VIIRS/SNPP Level-2 (L2) Cloud Properties Product, https://doi.org/10.5067/VIIRS/CLDPROP_L2_VIIRS_SNPP.011, 2017b.
Ricchiazzi, P., Yang, S., Gautier, C., and Sowle, D.: SBDART: A Research and
Teaching Software Tool for Plane-Parallel Radiative Transfer in the Earth's
Atmosphere, B. Am. Meteorol. Soc., 79, 2101–2114, https://doi.org/10.1175/1520-0477(1998)079<2101:SARATS>2.0.CO;2, 1998.
Rose, F. G., Charlock, T. P., Fu, Q., Kato, S., Rutan, D. A., and Jin, Z.:
CERES Proto-Edition 3 Radiative Transfer: Model Tests and Radiative Closure
Over Surface Validation Sites, Proceedings 12th Conf. on Atmos. Radiation,
Madison, WI, 2006.
Schaaf, C. and Wang, Z.: MCD43A3 MODIS/Terra+Aqua BRDF/Albedo Daily L3
Global – 500 m V006 [Data set], NASA EOSIS Land Processes DAAC,
https://doi.org/10.5067/MODIS/MCD43A3.006, 2015.
Schmit, T. J., Gunshor, M. M., Menzel, W. P., Gurka, J. J., Li, J., and
Bachmeier, A. S.: Introducing the next-generation ad- vanced baseline imager
on GOES-R, B. Am. Meteorol. Soc., 86, 1079–1096,
https://doi.org/10.1175/BAMS-86-8-1079, 2005.
Sharp, W. E., Silverman, S. M., and Lloyd, J. W. F.: Summary of sky brightness
measurements during eclipses of the sun, Appl. Opt., 10, 1207–1210, 1971.
Shaw, G. E.: Sky radiance during a total solar eclipse: a theoretical model,
Appl. Opt., 17, 272–278, 1978.
Shiobara, M. and Asano, S.: Estimation of cirrus optical thickness from
Sun-photometer measurements, J. Appl. Meteorol., 33, 672–681, 1994.
Trenberth, K. E., Fasullo, J. T., and Kiehl, J.: Earth's global energy
budget, B. Am. Meteorol. Soc., 90, 311–323,
https://doi.org/10.1175/2008BAMS2634.1, 2009.
Turner, D. D., Wulfmeyer, V., Behrendt, A., Bonin, T. A., Choukulkar, A.,
Newsom, R. K. and Cook, D. R.: Response of the Land-Atmosphere System over
North-Central Oklahoma during the 2017 Eclipse, Geophys. Res.
Lett., 45, 1668–1675, https://doi.org/10.1002/2017GL076908, 2018.
Zerefos, C. S., Bali, D. S., Meleti, C., Bais, A. F., Tourpali,, K., Kourtidis,
K., Vanicek, K., Cappellani, F., Kaminski, U., Colombo, T., Stübi, R.,
Manea, L., Formenti, P., and Andrease, M. O.: Changes in surface UV solar
irradiance and ozone over the Balkans during the eclipse of August 11, 1999,
J. Geophys. Res., 105, 26463–26473, 2000.
Short summary
We combine the ground-based observations and radiative transfer model to quantify the impact of the 2017 solar eclipse on surface shortwave irradiation reduction. We find that the eclipse caused local reductions of time-averaged surface flux of about 379 W m-2 (50 %) and 329 W m-2 (46 %) during the ~ 3 h course of the eclipse at the Casper and Columbia sites, respectively. We estimate that the Moon’s shadow caused a reduction of approximately 7 %–8 % in global average surface broadband SW radiation.
We combine the ground-based observations and radiative transfer model to quantify the impact of...
Altmetrics
Final-revised paper
Preprint