Articles | Volume 19, issue 2
https://doi.org/10.5194/acp-19-973-2019
https://doi.org/10.5194/acp-19-973-2019
Research article
 | Highlight paper
 | 
24 Jan 2019
Research article | Highlight paper |  | 24 Jan 2019

Positive matrix factorization of organic aerosol: insights from a chemical transport model

Anthoula D. Drosatou, Ksakousti Skyllakou, Georgia N. Theodoritsi, and Spyros N. Pandis

Related authors

Estimation of secondary organic aerosol formation parameters for the Volatility Basis Set combining thermodenuder, isothermal dilution and yield measurements
Petro Uruci, Dontavious Sippial, Anthoula Drosatou, and Spyros Pandis
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-320,https://doi.org/10.5194/amt-2022-320, 2023
Revised manuscript accepted for AMT
Short summary

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Simulating organic aerosol in Delhi with WRF-Chem using the volatility-basis-set approach: exploring model uncertainty with a Gaussian process emulator
Ernesto Reyes-Villegas, Douglas Lowe, Jill S. Johnson, Kenneth S. Carslaw, Eoghan Darbyshire, Michael Flynn, James D. Allan, Hugh Coe, Ying Chen, Oliver Wild, Scott Archer-Nicholls, Alex Archibald, Siddhartha Singh, Manish Shrivastava, Rahul A. Zaveri, Vikas Singh, Gufran Beig, Ranjeet Sokhi, and Gordon McFiggans
Atmos. Chem. Phys., 23, 5763–5782, https://doi.org/10.5194/acp-23-5763-2023,https://doi.org/10.5194/acp-23-5763-2023, 2023
Short summary
Modelling wintertime sea-spray aerosols under Arctic haze conditions
Eleftherios Ioannidis, Kathy S. Law, Jean-Christophe Raut, Louis Marelle, Tatsuo Onishi, Rachel M. Kirpes, Lucia M. Upchurch, Thomas Tuch, Alfred Wiedensohler, Andreas Massling, Henrik Skov, Patricia K. Quinn, and Kerri A. Pratt
Atmos. Chem. Phys., 23, 5641–5678, https://doi.org/10.5194/acp-23-5641-2023,https://doi.org/10.5194/acp-23-5641-2023, 2023
Short summary
Impact of solar geoengineering on wildfires in the 21st century in CESM2/WACCM6
Wenfu Tang, Simone Tilmes, David M. Lawrence, Fang Li, Cenlin He, Louisa K. Emmons, Rebecca R. Buchholz, and Lili Xia
Atmos. Chem. Phys., 23, 5467–5486, https://doi.org/10.5194/acp-23-5467-2023,https://doi.org/10.5194/acp-23-5467-2023, 2023
Short summary
Linking gas, particulate, and toxic endpoints to air emissions in the Community Regional Atmospheric Chemistry Multiphase Mechanism (CRACMM)
Havala O. T. Pye, Bryan K. Place, Benjamin N. Murphy, Karl M. Seltzer, Emma L. D'Ambro, Christine Allen, Ivan R. Piletic, Sara Farrell, Rebecca H. Schwantes, Matthew M. Coggon, Emily Saunders, Lu Xu, Golam Sarwar, William T. Hutzell, Kristen M. Foley, George Pouliot, Jesse Bash, and William R. Stockwell
Atmos. Chem. Phys., 23, 5043–5099, https://doi.org/10.5194/acp-23-5043-2023,https://doi.org/10.5194/acp-23-5043-2023, 2023
Short summary
Contribution of regional aerosol nucleation to low-level CCN in an Amazonian deep convective environment: results from a regionally nested global model
Xuemei Wang, Hamish Gordon, Daniel P. Grosvenor, Meinrat O. Andreae, and Ken S. Carslaw
Atmos. Chem. Phys., 23, 4431–4461, https://doi.org/10.5194/acp-23-4431-2023,https://doi.org/10.5194/acp-23-4431-2023, 2023
Short summary

Cited articles

Allan, J. D., Williams, P. I., Morgan, W. T., Martin, C. L., Flynn, M. J., Lee, J., Nemitz, E., Phillips, G. J., Gallagher, M. W., and Coe, H.: Contributions from transport, solid fuel burning and cooking to primary organic aerosols in two UK cities, Atmos. Chem. Phys., 10, 647–668, https://doi.org/10.5194/acp-10-647-2010, 2010. 
Brinkman, G., Vance, G., Hannigan, M. P., and Milford, J. B.: Use of synthetic data to evaluate positive matrix factorization as a source apportionment tool for PM2.5 exposure data, Environ. Sci. Technol., 40, 1892–1901, 2006. 
Canonaco, F., Crippa, M., Slowik, J. G., Baltensperger, U., and Prévôt, A. S. H.: SoFi, an IGOR-based interface for the efficient use of the generalized multilinear engine (ME-2) for the source apportionment: ME-2 application to aerosol mass spectrometer data, Atmos. Meas. Tech., 6, 3649–3661, https://doi.org/10.5194/amt-6-3649-2013, 2013. 
Dall'Osto, M., Paglione, M., Decesari, S., Facchini, M. C., O'Dowd, C., Plass-Duellmer, C., and Harrison, R. M.: On the origin of AMS cooking Organic Aerosol at a rural site, Environ. Sci. Technol., 49, 13964–13972, 2015. 
Download
Short summary
The ability of positive matrix factorization (PMF) factor analysis to identify and quantify the organic aerosol (OA) sources accurately is tested in this modeling study. The estimated uncertainty of the contribution of fresh biomass burning is less than 30 % and of the other primary sources is less than 40 %, when these sources contribute more than 20 % to the OA. Τhe first oxygenated OA factor includes mainly highly aged OA, while the second oxygenated OA factor contains fresher secondary OA.
Altmetrics
Final-revised paper
Preprint