Articles | Volume 19, issue 2
https://doi.org/10.5194/acp-19-973-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-19-973-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Positive matrix factorization of organic aerosol: insights from a chemical transport model
Anthoula D. Drosatou
Department of Chemical Engineering, University of Patras, Patras,
Greece
Institute of Chemical Engineering Sciences, Foundation for Research
and Technology Hellas (FORTH/ICE-HT), Patras, Greece
Ksakousti Skyllakou
Institute of Chemical Engineering Sciences, Foundation for Research
and Technology Hellas (FORTH/ICE-HT), Patras, Greece
Georgia N. Theodoritsi
Department of Chemical Engineering, University of Patras, Patras,
Greece
Institute of Chemical Engineering Sciences, Foundation for Research
and Technology Hellas (FORTH/ICE-HT), Patras, Greece
Spyros N. Pandis
CORRESPONDING AUTHOR
Department of Chemical Engineering, University of Patras, Patras,
Greece
Institute of Chemical Engineering Sciences, Foundation for Research
and Technology Hellas (FORTH/ICE-HT), Patras, Greece
Department of Chemical Engineering, Carnegie Mellon University,
Pittsburgh, PA 15213, USA
Related authors
Petro Uruci, Dontavious Sippial, Anthoula Drosatou, and Spyros Pandis
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-320, https://doi.org/10.5194/amt-2022-320, 2023
Revised manuscript accepted for AMT
Short summary
Short summary
In this work we develop an algorithm for the synthesis of the measurements performed in atmospheric simulation chambers regarding the formation of secondary organic aerosol (SOA). Novel features of the algorithm are its ability to use measurements of SOA yields, thermodenuders and isothermal dilution, its estimation of parameters that can be used directly in atmospheric chemical transport models and finally its estimates of the uncertainty of SOA formation yields.
Christina N. Vasilakopoulou, Kalliopi Florou, Christos Kaltsonoudis, Iasonas Stavroulas, Nikolaos Mihalopoulos, and Spyros N. Pandis
Atmos. Meas. Tech., 16, 2837–2850, https://doi.org/10.5194/amt-16-2837-2023, https://doi.org/10.5194/amt-16-2837-2023, 2023
Short summary
Short summary
The offline aerosol mass spectrometry technique is a useful tool for the source apportionment of organic aerosol in areas and periods during which an aerosol mass spectrometer is not available. In this work, an improved offline technique was developed and evaluated in an effort to capture most of the partially soluble and insoluble organic aerosol material, reducing the uncertainty of the corresponding source apportionment significantly.
Stylianos Kakavas, Spyros Pandis, and Athanasios Nenes
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-815, https://doi.org/10.5194/acp-2022-815, 2023
Revised manuscript under review for ACP
Short summary
Short summary
Water uptake from organic species in aerosol can affect the partitioning of semi-volatile inorganic compounds, but are not considered in global and chemical transport models. We address this with a version of the PM-CAMx model that considers such organic water effects and use it to carry out year-long aerosol simulations over the continental US. We show that such organic water impacts can have an important impact on dry PM1 levels when RH levels and PM1 concentrations are high.
Petro Uruci, Dontavious Sippial, Anthoula Drosatou, and Spyros Pandis
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-320, https://doi.org/10.5194/amt-2022-320, 2023
Revised manuscript accepted for AMT
Short summary
Short summary
In this work we develop an algorithm for the synthesis of the measurements performed in atmospheric simulation chambers regarding the formation of secondary organic aerosol (SOA). Novel features of the algorithm are its ability to use measurements of SOA yields, thermodenuders and isothermal dilution, its estimation of parameters that can be used directly in atmospheric chemical transport models and finally its estimates of the uncertainty of SOA formation yields.
Spiro D. Jorga, Kalliopi Florou, David Patoulias, and Spyros N. Pandis
Atmos. Chem. Phys., 23, 85–97, https://doi.org/10.5194/acp-23-85-2023, https://doi.org/10.5194/acp-23-85-2023, 2023
Short summary
Short summary
We take advantage of this unexpected low, new particle formation frequency in Greece and use a dual atmospheric simulation chamber system with starting point ambient air in an effort to gain insight about the chemical species that is limiting nucleation in this area. A potential nucleation precursor, ammonia, was added in one of the chambers while the other one was used as a reference. The addition of ammonia assisted new particle formation in almost 50 % of the experiments conducted.
Brian T. Dinkelacker, Pablo Garcia Rivera, Ioannis Kioutsioukis, Peter J. Adams, and Spyros N. Pandis
Geosci. Model Dev., 15, 8899–8912, https://doi.org/10.5194/gmd-15-8899-2022, https://doi.org/10.5194/gmd-15-8899-2022, 2022
Short summary
Short summary
The performance of a chemical transport model in reproducing PM2.5 concentrations and composition was evaluated at the finest scale using measurements from regulatory sites as well as a network of low-cost monitors. Total PM2.5 mass is reproduced well by the model during the winter when compared to regulatory measurements, but in the summer PM2.5 is underpredicted, mainly due to difficulties in reproducing regional secondary organic aerosol levels.
Christina Vasilakopoulou, Iasonas Stavroulas, Nikolaos Mihalopoulos, and Spyros N. Pandis
Atmos. Meas. Tech., 15, 6419–6431, https://doi.org/10.5194/amt-15-6419-2022, https://doi.org/10.5194/amt-15-6419-2022, 2022
Short summary
Short summary
Offline aerosol mass spectrometer (AMS) measurements can provide valuable information about ambient organic aerosols when online AMS measurements are not available. In this study, we examine whether and how the low time resolution (usually 24 h) of the offline technique affects source apportionment results. We concluded that use of the daily averages resulted in estimated average contributions that were within 8 % of the total OA compared with the high-resolution analysis.
Stella E. I. Manavi and Spyros N. Pandis
Geosci. Model Dev., 15, 7731–7749, https://doi.org/10.5194/gmd-15-7731-2022, https://doi.org/10.5194/gmd-15-7731-2022, 2022
Short summary
Short summary
The paper describes the first step towards the development of a simulation framework for the chemistry and secondary organic aerosol production of intermediate-volatility organic compounds (IVOCs). These compounds can be a significant source of organic particulate matter. Our approach treats IVOCs as lumped compounds that retain their chemical characteristics. Estimated IVOC emissions from road transport were a factor of 8 higher than emissions used in previous applications.
Aristeidis Voliotis, Mao Du, Yu Wang, Yunqi Shao, Thomas J. Bannan, Michael Flynn, Spyros N. Pandis, Carl J. Percival, M. Rami Alfarra, and Gordon McFiggans
Atmos. Chem. Phys., 22, 13677–13693, https://doi.org/10.5194/acp-22-13677-2022, https://doi.org/10.5194/acp-22-13677-2022, 2022
Short summary
Short summary
The addition of a low-yield precursor to the reactive mixture of aVOC and bVOC can increase or decrease the SOA volatility that is system-dependent. Therefore, the SOA volatility of the mixtures cannot always be predicted based on the additivity. In complex mixtures the formation of lower-volatility products likely outweighs the formation of products with higher volatility. The unique products of each mixture contribute significantly to the signal, suggesting interactions can be important.
Amir Yazdani, Satoshi Takahama, John K. Kodros, Marco Paglione, Mauro Masiol, Stefania Squizzato, Kalliopi Florou, Christos Kaltsonoudis, Spiro D. Jorga, Spyros N. Pandis, and Athanasios Nenes
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-658, https://doi.org/10.5194/acp-2022-658, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
Organic aerosols directly emitted from wood and pellet stove combustion are found to chemically transform (approximately 15–35 % by mass) under daytime aging conditions simulated in an environmental chamber. A new marker for lignin-like compounds is found to degrade at a different rate than previously identified biomass burning markers and can potentially provide indication of aging time in ambient samples.
Brian T. Dinkelacker, Pablo Garcia Rivera, Ksakousti Skyllakou, Peter J. Adams, and Spyros N. Pandis
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-648, https://doi.org/10.5194/acp-2022-648, 2022
Revised manuscript not accepted
Short summary
Short summary
A number of factors have influenced the biogenic secondary organic aerosol (SOA) levels in the southeastern US from 2001 to 2010. The increases in temperature have led to an increase of the emissions of biogenic volatile organic compounds by trees and a corresponding increase of the SOA. However, this increase has been balanced by the reductions in the anthropogenic emissions of organic gases and particulate matter as well as of the oxides of nitrogen keeping the biogenic SOA roughly constant.
Pablo Garcia Rivera, Brian T. Dinkelacker, Ioannis Kioutsioukis, Peter J. Adams, and Spyros N. Pandis
Atmos. Chem. Phys., 22, 2011–2027, https://doi.org/10.5194/acp-22-2011-2022, https://doi.org/10.5194/acp-22-2011-2022, 2022
Short summary
Short summary
The contribution of various pollution sources to the variability of fine PM in an urban area was examined using as an example the city of Pittsburgh. Biomass burning aerosol shows the largest variability during the winter with local maxima within the city and in the suburbs. During both periods the largest contributing source to the average PM2.5 is particles from outside the modeling domain. The average population-weighted PM2.5 concentration does not change significantly with resolution.
David Patoulias and Spyros N. Pandis
Atmos. Chem. Phys., 22, 1689–1706, https://doi.org/10.5194/acp-22-1689-2022, https://doi.org/10.5194/acp-22-1689-2022, 2022
Short summary
Short summary
Our simulations indicate that the recently identified production and subsequent condensation effect of extremely low-volatility organic compounds have a smaller-than-expected effect on the total concentration of atmospheric particles. On the other hand, the oxidation of intermediate-volatility organic compounds leads to decreases in the ultrafine-particle concentrations. These results improve our understanding of the links between secondary organic aerosol formation and ultrafine particles.
Miska Olin, David Patoulias, Heino Kuuluvainen, Jarkko V. Niemi, Topi Rönkkö, Spyros N. Pandis, Ilona Riipinen, and Miikka Dal Maso
Atmos. Chem. Phys., 22, 1131–1148, https://doi.org/10.5194/acp-22-1131-2022, https://doi.org/10.5194/acp-22-1131-2022, 2022
Short summary
Short summary
An emission factor particle size distribution was determined from the measurements at an urban traffic site. It was used in updating a pre-existing emission inventory, and regional modeling was performed after the update. Emission inventories typically underestimate nanoparticle emissions due to challenges in determining them with high certainty. This update reveals that the simulated aerosol levels have previously been underestimated especially for urban areas and for sub-50 nm particles.
Ksakousti Skyllakou, Pablo Garcia Rivera, Brian Dinkelacker, Eleni Karnezi, Ioannis Kioutsioukis, Carlos Hernandez, Peter J. Adams, and Spyros N. Pandis
Atmos. Chem. Phys., 21, 17115–17132, https://doi.org/10.5194/acp-21-17115-2021, https://doi.org/10.5194/acp-21-17115-2021, 2021
Short summary
Short summary
Significant reductions in pollutant emissions took place in the US from 1990 to 2010. The reductions in sulfur dioxide emissions from electric-generating units have dominated the reductions in fine particle mass. The reductions in transportation emissions have led to a 30 % reduction of elemental concentrations and of organic particulate matter by a factor of 3. On the other hand, changes in biomass burning and biogenic secondary organic aerosol have been modest.
Spiro D. Jorga, Kalliopi Florou, Christos Kaltsonoudis, John K. Kodros, Christina Vasilakopoulou, Manuela Cirtog, Axel Fouqueau, Bénédicte Picquet-Varrault, Athanasios Nenes, and Spyros N. Pandis
Atmos. Chem. Phys., 21, 15337–15349, https://doi.org/10.5194/acp-21-15337-2021, https://doi.org/10.5194/acp-21-15337-2021, 2021
Short summary
Short summary
We test the hypothesis that significant secondary organic aerosol production can take place even during winter nights through the oxidation of the emitted organic vapors by the nitrate radicals produced during the reaction of ozone and nitrogen oxides. Our experiments, using as a starting point the ambient air of an urban area with high biomass burning activity, demonstrate that, even with sunlight, there is 20 %–70 % additional organic aerosol formed in a few hours.
Aristeidis Voliotis, Yu Wang, Yunqi Shao, Mao Du, Thomas J. Bannan, Carl J. Percival, Spyros N. Pandis, M. Rami Alfarra, and Gordon McFiggans
Atmos. Chem. Phys., 21, 14251–14273, https://doi.org/10.5194/acp-21-14251-2021, https://doi.org/10.5194/acp-21-14251-2021, 2021
Short summary
Short summary
Secondary organic aerosol (SOA) formation from mixtures of volatile precursors can be affected by the molecular interactions of the products. Composition and volatility measurements of SOA formed from mixtures of anthropogenic and biogenic precursors reveal processes that can increase or decrease the SOA volatility. The unique products of the mixture were more oxygenated and less volatile than those from either precursor. Analytical context is provided to explore the SOA volatility in mixtures.
Athanasios Nenes, Spyros N. Pandis, Maria Kanakidou, Armistead G. Russell, Shaojie Song, Petros Vasilakos, and Rodney J. Weber
Atmos. Chem. Phys., 21, 6023–6033, https://doi.org/10.5194/acp-21-6023-2021, https://doi.org/10.5194/acp-21-6023-2021, 2021
Short summary
Short summary
Ecosystems and air quality are affected by the dry deposition of inorganic reactive nitrogen (Nr, the sum of ammonium and nitrate). Its large variability is driven by the large difference in deposition velocity of N when in the gas or particle phase. Here we show that aerosol liquid water and acidity, by affecting gas–particle partitioning, modulate the dry deposition velocity of NH3, HNO3, and Nr worldwide. These effects explain the rapid accumulation of nitrate aerosol during haze events.
Georgia N. Theodoritsi, Giancarlo Ciarelli, and Spyros N. Pandis
Geosci. Model Dev., 14, 2041–2055, https://doi.org/10.5194/gmd-14-2041-2021, https://doi.org/10.5194/gmd-14-2041-2021, 2021
Short summary
Short summary
Two schemes based on the volatility basis set were used for the simulation of biomass burning organic aerosol (bbOA) in the continental US. The first is the default scheme of the PMCAMx-SR model, and the second is a recently developed scheme based on laboratory experiments. The alternative bbOA scheme predicts much higher concentrations. The default scheme performed better during summer and fall, while the alternative scheme was a little better during spring.
Weiqi Xu, Chun Chen, Yanmei Qiu, Ying Li, Zhiqiang Zhang, Eleni Karnezi, Spyros N. Pandis, Conghui Xie, Zhijie Li, Jiaxing Sun, Nan Ma, Wanyun Xu, Pingqing Fu, Zifa Wang, Jiang Zhu, Douglas R. Worsnop, Nga Lee Ng, and Yele Sun
Atmos. Chem. Phys., 21, 5463–5476, https://doi.org/10.5194/acp-21-5463-2021, https://doi.org/10.5194/acp-21-5463-2021, 2021
Short summary
Short summary
Here aerosol volatility and viscosity at a rural site (Gucheng) and an urban site (Beijing) in the North China Plain (NCP) were investigated in summer and winter. Our results showed that organic aerosol (OA) in winter in the NCP is more volatile than that in summer due to enhanced primary emissions from coal combustion and biomass burning. We also found that OA existed mainly as a solid in winter in Beijing but as semisolids in Beijing in summer and Gucheng in winter.
Stylianos Kakavas, David Patoulias, Maria Zakoura, Athanasios Nenes, and Spyros N. Pandis
Atmos. Chem. Phys., 21, 799–811, https://doi.org/10.5194/acp-21-799-2021, https://doi.org/10.5194/acp-21-799-2021, 2021
Short summary
Short summary
The dependence of aerosol acidity on particle size, location, and altitude over Europe during a summertime period is investigated. Differences of up to 1–4 pH units are predicted between sub- and supermicron particles in northern and southern Europe. Particles of all sizes become increasingly acidic with altitude (0.5–2.5 pH units decrease over 2.5 km). The size-dependent pH differences carry important implications for pH-sensitive processes in the aerosol.
Antonios Tasoglou, Evangelos Louvaris, Kalliopi Florou, Aikaterini Liangou, Eleni Karnezi, Christos Kaltsonoudis, Ningxin Wang, and Spyros N. Pandis
Atmos. Chem. Phys., 20, 11625–11637, https://doi.org/10.5194/acp-20-11625-2020, https://doi.org/10.5194/acp-20-11625-2020, 2020
Short summary
Short summary
A month-long set of summertime measurements in a remote area in the Mediterranean is used to quantify aerosol absorption. The measured light absorption was two or more times higher than that of fresh black carbon. The absorption enhancement due to the coating of black carbon cores by other aerosol components could explain only part of this absorption enhancement. The rest was due to brown carbon, mostly in the form of extremely low volatility organic compounds.
Athanasios Nenes, Spyros N. Pandis, Rodney J. Weber, and Armistead Russell
Atmos. Chem. Phys., 20, 3249–3258, https://doi.org/10.5194/acp-20-3249-2020, https://doi.org/10.5194/acp-20-3249-2020, 2020
Short summary
Short summary
We show that aerosol acidity (pH) and liquid water content naturally emerge as previously ignored parameters that drive particulate matter formation in the atmosphere, and its sensitivity to emissions of ammonia and nitric acid. The simple framework presented is easily applied to ambient measurements or model output, and it provides the
chemical regimeof PM sensitivity to ammonia and nitric acid availability.
Weiqi Xu, Conghui Xie, Eleni Karnezi, Qi Zhang, Junfeng Wang, Spyros N. Pandis, Xinlei Ge, Jingwei Zhang, Junling An, Qingqing Wang, Jian Zhao, Wei Du, Yanmei Qiu, Wei Zhou, Yao He, Ying Li, Jie Li, Pingqing Fu, Zifa Wang, Douglas R. Worsnop, and Yele Sun
Atmos. Chem. Phys., 19, 10205–10216, https://doi.org/10.5194/acp-19-10205-2019, https://doi.org/10.5194/acp-19-10205-2019, 2019
Short summary
Short summary
We present the first aerosol volatility measurements in Beijing in summer using a thermodenuder coupled with aerosol mass spectrometers. Our results showed that organic aerosol (OA) comprised mainly semi-volatile organic compounds in summer, and the freshly oxidized secondary OA was the most volatile component. We also found quite different volatility distributions in black-carbon-containing primary and secondary OA, ambient OA, ambient secondary OA and the WRF-Chem model.
Christos Kaltsonoudis, Spiro D. Jorga, Evangelos Louvaris, Kalliopi Florou, and Spyros N. Pandis
Atmos. Meas. Tech., 12, 2733–2743, https://doi.org/10.5194/amt-12-2733-2019, https://doi.org/10.5194/amt-12-2733-2019, 2019
Short summary
Short summary
A portable dual-smog-chamber system was developed using two identical pillow-shaped smog chambers surrounded by UV lamps. The system has been designed to use ambient air as the starting point of the experiments. It can be easily disassembled and transported, enabling the study of various atmospheric environments and it can be used with natural sunlight. The results of test experiments using ambient air are discussed as examples of applications of this system.
Katerina S. Karadima, Vlasis G. Mavrantzas, and Spyros N. Pandis
Atmos. Chem. Phys., 19, 5571–5587, https://doi.org/10.5194/acp-19-5571-2019, https://doi.org/10.5194/acp-19-5571-2019, 2019
Short summary
Short summary
We explore the morphologies of multicomponent nanoparticles through atomistic molecular dynamics simulations under atmospherically relevant conditions. Phase separation is predicted for almost all simulated nanoparticles either between organics and inorganics or between hydrophobic and hydrophilic constituents. Three main particle types were identified: organic islands at the surface, inorganic core-organic shell morphologies and complex structures with hydrophobic and hydrophilic domains.
Georgia N. Theodoritsi and Spyros N. Pandis
Atmos. Chem. Phys., 19, 5403–5415, https://doi.org/10.5194/acp-19-5403-2019, https://doi.org/10.5194/acp-19-5403-2019, 2019
Short summary
Short summary
The chemical transport model PMCAMx was extended to investigate the effects of partitioning and photochemical aging of biomass burning emissions on organic aerosol (OA) concentrations and was applied in Europe. During the summer, the contribution of biomass burning to total OA levels over continental Europe was 16 % and during winter 47 %. Intermediate volatility organic compounds are predicted to be important precursors of secondary OA from biomass burning.
Ningxin Wang, Spiro D. Jorga, Jeffery R. Pierce, Neil M. Donahue, and Spyros N. Pandis
Atmos. Meas. Tech., 11, 6577–6588, https://doi.org/10.5194/amt-11-6577-2018, https://doi.org/10.5194/amt-11-6577-2018, 2018
Short summary
Short summary
The interaction of particles with the chamber walls has been a significant source of uncertainty when analyzing results of secondary organic aerosol formation experiments performed in Teflon chambers. We evaluated the performance of several particle wall-loss correction methods for aging experiments of α-pinene ozonolysis products. Experimental procedures are proposed for the characterization of particle losses during different stages of these experiments.
David Patoulias, Christos Fountoukis, Ilona Riipinen, Ari Asmi, Markku Kulmala, and Spyros N. Pandis
Atmos. Chem. Phys., 18, 13639–13654, https://doi.org/10.5194/acp-18-13639-2018, https://doi.org/10.5194/acp-18-13639-2018, 2018
Short summary
Short summary
PMCAMx-UF, a 3-D chemical transport model focusing on the simulation of ultrafine particles, has been extended with the addition of the volatility basis set (VBS) approach for the simulation of organic aerosol. The model was applied in Europe and its predictions were evaluated against field observations collected during the PEGASOS 2012 campaign. The condensation of organics led to an increase (50–120 %) in the larger particles but the total number concentration decreased by 10–30 %.
Alexandra P. Tsimpidi, Vlassis A. Karydis, Andrea Pozzer, Spyros N. Pandis, and Jos Lelieveld
Geosci. Model Dev., 11, 3369–3389, https://doi.org/10.5194/gmd-11-3369-2018, https://doi.org/10.5194/gmd-11-3369-2018, 2018
Short summary
Short summary
A new module, ORACLE 2-D, that calculates the concentrations of surrogate organic species in two-dimensional space defined by volatility and oxygen-to-carbon ratio has been developed and evaluated. ORACLE 2-D uses a simple photochemical aging scheme that efficiently simulates the net effects of fragmentation and functionalization. ORACLE 2-D can be used to compute the ability of organic particles to act as cloud condensation nuclei and serves as a tool to quantify their climatic impact.
Eleni Karnezi, Benjamin N. Murphy, Laurent Poulain, Hartmut Herrmann, Alfred Wiedensohler, Florian Rubach, Astrid Kiendler-Scharr, Thomas F. Mentel, and Spyros N. Pandis
Atmos. Chem. Phys., 18, 10759–10772, https://doi.org/10.5194/acp-18-10759-2018, https://doi.org/10.5194/acp-18-10759-2018, 2018
Short summary
Short summary
Different parameterizations of the organic aerosol (OA) formation and evolution are evaluated using ground and airborne measurements collected in the 2012 PEGASOS field campaign in the Po Valley (Italy). Total OA concentration and O : C ratios were reproduced within experimental error by a number of schemes. Anthropogenic secondary OA (SOA) contributed 15–25 % of the total OA, 20–35 % of SOA from intermediate volatility compounds oxidation, and 15–45 % of biogenic SOA depending on the scheme.
Evangelia Kostenidou, Eleni Karnezi, James R. Hite Jr., Aikaterini Bougiatioti, Kate Cerully, Lu Xu, Nga L. Ng, Athanasios Nenes, and Spyros N. Pandis
Atmos. Chem. Phys., 18, 5799–5819, https://doi.org/10.5194/acp-18-5799-2018, https://doi.org/10.5194/acp-18-5799-2018, 2018
Short summary
Short summary
The volatility distribution of organic aerosol (OA) and its sources during the Southern Oxidant and Aerosol Study (SOAS) was estimated. The volatility distribution of all components covered a wide range including both semi-volatile and low-volatility components. The oxygen content of the factors can be combined with their estimated volatility and hygroscopicity to provide a better view of their physical properties.
Ningxin Wang, Evangelia Kostenidou, Neil M. Donahue, and Spyros N. Pandis
Atmos. Chem. Phys., 18, 3589–3601, https://doi.org/10.5194/acp-18-3589-2018, https://doi.org/10.5194/acp-18-3589-2018, 2018
Short summary
Short summary
This study investigates aging in the α-pinene ozonolysis system with hydroxyl radicals (OH) through smog chamber experiments. After an equivalent of 2–4 days of typical atmospheric oxidation conditions, homogeneous OH oxidation of the α-pinene ozonolysis products resulted in a 20–40 % net increase in the organic aerosol concentration and an increase in aerosol O : C by up to 0.04. The relative humidity in the 5–50 % range had a minimum effect on aging.
Kerrigan P. Cain and Spyros N. Pandis
Atmos. Meas. Tech., 10, 4865–4876, https://doi.org/10.5194/amt-10-4865-2017, https://doi.org/10.5194/amt-10-4865-2017, 2017
Short summary
Short summary
Hygroscopicity, oxidation level, and volatility of organic pollutants are three crucial properties that determine their fate in the atmosphere. This study assesses the feasibility of a novel measurement and analysis technique to determine these properties of organic aerosol
components at the same time and to establish their relationship.
Evangelos E. Louvaris, Eleni Karnezi, Evangelia Kostenidou, Christos Kaltsonoudis, and Spyros N. Pandis
Atmos. Meas. Tech., 10, 3909–3918, https://doi.org/10.5194/amt-10-3909-2017, https://doi.org/10.5194/amt-10-3909-2017, 2017
Short summary
Short summary
A method for the determination of the organic aerosol volatility distribution combining thermodenuder and isothermal dilution measurements is developed. The approach was tested in experiments that were conducted in a smog chamber using organic aerosol produced during meat charbroiling. Addition of the dilution measurements to the thermodenuder data results in a lower uncertainty of the estimated vaporization enthalpy as well as the semivolatile content of the aerosol.
Alexandra P. Tsimpidi, Vlassis A. Karydis, Spyros N. Pandis, and Jos Lelieveld
Atmos. Chem. Phys., 17, 7345–7364, https://doi.org/10.5194/acp-17-7345-2017, https://doi.org/10.5194/acp-17-7345-2017, 2017
Short summary
Short summary
We analyzed the sensitivity of model-predicted global-scale OA to parameters and assumptions that control primary emissions, photochemical aging, and the scavenging efficiency of LVOCs, SVOCs, and IVOCs. The simulated OA concentrations were evaluated against a global dataset of AMS measurements. According to our analysis, a combination of increased IVOCs and decreased hygroscopicity of the freshly emitted IVOCs can help reduce discrepancies between simulated SOA and observed OOA concentrations.
Christos Kaltsonoudis, Evangelia Kostenidou, Evangelos Louvaris, Magda Psichoudaki, Epameinondas Tsiligiannis, Kalliopi Florou, Aikaterini Liangou, and Spyros N. Pandis
Atmos. Chem. Phys., 17, 7143–7155, https://doi.org/10.5194/acp-17-7143-2017, https://doi.org/10.5194/acp-17-7143-2017, 2017
Short summary
Short summary
Cooking emissions can be a significant source of particulate matter in urban areas. In this study the aerosol- and gas-phase emissions from meat charbroiling were characterized. More than 99% of the aerosol emitted was composed of organic compounds. The fresh particles were similar to the cooking organic aerosol over Greek cities during the winter, while the reacted particles were similar to those found in the atmosphere during the summer.
Kalliopi Florou, Dimitrios K. Papanastasiou, Michael Pikridas, Christos Kaltsonoudis, Evangelos Louvaris, Georgios I. Gkatzelis, David Patoulias, Nikolaos Mihalopoulos, and Spyros N. Pandis
Atmos. Chem. Phys., 17, 3145–3163, https://doi.org/10.5194/acp-17-3145-2017, https://doi.org/10.5194/acp-17-3145-2017, 2017
Short summary
Short summary
The composition of fine particulate matter (PM) in two major Greek cities (Athens and Patras) was measured during two wintertime campaigns in 2012 and 2013. Residential wood burning has dramatically increased due to the Greek financial crisis, contributing around 50 % of the fine PM on average and more than 80 % during nighttime. Cooking is also an important source during both midday and evening, while transportation dominates only during the morning rush hour.
Christos Kaltsonoudis, Evangelia Kostenidou, Kalliopi Florou, Magda Psichoudaki, and Spyros N. Pandis
Atmos. Chem. Phys., 16, 14825–14842, https://doi.org/10.5194/acp-16-14825-2016, https://doi.org/10.5194/acp-16-14825-2016, 2016
Short summary
Short summary
Volatile organic compounds (VOCs) were monitored in urban backgrounds sites, in Athens and Patras in Greece. In summer most of the measured VOCs were due to biogenic and traffic emissions. Winter measurements in Athens revealed that biomass burning used for residential heating was the dominant VOC source. The biomass burning VOC emission ratios and emission factors were estimated.
Antigoni Panagiotopoulou, Panagiotis Charalampidis, Christos Fountoukis, Christodoulos Pilinis, and Spyros N. Pandis
Geosci. Model Dev., 9, 4257–4272, https://doi.org/10.5194/gmd-9-4257-2016, https://doi.org/10.5194/gmd-9-4257-2016, 2016
Short summary
Short summary
The ability of chemical transport model PMCAMx to reproduce ground and satellite aerosol optical depth (AOD) measurements over Europe is evaluated. PMCAMx reproduces AOD values over Spain, the UK, central Europe, and Russia with a fractional bias of less than 15 % and a fractional error of less than 30 %. The model overestimates the AOD over northern Europe probably due to an overestimation of organic aerosol and sulfates, and underestimates over the Balkans due to an underestimation of sulfates.
Elham Baranizadeh, Benjamin N. Murphy, Jan Julin, Saeed Falahat, Carly L. Reddington, Antti Arola, Lars Ahlm, Santtu Mikkonen, Christos Fountoukis, David Patoulias, Andreas Minikin, Thomas Hamburger, Ari Laaksonen, Spyros N. Pandis, Hanna Vehkamäki, Kari E. J. Lehtinen, and Ilona Riipinen
Geosci. Model Dev., 9, 2741–2754, https://doi.org/10.5194/gmd-9-2741-2016, https://doi.org/10.5194/gmd-9-2741-2016, 2016
Short summary
Short summary
The molecular mechanisms through which new ultrafine (< 100 nm) aerosol particles are formed in the atmosphere have puzzled the scientific community for decades. In the past few years, however, significant progress has been made in unraveling these processes through laboratory studies and computational efforts. In this work we have implemented these new developments to an air quality model and study the implications of anthropogenically driven particle formation for European air quality.
Alexandra P. Tsimpidi, Vlassis A. Karydis, Spyros N. Pandis, and Jos Lelieveld
Atmos. Chem. Phys., 16, 8939–8962, https://doi.org/10.5194/acp-16-8939-2016, https://doi.org/10.5194/acp-16-8939-2016, 2016
Short summary
Short summary
In this work we use a global chemistry climate model together with a comprehensive global AMS data set in order to provide valuable insights into the temporal and geographical variability of the contribution of the emitted particles and the chemically processed organic material from combustion sources to total OA. This study reveals the high importance of SOA from anthropogenic sources on global OA concentrations and identifies plausible sources of discrepancy between models and measurements.
Christos Fountoukis, Athanasios G. Megaritis, Ksakousti Skyllakou, Panagiotis E. Charalampidis, Hugo A. C. Denier van der Gon, Monica Crippa, André S. H. Prévôt, Friederike Fachinger, Alfred Wiedensohler, Christodoulos Pilinis, and Spyros N. Pandis
Atmos. Chem. Phys., 16, 3727–3741, https://doi.org/10.5194/acp-16-3727-2016, https://doi.org/10.5194/acp-16-3727-2016, 2016
Short summary
Short summary
We use PMCAMx with high grid resolution over Paris to simulate carbonaceous aerosol during the summer and winter MEGAPOLI campaigns. PMCAMx reproduces BC observations well. Addition of cooking organic aerosol emissions of 80 mg per day per capita is needed to reproduce the corresponding observations. While the oxygenated organic aerosol predictions during the summer are encouraging a major wintertime source appears to be missing.
Andrea Paciga, Eleni Karnezi, Evangelia Kostenidou, Lea Hildebrandt, Magda Psichoudaki, Gabriella J. Engelhart, Byong-Hyoek Lee, Monica Crippa, André S. H. Prévôt, Urs Baltensperger, and Spyros N. Pandis
Atmos. Chem. Phys., 16, 2013–2023, https://doi.org/10.5194/acp-16-2013-2016, https://doi.org/10.5194/acp-16-2013-2016, 2016
Short summary
Short summary
We estimate the volatility distribution for the organic aerosol (OA) components during summer and winter field campaigns in Paris, France as part of the collaborative project MEGAPOLI. The OA factors (hydrocarbon like OA, cooking OA, marine OA, oxygenated OA) had a broad spectrum of volatilities with no direct link between the average volatility and average oxygen to carbon of the OA components.
G. I. Gkatzelis, D. K. Papanastasiou, K. Florou, C. Kaltsonoudis, E. Louvaris, and S. N. Pandis
Atmos. Meas. Tech., 9, 103–114, https://doi.org/10.5194/amt-9-103-2016, https://doi.org/10.5194/amt-9-103-2016, 2016
Short summary
Short summary
A method for the measurement of the nonvolatile atmospheric particle size distribution is developed and tested. The tests include laboratory experiments with biogenic and anthropogenic secondary organic aerosol as well as nucleation experiments with ambient air. The method is then further tested during an ambient campaign.
E. Kostenidou, K. Florou, C. Kaltsonoudis, M. Tsiflikiotou, S. Vratolis, K. Eleftheriadis, and S. N. Pandis
Atmos. Chem. Phys., 15, 11355–11371, https://doi.org/10.5194/acp-15-11355-2015, https://doi.org/10.5194/acp-15-11355-2015, 2015
Short summary
Short summary
The concentration and chemical composition of fine particulate matter were measured during the summer of 2012 in two Greek cities, Patras and Athens. The composition of PM1 was surprisingly similar in both areas, demonstrating the importance of regional sources. Analysis of the Aerosol Mass Spectrometer data suggested that the contribution of the primary sources to organic aerosol was important (22% in Patras and 35% in Athens) but not dominant.
M. Pikridas, J. Sciare, F. Freutel, S. Crumeyrolle, S.-L. von der Weiden-Reinmüller, A. Borbon, A. Schwarzenboeck, M. Merkel, M. Crippa, E. Kostenidou, M. Psichoudaki, L. Hildebrandt, G. J. Engelhart, T. Petäjä, A. S. H. Prévôt, F. Drewnick, U. Baltensperger, A. Wiedensohler, M. Kulmala, M. Beekmann, and S. N. Pandis
Atmos. Chem. Phys., 15, 10219–10237, https://doi.org/10.5194/acp-15-10219-2015, https://doi.org/10.5194/acp-15-10219-2015, 2015
Short summary
Short summary
Aerosol size distribution measurements from three ground sites, two mobile laboratories, and one airplane are combined to investigate the spatial and temporal variability of ultrafine particles in and around Paris during the summer and winter MEGAPOLI campaigns. The role of nucleation as a particle source and the influence of Paris emissions on their surroundings are examined.
M. Beekmann, A. S. H. Prévôt, F. Drewnick, J. Sciare, S. N. Pandis, H. A. C. Denier van der Gon, M. Crippa, F. Freutel, L. Poulain, V. Ghersi, E. Rodriguez, S. Beirle, P. Zotter, S.-L. von der Weiden-Reinmüller, M. Bressi, C. Fountoukis, H. Petetin, S. Szidat, J. Schneider, A. Rosso, I. El Haddad, A. Megaritis, Q. J. Zhang, V. Michoud, J. G. Slowik, S. Moukhtar, P. Kolmonen, A. Stohl, S. Eckhardt, A. Borbon, V. Gros, N. Marchand, J. L. Jaffrezo, A. Schwarzenboeck, A. Colomb, A. Wiedensohler, S. Borrmann, M. Lawrence, A. Baklanov, and U. Baltensperger
Atmos. Chem. Phys., 15, 9577–9591, https://doi.org/10.5194/acp-15-9577-2015, https://doi.org/10.5194/acp-15-9577-2015, 2015
Short summary
Short summary
A detailed characterization of air quality in the Paris (France) agglomeration, a megacity, during two summer and winter intensive campaigns and from additional 1-year observations, revealed that about 70% of the fine particulate matter (PM) at urban background is transported into the megacity from upwind regions. Unexpectedly, a major part of organic PM is of modern origin (woodburning and cooking activities, secondary formation from biogenic VOC).
S. Fuzzi, U. Baltensperger, K. Carslaw, S. Decesari, H. Denier van der Gon, M. C. Facchini, D. Fowler, I. Koren, B. Langford, U. Lohmann, E. Nemitz, S. Pandis, I. Riipinen, Y. Rudich, M. Schaap, J. G. Slowik, D. V. Spracklen, E. Vignati, M. Wild, M. Williams, and S. Gilardoni
Atmos. Chem. Phys., 15, 8217–8299, https://doi.org/10.5194/acp-15-8217-2015, https://doi.org/10.5194/acp-15-8217-2015, 2015
Short summary
Short summary
Particulate matter (PM) constitutes one of the most challenging problems both for air quality and climate change policies. This paper reviews the most recent scientific results on the issue and the policy needs that have driven much of the increase in monitoring and mechanistic research over the last 2 decades. The synthesis reveals many new processes and developments in the science underpinning climate-PM interactions and the effects of PM on human health and the environment.
L. Hildebrandt Ruiz, A. L. Paciga, K. M. Cerully, A. Nenes, N. M. Donahue, and S. N. Pandis
Atmos. Chem. Phys., 15, 8301–8313, https://doi.org/10.5194/acp-15-8301-2015, https://doi.org/10.5194/acp-15-8301-2015, 2015
Short summary
Short summary
Secondary organic aerosol (SOA) is transformed after its initial formation. We explored the effects of this chemical aging on the composition, mass yield, volatility, and hygroscopicity of SOA formed from the photo-oxidation of small aromatic volatile organic compounds. Higher exposure to the hydroxyl radical resulted in different SOA composition, average carbon oxidation state, and mass yield. The vapor pressure of SOA formed under different conditions varied by as much as a factor of 30.
D. Patoulias, C. Fountoukis, I. Riipinen, and S. N. Pandis
Atmos. Chem. Phys., 15, 6337–6350, https://doi.org/10.5194/acp-15-6337-2015, https://doi.org/10.5194/acp-15-6337-2015, 2015
Short summary
Short summary
A new aerosol dynamics model (DMANx) describing the organic vapor condensation on nanoparticles based on the volatility basis set framework is used to simulate typical nucleation events in two contrasting environments in Hyytiälä (Finland) and Finokalia (Greece). The role of semivolatile, low, and extremely low volatility organics and the corresponding surface energies is investigated.
I. Riipinen, N. Rastak, and S. N. Pandis
Atmos. Chem. Phys., 15, 6305–6322, https://doi.org/10.5194/acp-15-6305-2015, https://doi.org/10.5194/acp-15-6305-2015, 2015
Short summary
Short summary
Atmospheric organic aerosol is complex and thus a challenge to model. We introduce a theoretical framework (solubility distributions) to represent the solubility of multicomponent mixtures. Using the framework, we evaluate the commonly made assumptions about the cloud condensation nucleus (CCN) activity of organic mixtures. We find that material with water solubilities larger than 0.1-100 g/L can usually be treated as completely soluble, which simplifies the treatment of organic CCN.
A. Tasoglou and S. N. Pandis
Atmos. Chem. Phys., 15, 6035–6046, https://doi.org/10.5194/acp-15-6035-2015, https://doi.org/10.5194/acp-15-6035-2015, 2015
A. P. Tsimpidi, V. A. Karydis, A. Pozzer, S. N. Pandis, and J. Lelieveld
Geosci. Model Dev., 7, 3153–3172, https://doi.org/10.5194/gmd-7-3153-2014, https://doi.org/10.5194/gmd-7-3153-2014, 2014
Short summary
Short summary
A computationally efficient module for the description of OA composition and evolution in the atmosphere has been developed. This module subdivides OA into several compounds based on their source of origin and volatility, allowing the quantification of POA vs. SOA as well as biogenic vs. anthropogenic contributions to OA concentrations. Such fundamental information can shed light on long-term changes in OA abundance, and hence project the effects of OA on future air quality and climate.
A. G. Megaritis, C. Fountoukis, P. E. Charalampidis, H. A. C. Denier van der Gon, C. Pilinis, and S. N. Pandis
Atmos. Chem. Phys., 14, 10283–10298, https://doi.org/10.5194/acp-14-10283-2014, https://doi.org/10.5194/acp-14-10283-2014, 2014
E. Karnezi, I. Riipinen, and S. N. Pandis
Atmos. Meas. Tech., 7, 2953–2965, https://doi.org/10.5194/amt-7-2953-2014, https://doi.org/10.5194/amt-7-2953-2014, 2014
C. Fountoukis, A. G. Megaritis, K. Skyllakou, P. E. Charalampidis, C. Pilinis, H. A. C. Denier van der Gon, M. Crippa, F. Canonaco, C. Mohr, A. S. H. Prévôt, J. D. Allan, L. Poulain, T. Petäjä, P. Tiitta, S. Carbone, A. Kiendler-Scharr, E. Nemitz, C. O'Dowd, E. Swietlicki, and S. N. Pandis
Atmos. Chem. Phys., 14, 9061–9076, https://doi.org/10.5194/acp-14-9061-2014, https://doi.org/10.5194/acp-14-9061-2014, 2014
M. Crippa, F. Canonaco, V. A. Lanz, M. Äijälä, J. D. Allan, S. Carbone, G. Capes, D. Ceburnis, M. Dall'Osto, D. A. Day, P. F. DeCarlo, M. Ehn, A. Eriksson, E. Freney, L. Hildebrandt Ruiz, R. Hillamo, J. L. Jimenez, H. Junninen, A. Kiendler-Scharr, A.-M. Kortelainen, M. Kulmala, A. Laaksonen, A. A. Mensah, C. Mohr, E. Nemitz, C. O'Dowd, J. Ovadnevaite, S. N. Pandis, T. Petäjä, L. Poulain, S. Saarikoski, K. Sellegri, E. Swietlicki, P. Tiitta, D. R. Worsnop, U. Baltensperger, and A. S. H. Prévôt
Atmos. Chem. Phys., 14, 6159–6176, https://doi.org/10.5194/acp-14-6159-2014, https://doi.org/10.5194/acp-14-6159-2014, 2014
B. N. Murphy, N. M. Donahue, A. L. Robinson, and S. N. Pandis
Atmos. Chem. Phys., 14, 5825–5839, https://doi.org/10.5194/acp-14-5825-2014, https://doi.org/10.5194/acp-14-5825-2014, 2014
A. Bougiatioti, I. Stavroulas, E. Kostenidou, P. Zarmpas, C. Theodosi, G. Kouvarakis, F. Canonaco, A. S. H. Prévôt, A. Nenes, S. N. Pandis, and N. Mihalopoulos
Atmos. Chem. Phys., 14, 4793–4807, https://doi.org/10.5194/acp-14-4793-2014, https://doi.org/10.5194/acp-14-4793-2014, 2014
K. Skyllakou, B. N. Murphy, A. G. Megaritis, C. Fountoukis, and S. N. Pandis
Atmos. Chem. Phys., 14, 2343–2352, https://doi.org/10.5194/acp-14-2343-2014, https://doi.org/10.5194/acp-14-2343-2014, 2014
L. Ahlm, J. Julin, C. Fountoukis, S. N. Pandis, and I. Riipinen
Atmos. Chem. Phys., 13, 10271–10283, https://doi.org/10.5194/acp-13-10271-2013, https://doi.org/10.5194/acp-13-10271-2013, 2013
E. Kostenidou, C. Kaltsonoudis, M. Tsiflikiotou, E. Louvaris, L. M. Russell, and S. N. Pandis
Atmos. Chem. Phys., 13, 8797–8811, https://doi.org/10.5194/acp-13-8797-2013, https://doi.org/10.5194/acp-13-8797-2013, 2013
Q. J. Zhang, M. Beekmann, F. Drewnick, F. Freutel, J. Schneider, M. Crippa, A. S. H. Prevot, U. Baltensperger, L. Poulain, A. Wiedensohler, J. Sciare, V. Gros, A. Borbon, A. Colomb, V. Michoud, J.-F. Doussin, H. A. C. Denier van der Gon, M. Haeffelin, J.-C. Dupont, G. Siour, H. Petetin, B. Bessagnet, S. N. Pandis, A. Hodzic, O. Sanchez, C. Honoré, and O. Perrussel
Atmos. Chem. Phys., 13, 5767–5790, https://doi.org/10.5194/acp-13-5767-2013, https://doi.org/10.5194/acp-13-5767-2013, 2013
E. Athanasopoulou, H. Vogel, B. Vogel, A. P. Tsimpidi, S. N. Pandis, C. Knote, and C. Fountoukis
Atmos. Chem. Phys., 13, 625–645, https://doi.org/10.5194/acp-13-625-2013, https://doi.org/10.5194/acp-13-625-2013, 2013
V.-M. Kerminen, M. Paramonov, T. Anttila, I. Riipinen, C. Fountoukis, H. Korhonen, E. Asmi, L. Laakso, H. Lihavainen, E. Swietlicki, B. Svenningsson, A. Asmi, S. N. Pandis, M. Kulmala, and T. Petäjä
Atmos. Chem. Phys., 12, 12037–12059, https://doi.org/10.5194/acp-12-12037-2012, https://doi.org/10.5194/acp-12-12037-2012, 2012
Related subject area
Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Simulating organic aerosol in Delhi with WRF-Chem using the volatility-basis-set approach: exploring model uncertainty with a Gaussian process emulator
Modelling wintertime sea-spray aerosols under Arctic haze conditions
Impact of solar geoengineering on wildfires in the 21st century in CESM2/WACCM6
Linking gas, particulate, and toxic endpoints to air emissions in the Community Regional Atmospheric Chemistry Multiphase Mechanism (CRACMM)
Contribution of regional aerosol nucleation to low-level CCN in an Amazonian deep convective environment: results from a regionally nested global model
Coarse particulate matter air quality in East Asia: implications for fine particulate nitrate
Foreign emissions exacerbate PM2.5 pollution in China through nitrate chemistry
Analysis of new particle formation events and comparisons to simulations of particle number concentrations based on GEOS-Chem–advanced particle microphysics in Beijing, China
Simulation of organic aerosol, its precursors, and related oxidants in the Landes pine forest in southwestern France: accounting for domain-specific land use and physical conditions
Modelling the European wind-blown dust emissions and their impact on particulate matter (PM) concentrations
Assessment of the impacts of cloud chemistry on surface SO2 and sulfate levels in typical regions of China
Impacts of estimated plume rise on PM2.5 exceedance prediction during extreme wildfire events: a comparison of three schemes (Briggs, Freitas, and Sofiev)
Strong particle production and condensational growth in the upper troposphere sustained by biogenic VOCs from the canopy of the Amazon Basin
Sources of organic aerosols in eastern China: a modeling study with high-resolution intermediate-volatility and semivolatile organic compound emissions
Composited analyses of the chemical and physical characteristics of co-polluted days by ozone and PM2.5 over 2013–2020 in the Beijing–Tianjin–Hebei region
Unbalanced emission reductions of different species and sectors in China during COVID-19 lockdown derived by multi-species surface observation assimilation
Comprehensive simulations of new particle formation events in Beijing with a cluster dynamics-multicomponent sectional model
Observation-based constraints on modeled aerosol surface area: implications for heterogeneous chemistry
Oligomer formation from the gas-phase reactions of Criegee intermediates with hydroperoxide esters: mechanism and kinetics
Modelling SO2 conversion into sulfates in the mid-troposphere with a 3D chemistry transport model: the case of Mount Etna's eruption on 12 April 2012
Global distribution of Asian, Middle Eastern, and North African dust simulated by CESM1/CARMA
Opinion: Coordinated development of emission inventories for climate forcers and air pollutants
Differences between recent emission inventories strongly affect anthropogenic aerosol evolution from 1990 to 2019
Seasonal modeling analysis of nitrate formation pathways in Yangtze River Delta region, China
Global Nitrogen and Sulfur Budgets Using a Measurement-Model Fusion Approach
Modeling radiative and climatic effects of brown carbon aerosols with the ARPEGE-Climat global climate model
Numerical simulation of the impact of COVID-19 lockdown on tropospheric composition and aerosol radiative forcing in Europe
Evaluation of the WRF and CHIMERE models for the simulation of PM2.5 in large East African urban conurbations
Impact of urban heat island on inorganic aerosol in the lower free troposphere: a case study in Hangzhou, China
Statistical and machine learning methods for evaluating trends in air quality under changing meteorological conditions
Simulating the radiative forcing of oceanic dimethylsulfide (DMS) in Asia based on machine learning estimates
Quantifying the effects of mixing state on aerosol optical properties
Secondary organic aerosol formation via multiphase reaction of hydrocarbons in urban atmospheres using CAMx integrated with the UNIPAR model
Contrasting source contributions of Arctic black carbon to atmospheric concentrations, deposition flux, and atmospheric and snow radiative effects
Effect of dust on rainfall over the Red Sea coast based on WRF-Chem model simulations
A new assessment of global and regional budgets, fluxes, and lifetimes of atmospheric reactive N and S gases and aerosols
Limitations in representation of physical processes prevent successful simulation of PM2.5 during KORUS-AQ
Eurodelta multi-model simulated and observed particulate matter trends in Europe in the period of 1990–2010
Elucidating the critical oligomeric steps in secondary organic aerosol and brown carbon formation
Fast climate responses to emission reductions in aerosol and ozone precursors in China during 2013–2017
Secondary PM2.5 decreases significantly less than NO2 emission reductions during COVID lockdown in Germany
Molecular-level nucleation mechanism of iodic acid and methanesulfonic acid
Estimation of secondary PM2.5 in China and the United States using a multi-tracer approach
Two-way coupled meteorology and air quality models in Asia: a systematic review and meta-analysis of impacts of aerosol feedbacks on meteorology and air quality
OCEANFILMS (Organic Compounds from Ecosystems to Aerosols: Natural Films and Interfaces via Langmuir Molecular Surfactants) sea spray organic aerosol emissions – implementation in a global climate model and impacts on clouds
The pathway of impacts of aerosol direct effects on secondary inorganic aerosol formation
The impact of molecular self-organisation on the atmospheric fate of a cooking aerosol proxy
The formation and mitigation of nitrate pollution: comparison between urban and suburban environments
Impacts of aerosol–photolysis interaction and aerosol–radiation feedback on surface-layer ozone in North China during multi-pollutant air pollution episodes
Reducing future air-pollution-related premature mortality over Europe by mitigating emissions from the energy sector: assessing an 80 % renewable energies scenario
Ernesto Reyes-Villegas, Douglas Lowe, Jill S. Johnson, Kenneth S. Carslaw, Eoghan Darbyshire, Michael Flynn, James D. Allan, Hugh Coe, Ying Chen, Oliver Wild, Scott Archer-Nicholls, Alex Archibald, Siddhartha Singh, Manish Shrivastava, Rahul A. Zaveri, Vikas Singh, Gufran Beig, Ranjeet Sokhi, and Gordon McFiggans
Atmos. Chem. Phys., 23, 5763–5782, https://doi.org/10.5194/acp-23-5763-2023, https://doi.org/10.5194/acp-23-5763-2023, 2023
Short summary
Short summary
Organic aerosols (OAs), their sources and their processes remain poorly understood. The volatility basis set (VBS) approach, implemented in air quality models such as WRF-Chem, can be a useful tool to describe primary OA (POA) production and aging. However, the main disadvantage is its complexity. We used a Gaussian process simulator to reproduce model results and to estimate the sources of model uncertainty. We do this by comparing the outputs with OA observations made at Delhi, India, in 2018.
Eleftherios Ioannidis, Kathy S. Law, Jean-Christophe Raut, Louis Marelle, Tatsuo Onishi, Rachel M. Kirpes, Lucia M. Upchurch, Thomas Tuch, Alfred Wiedensohler, Andreas Massling, Henrik Skov, Patricia K. Quinn, and Kerri A. Pratt
Atmos. Chem. Phys., 23, 5641–5678, https://doi.org/10.5194/acp-23-5641-2023, https://doi.org/10.5194/acp-23-5641-2023, 2023
Short summary
Short summary
Remote and local anthropogenic emissions contribute to wintertime Arctic haze, with enhanced aerosol concentrations, but natural sources, which also contribute, are less well studied. Here, modelled wintertime sea-spray aerosols are improved in WRF-Chem over the wider Arctic by including updated wind speed and temperature-dependent treatments. As a result, anthropogenic nitrate aerosols are also improved. Open leads are confirmed to be the main source of sea-spray aerosols over northern Alaska.
Wenfu Tang, Simone Tilmes, David M. Lawrence, Fang Li, Cenlin He, Louisa K. Emmons, Rebecca R. Buchholz, and Lili Xia
Atmos. Chem. Phys., 23, 5467–5486, https://doi.org/10.5194/acp-23-5467-2023, https://doi.org/10.5194/acp-23-5467-2023, 2023
Short summary
Short summary
Globally, total wildfire burned area is projected to increase over the 21st century under scenarios without geoengineering and decrease under the two geoengineering scenarios. Geoengineering reduces fire by decreasing surface temperature and wind speed and increasing relative humidity and soil water. However, geoengineering also yields reductions in precipitation, which offset some of the fire reduction.
Havala O. T. Pye, Bryan K. Place, Benjamin N. Murphy, Karl M. Seltzer, Emma L. D'Ambro, Christine Allen, Ivan R. Piletic, Sara Farrell, Rebecca H. Schwantes, Matthew M. Coggon, Emily Saunders, Lu Xu, Golam Sarwar, William T. Hutzell, Kristen M. Foley, George Pouliot, Jesse Bash, and William R. Stockwell
Atmos. Chem. Phys., 23, 5043–5099, https://doi.org/10.5194/acp-23-5043-2023, https://doi.org/10.5194/acp-23-5043-2023, 2023
Short summary
Short summary
Chemical mechanisms describe how emissions from vehicles, vegetation, and other sources are chemically transformed in the atmosphere to secondary products including criteria and hazardous air pollutants. The Community Regional Atmospheric Chemistry Multiphase Mechanism integrates gas-phase radical chemistry with pathways to fine-particle mass. New species were implemented, resulting in a bottom-up representation of organic aerosol, which is required for accurate source attribution of pollutants.
Xuemei Wang, Hamish Gordon, Daniel P. Grosvenor, Meinrat O. Andreae, and Ken S. Carslaw
Atmos. Chem. Phys., 23, 4431–4461, https://doi.org/10.5194/acp-23-4431-2023, https://doi.org/10.5194/acp-23-4431-2023, 2023
Short summary
Short summary
New particle formation in the upper troposphere is important for the global boundary layer aerosol population, and they can be transported downward in Amazonia. We use a global and a regional model to quantify the number of aerosols that are formed at high altitude and transported downward in a 1000 km region. We find that the majority of the aerosols are from outside the region. This suggests that the 1000 km region is unlikely to be a
closed loopfor aerosol formation, transport and growth.
Shixian Zhai, Daniel J. Jacob, Drew C. Pendergrass, Nadia K. Colombi, Viral Shah, Laura Hyesung Yang, Qiang Zhang, Shuxiao Wang, Hwajin Kim, Yele Sun, Jin-Soo Choi, Jin-Soo Park, Gan Luo, Fangqun Yu, Jung-Hun Woo, Younha Kim, Jack E. Dibb, Taehyoung Lee, Jin-Seok Han, Bruce E. Anderson, Ke Li, and Hong Liao
Atmos. Chem. Phys., 23, 4271–4281, https://doi.org/10.5194/acp-23-4271-2023, https://doi.org/10.5194/acp-23-4271-2023, 2023
Short summary
Short summary
Anthropogenic fugitive dust in East Asia not only causes severe coarse particulate matter air pollution problems, but also affects fine particulate nitrate. Due to emission control efforts, coarse PM decreased steadily. We find that the decrease of coarse PM is a major driver for a lack of decrease of fine particulate nitrate, as it allows more nitric acid to form fine particulate nitrate. The continuing decrease of coarse PM requires more stringent ammonia and nitrogen oxides emission controls.
Jun-Wei Xu, Jintai Lin, Gan Luo, Jamiu Adeniran, and Hao Kong
Atmos. Chem. Phys., 23, 4149–4163, https://doi.org/10.5194/acp-23-4149-2023, https://doi.org/10.5194/acp-23-4149-2023, 2023
Short summary
Short summary
Research on the sources of Chinese PM2.5 pollution has focused on the contributions of China’s domestic emissions. However, the impact of foreign anthropogenic emissions has typically been simplified or neglected. Here we find that foreign anthropogenic emissions play an important role in Chinese PM2.5 pollution through chemical interactions between foreign-transported pollutants and China’s local emissions. Thus, foreign emission reductions are essential for improving Chinese air quality.
Kun Wang, Xiaoyan Ma, Rong Tian, and Fangqun Yu
Atmos. Chem. Phys., 23, 4091–4104, https://doi.org/10.5194/acp-23-4091-2023, https://doi.org/10.5194/acp-23-4091-2023, 2023
Short summary
Short summary
From 12 March to 6 April 2016 in Beijing, there were 11 typical new particle formation days, 13 non-event days, and 2 undefined days. We first analyzed the favorable background of new particle formation in Beijing and then conducted the simulations using four nucleation schemes based on a global chemistry transport model (GEOS-Chem) to understand the nucleation mechanism.
Arineh Cholakian, Matthias Beekmann, Guillaume Siour, Isabelle Coll, Manuela Cirtog, Elena Ormeño, Pierre-Marie Flaud, Emilie Perraudin, and Eric Villenave
Atmos. Chem. Phys., 23, 3679–3706, https://doi.org/10.5194/acp-23-3679-2023, https://doi.org/10.5194/acp-23-3679-2023, 2023
Short summary
Short summary
This article revolves around the simulation of biogenic secondary organic aerosols in the Landes forest (southwestern France). Several sensitivity cases involving biogenic emission factors, land cover data, anthropogenic emissions, and physical or meteorological parameters were performed and each compared to measurements both in the forest canopy and around the forest. The chemistry behind the formation of these aerosols and their production and transport in the forest canopy is discussed.
Marina Liaskoni, Peter Huszar, Lukáš Bartík, Alvaro Patricio Prieto Perez, Jan Karlický, and Ondřej Vlček
Atmos. Chem. Phys., 23, 3629–3654, https://doi.org/10.5194/acp-23-3629-2023, https://doi.org/10.5194/acp-23-3629-2023, 2023
Short summary
Short summary
Wind-blown dust (WBD) emissions emitted from European soils are estimated for the 2007–2016 period, and their impact on the total particulate matter (PM) concentration is calculated. We found a considerable increase in PM concentrations due to such emissions, especially on selected days (rather than on a seasonal average). We also found that WBD emissions are strongest over western Europe, and the highest impacts on PM are calculated for this region.
Jianyan Lu, Sunling Gong, Jian Zhang, Jianmin Chen, Lei Zhang, and Chunhong Zhou
EGUsphere, https://doi.org/10.5194/egusphere-2023-521, https://doi.org/10.5194/egusphere-2023-521, 2023
Short summary
Short summary
WRF/ CUACE was used to assess the cloud chemistry contribution in China. Firstly, the CUACE cloud chemistry scheme was found to well reproduce the cloud processing the consumptions of H2O2, O3 and SO2 and the increase of sulfate. Secondly, during cloud availability in December under heavy pollution episode, the sulfate production increases 60–95 % and SO2 reduces over 80 %. This study provides a way to analyze the over-estimate phenomenon of SO2 in many chemical transport models.
Yunyao Li, Daniel Tong, Siqi Ma, Saulo R. Freitas, Ravan Ahmadov, Mikhail Sofiev, Xiaoyang Zhang, Shobha Kondragunta, Ralph Kahn, Youhua Tang, Barry Baker, Patrick Campbell, Rick Saylor, Georg Grell, and Fangjun Li
Atmos. Chem. Phys., 23, 3083–3101, https://doi.org/10.5194/acp-23-3083-2023, https://doi.org/10.5194/acp-23-3083-2023, 2023
Short summary
Short summary
Plume height is important in wildfire smoke dispersion and affects air quality and human health. We assess the impact of plume height on wildfire smoke dispersion and the exceedances of the National Ambient Air Quality Standards. A higher plume height predicts lower pollution near the source region, but higher pollution in downwind regions, due to the faster spread of the smoke once ejected, affects pollution exceedance forecasts and the early warning of extreme air pollution events.
Yunfan Liu, Hang Su, Siwen Wang, Chao Wei, Wei Tao, Mira L. Pöhlker, Christopher Pöhlker, Bruna A. Holanda, Ovid O. Krüger, Thorsten Hoffmann, Manfred Wendisch, Paulo Artaxo, Ulrich Pöschl, Meinrat O. Andreae, and Yafang Cheng
Atmos. Chem. Phys., 23, 251–272, https://doi.org/10.5194/acp-23-251-2023, https://doi.org/10.5194/acp-23-251-2023, 2023
Short summary
Short summary
The origins of the abundant cloud condensation nuclei (CCN) in the upper troposphere (UT) of the Amazon remain unclear. With model developments of new secondary organic aerosol schemes and constrained by observation, we show that strong aerosol nucleation and condensation in the UT is triggered by biogenic organics, and organic condensation is key for UT CCN production. This UT CCN-producing mechanism may prevail over broader vegetation canopies and deserves emphasis in aerosol–climate feedback.
Jingyu An, Cheng Huang, Dandan Huang, Momei Qin, Huan Liu, Rusha Yan, Liping Qiao, Min Zhou, Yingjie Li, Shuhui Zhu, Qian Wang, and Hongli Wang
Atmos. Chem. Phys., 23, 323–344, https://doi.org/10.5194/acp-23-323-2023, https://doi.org/10.5194/acp-23-323-2023, 2023
Short summary
Short summary
This paper aims to build up an approach to establish a high-resolution emission inventory of intermediate-volatility and semi-volatile organic compounds in city-scale and detailed source categories and incorporate it into the CMAQ model. We believe this approach can be widely applied to improve the simulation of secondary organic aerosol and its source contributions.
Huibin Dai, Hong Liao, Ke Li, Xu Yue, Yang Yang, Jia Zhu, Jianbing Jin, Baojie Li, and Xingwen Jiang
Atmos. Chem. Phys., 23, 23–39, https://doi.org/10.5194/acp-23-23-2023, https://doi.org/10.5194/acp-23-23-2023, 2023
Short summary
Short summary
We apply the 3-D global chemical transport model (GEOS-Chem) to simulate co-polluted days by O3 and PM2.5 (O3–PM2.5PDs) in Beijing–Tianjin–Hebei in 2013–2020 and investigate the chemical and physical characteristics of O3–PM2.5PDs by composited analyses of such days that are captured by both the observations and the model. We report for the first time the unique features in vertical distributions of aerosols during O3–PM2.5PDs and the physical and chemical characteristics of O3–PM2.5PDs.
Lei Kong, Xiao Tang, Jiang Zhu, Zifa Wang, Yele Sun, Pingqing Fu, Meng Gao, Huangjian Wu, Miaomiao Lu, Qian Wu, Shuyuan Huang, Wenxuan Sui, Jie Li, Xiaole Pan, Lin Wu, Hajime Akimoto, and Gregory R. Carmichael
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-729, https://doi.org/10.5194/acp-2022-729, 2023
Revised manuscript accepted for ACP
Short summary
Short summary
A multi-air pollutant inversion system has been developed in this study to estimate emission changes in China during COVID-19 lockdown. The results demonstrate that the lockdown is largely a nationwide road traffic control measurement with NOx emission decresed by ~40 %. Emissions of other species were only decreased by ~10 % due to smaller effects of lockdown on other sectors. Assessment results further indicates that the lockdown only has limited effects on the control of PM2.5 and O3 in China.
Chenxi Li, Yuyang Li, Xiaoxiao Li, Runlong Cai, Yaxin Fan, Xiaohui Qiao, Rujing Yin, Chao Yan, Yishuo Guo, Yongchun Liu, Jun Zheng, Veli-Matti Kerminen, Markku Kulmala, Huayun Xiao, and Jingkun Jiang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-748, https://doi.org/10.5194/acp-2022-748, 2023
Revised manuscript accepted for ACP
Short summary
Short summary
New particle formation and growth in polluted environments are not fully understood despite intensive research. We applied a cluster dynamics-multicomponent sectional model to simulate the new particle formation events observed in Beijing, China. The simulation approximately captures how the events evolve. Further diagnosis shows that the oxygenated organic molecules may have been underdetected and modulating their abundance leads to significantly improved simulation-observation agreement.
Rachel A. Bergin, Monica Harkey, Alicia Hoffman, Richard H. Moore, Bruce Anderson, Andreas Beyersdorf, Luke Ziemba, Lee Thornhill, Edward Winstead, Tracey Holloway, and Timothy H. Bertram
Atmos. Chem. Phys., 22, 15449–15468, https://doi.org/10.5194/acp-22-15449-2022, https://doi.org/10.5194/acp-22-15449-2022, 2022
Short summary
Short summary
Correctly predicting aerosol surface area concentrations is important for determining the rate of heterogeneous reactions in chemical transport models. Here, we compare aircraft measurements of aerosol surface area with a regional model. In polluted air masses, we show that the model underpredicts aerosol surface area by a factor of 2. Despite this disagreement, the representation of heterogeneous chemistry still dominates the overall uncertainty in the loss rate of molecules such as N2O5.
Long Chen, Yu Huang, Yonggang Xue, Zhihui Jia, and Wenliang Wang
Atmos. Chem. Phys., 22, 14529–14546, https://doi.org/10.5194/acp-22-14529-2022, https://doi.org/10.5194/acp-22-14529-2022, 2022
Short summary
Short summary
Quantum chemical methods are applied to gain insight into the oligomerization reaction mechanisms and kinetics of distinct stabilized Criegee intermediate (SCI) reactions with hydroperoxide esters, where calculations show that SCI addition reactions with hydroperoxide esters proceed through the successive insertion of SCIs to form oligomers that involve SCIs as the repeating unit. The saturated vapor pressure of the formed oligomers decreases monotonically with the increasing number of SCIs.
Mathieu Lachatre, Sylvain Mailler, Laurent Menut, Arineh Cholakian, Pasquale Sellitto, Guillaume Siour, Henda Guermazi, Giuseppe Salerno, and Salvatore Giammanco
Atmos. Chem. Phys., 22, 13861–13879, https://doi.org/10.5194/acp-22-13861-2022, https://doi.org/10.5194/acp-22-13861-2022, 2022
Short summary
Short summary
In this study, we have evaluated the predominance of various pathways of volcanic SO2 conversion to sulfates in the upper troposphere. We show that the main conversion pathway was gaseous oxidation by OH, although the liquid pathways were expected to be predominant. These results are interesting with respect to a better understanding of sulfate formation in the middle and upper troposphere and are an important component to help evaluate particulate matter radiative forcing.
Siying Lian, Luxi Zhou, Daniel M. Murphy, Karl D. Froyd, Owen B. Toon, and Pengfei Yu
Atmos. Chem. Phys., 22, 13659–13676, https://doi.org/10.5194/acp-22-13659-2022, https://doi.org/10.5194/acp-22-13659-2022, 2022
Short summary
Short summary
Parameterizations of dust lifting and microphysical properties of dust in climate models are still subject to large uncertainty. Here we use a sectional aerosol climate model to investigate the global vertical distributions of the dust. Constrained by a suite of observations, the model suggests that, although North African dust dominates global dust mass loading at the surface, the relative contribution of Asian dust increases with altitude and becomes dominant in the upper troposphere.
Steven J. Smith, Erin E. McDuffie, and Molly Charles
Atmos. Chem. Phys., 22, 13201–13218, https://doi.org/10.5194/acp-22-13201-2022, https://doi.org/10.5194/acp-22-13201-2022, 2022
Short summary
Short summary
Emissions into the atmosphere of greenhouse gases (GHGs) and air pollutants, quantified in emission inventories, impact human health, ecosystems, and the climate. We review how air pollutant and GHG inventory activities have historically been structured and their different uses and requirements. We discuss the benefits of increasing coordination between air pollutant and GHG inventory development efforts, but also caution that there are differences in appropriate methodologies and applications.
Marianne Tronstad Lund, Gunnar Myhre, Ragnhild Bieltvedt Skeie, Bjørn Hallvard Samset, and Zbigniew Klimont
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-639, https://doi.org/10.5194/acp-2022-639, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
Here we show that differences, in magnitude and trend, between recent global anthropogenic emission inventories have notable influence on simulated abundances of anthropogenic aerosol, and their radiative forcing (RF), over the 1990–2019 period. This, in turn, affect estimates of radiative forcing. Our findings form a basis for comparing existing and upcoming studies anthropogenic aerosols using different emission inventories.
Jinjin Sun, Momei Qin, Xiaodong Xie, Wenxing Fu, Yang Qin, Li Sheng, Lin Li, Jingyi Li, Ishaq Dimeji Sulaymon, Lei Jiang, Lin Huang, Xingna Yu, and Jianlin Hu
Atmos. Chem. Phys., 22, 12629–12646, https://doi.org/10.5194/acp-22-12629-2022, https://doi.org/10.5194/acp-22-12629-2022, 2022
Short summary
Short summary
NO3- has become the dominant and the least reduced chemical component of fine particulate matter in China. NO3- formation is mostly in the NH3-rich regime in the Yangtze River Delta (YRD). OH + NO2 contributes 60 %–83 % of the TNO3 production rates, and the N2O5 heterogeneous pathway contributes 10 %–36 %. The N2O5 heterogeneous pathway becomes more important in cold seasons. Local emissions and regional transportation contribute 50 %–62 % and 38 %–50 % to YRD NO3- concentrations, respectively.
Hannah J. Rubin, Joshua S. Fu, Frank Dentener, Rui Li, Kan Huang, and Hongbo Fu
EGUsphere, https://doi.org/10.5194/egusphere-2022-873, https://doi.org/10.5194/egusphere-2022-873, 2022
Short summary
Short summary
We update the 2010 global deposition budget for nitrogen and sulfur with new regional wet deposition measurements, improving the ensemble results of eleven global chemistry transport models from HTAP-II. Our study demonstrates that a global measurement-model fusion approach can substantially improve N and S deposition model estimates at a regional scale and represents a step forward toward the WMO’s goal of global fusion products for accurately mapping harmful air pollution.
Thomas Drugé, Pierre Nabat, Marc Mallet, Martine Michou, Samuel Rémy, and Oleg Dubovik
Atmos. Chem. Phys., 22, 12167–12205, https://doi.org/10.5194/acp-22-12167-2022, https://doi.org/10.5194/acp-22-12167-2022, 2022
Short summary
Short summary
This study presents the implementation of brown carbon in the atmospheric component of the CNRM global climate model and particularly in its aerosol scheme TACTIC. Several simulations were carried out with this climate model, over the period 2000–2014, to evaluate the model by comparison with different reference datasets (PARASOL-GRASP, OMI-OMAERUVd, MACv2, FMI_SAT, AERONET) and to analyze the brown carbon radiative and climatic effects.
Simon F. Reifenberg, Anna Martin, Matthias Kohl, Sara Bacer, Zaneta Hamryszczak, Ivan Tadic, Lenard Röder, Daniel J. Crowley, Horst Fischer, Katharina Kaiser, Johannes Schneider, Raphael Dörich, John N. Crowley, Laura Tomsche, Andreas Marsing, Christiane Voigt, Andreas Zahn, Christopher Pöhlker, Bruna A. Holanda, Ovid Krüger, Ulrich Pöschl, Mira Pöhlker, Patrick Jöckel, Marcel Dorf, Ulrich Schumann, Jonathan Williams, Birger Bohn, Joachim Curtius, Hardwig Harder, Hans Schlager, Jos Lelieveld, and Andrea Pozzer
Atmos. Chem. Phys., 22, 10901–10917, https://doi.org/10.5194/acp-22-10901-2022, https://doi.org/10.5194/acp-22-10901-2022, 2022
Short summary
Short summary
In this work we use a combination of observational data from an aircraft campaign and model results to investigate the effect of the European lockdown due to COVID-19 in spring 2020. Using model results, we show that the largest relative changes to the atmospheric composition caused by the reduced emissions are located in the upper troposphere around aircraft cruise altitude, while the largest absolute changes are present at the surface.
Andrea Mazzeo, Michael Burrow, Andrew Quinn, Eloise A. Marais, Ajit Singh, David Ng'ang'a, Michael J. Gatari, and Francis D. Pope
Atmos. Chem. Phys., 22, 10677–10701, https://doi.org/10.5194/acp-22-10677-2022, https://doi.org/10.5194/acp-22-10677-2022, 2022
Short summary
Short summary
A modelling system for meteorology and chemistry transport processes, WRF–CHIMERE, has been tested and validated for three East African conurbations using the most up-to-date anthropogenic emissions available. Results show that the model is able to reproduce hourly and daily temporal variabilities in aerosol concentrations that are close to observations in both urban and rural environments, encouraging the adoption of numerical modelling as a tool for air quality management in East Africa.
Hanqing Kang, Bin Zhu, Gerrit de Leeuw, Bu Yu, Ronald J. van der A, and Wen Lu
Atmos. Chem. Phys., 22, 10623–10634, https://doi.org/10.5194/acp-22-10623-2022, https://doi.org/10.5194/acp-22-10623-2022, 2022
Short summary
Short summary
This study quantified the contribution of each urban-induced meteorological effect (temperature, humidity, and circulation) to aerosol concentration. We found that the urban heat island (UHI) circulation dominates the UHI effects on aerosol. The UHI circulation transports aerosol and its precursor gases from the warmer lower boundary layer to the colder lower free troposphere and promotes the secondary formation of ammonium nitrate aerosol in the cold atmosphere.
Minghao Qiu, Corwin Zigler, and Noelle E. Selin
Atmos. Chem. Phys., 22, 10551–10566, https://doi.org/10.5194/acp-22-10551-2022, https://doi.org/10.5194/acp-22-10551-2022, 2022
Short summary
Short summary
Evaluating impacts of emission changes on air quality requires accounting for meteorological variability. Many studies use simple regression methods to correct for meteorology, but little is known about their performance. Using cases in the US and China, we show that widely used regression models do not perform well and can lead to biased estimates of emission-driven trends. We propose a novel machine learning method with lower bias and provide recommendations to policymakers and researchers.
Junri Zhao, Weichun Ma, Kelsey R. Bilsback, Jeffrey R. Pierce, Shengqian Zhou, Ying Chen, Guipeng Yang, and Yan Zhang
Atmos. Chem. Phys., 22, 9583–9600, https://doi.org/10.5194/acp-22-9583-2022, https://doi.org/10.5194/acp-22-9583-2022, 2022
Short summary
Short summary
Marine dimethylsulfide (DMS) emissions play important roles in atmospheric sulfur cycle and climate effects. In this study, DMS emissions were estimated by using the machine learning method and drove the global 3D chemical transport model to simulate their climate effects. To our knowledge, this is the first study in the Asian region that quantifies the combined impacts of DMS on sulfate, particle number concentration, and radiative forcings.
Yu Yao, Jeffrey H. Curtis, Joseph Ching, Zhonghua Zheng, and Nicole Riemer
Atmos. Chem. Phys., 22, 9265–9282, https://doi.org/10.5194/acp-22-9265-2022, https://doi.org/10.5194/acp-22-9265-2022, 2022
Short summary
Short summary
Investigating the impacts of aerosol mixing state on aerosol optical properties has a long history from both the modeling and experimental perspective. In this study, we used particle-resolved simulations as a benchmark to determine the error in optical properties when using simplified aerosol representations. We found that errors in single scattering albedo due to the internal mixture assumptions can have substantial effects on calculating aerosol direct radiative forcing.
Zechen Yu, Myoseon Jang, Soontae Kim, Kyuwon Son, Sanghee Han, Azad Madhu, and Jinsoo Park
Atmos. Chem. Phys., 22, 9083–9098, https://doi.org/10.5194/acp-22-9083-2022, https://doi.org/10.5194/acp-22-9083-2022, 2022
Short summary
Short summary
The UNIPAR model was incorporated into CAMx to predict the ambient concentration of organic matter in urban atmospheres during the KORUS-AQ campaign. CAMx–UNIPAR significantly improved the simulation of SOA formation under the wet aerosol condition through the consideration of aqueous reactions of reactive organic species and gas–aqueous partitioning into the wet inorganic aerosol.
Hitoshi Matsui, Tatsuhiro Mori, Sho Ohata, Nobuhiro Moteki, Naga Oshima, Kumiko Goto-Azuma, Makoto Koike, and Yutaka Kondo
Atmos. Chem. Phys., 22, 8989–9009, https://doi.org/10.5194/acp-22-8989-2022, https://doi.org/10.5194/acp-22-8989-2022, 2022
Short summary
Short summary
Using a global aerosol model, we find that the source contributions to radiative effects of black carbon (BC) in the Arctic are quite different from those to mass concentrations and deposition flux of BC in the Arctic. This is because microphysical properties (e.g., mixing state), altitudes, and seasonal variations of BC in the atmosphere differ among emissions sources. These differences need to be considered for accurate simulations of Arctic BC and its source contributions and climate impacts.
Sagar P. Parajuli, Georgiy L. Stenchikov, Alexander Ukhov, Suleiman Mostamandi, Paul A. Kucera, Duncan Axisa, William I. Gustafson Jr., and Yannian Zhu
Atmos. Chem. Phys., 22, 8659–8682, https://doi.org/10.5194/acp-22-8659-2022, https://doi.org/10.5194/acp-22-8659-2022, 2022
Short summary
Short summary
Rainfall affects the distribution of surface- and groundwater resources, which are constantly declining over the Middle East and North Africa (MENA) due to overexploitation. Here, we explored the effects of dust on rainfall using WRF-Chem model simulations. Although dust is considered a nuisance from an air quality perspective, our results highlight the positive fundamental role of dust particles in modulating rainfall formation and distribution, which has implications for cloud seeding.
Yao Ge, Massimo Vieno, David S. Stevenson, Peter Wind, and Mathew R. Heal
Atmos. Chem. Phys., 22, 8343–8368, https://doi.org/10.5194/acp-22-8343-2022, https://doi.org/10.5194/acp-22-8343-2022, 2022
Short summary
Short summary
Reactive N and S gases and aerosols are critical determinants of air quality. We report a comprehensive analysis of the concentrations, wet and dry deposition, fluxes, and lifetimes of these species globally as well as for 10 world regions. We used the EMEP MSC-W model coupled with WRF meteorology and 2015 global emissions. Our work demonstrates the substantial regional variation in these quantities and the need for modelling to simulate atmospheric responses to precursor emissions.
Katherine R. Travis, James H. Crawford, Gao Chen, Carolyn E. Jordan, Benjamin A. Nault, Hwajin Kim, Jose L. Jimenez, Pedro Campuzano-Jost, Jack E. Dibb, Jung-Hun Woo, Younha Kim, Shixian Zhai, Xuan Wang, Erin E. McDuffie, Gan Luo, Fangqun Yu, Saewung Kim, Isobel J. Simpson, Donald R. Blake, Limseok Chang, and Michelle J. Kim
Atmos. Chem. Phys., 22, 7933–7958, https://doi.org/10.5194/acp-22-7933-2022, https://doi.org/10.5194/acp-22-7933-2022, 2022
Short summary
Short summary
The 2016 Korea–United States Air Quality (KORUS-AQ) field campaign provided a unique set of observations to improve our understanding of PM2.5 pollution in South Korea. Models typically have errors in simulating PM2.5 in this region, which is of concern for the development of control measures. We use KORUS-AQ observations to improve our understanding of the mechanisms driving PM2.5 and the implications of model errors for determining PM2.5 that is attributable to local or foreign sources.
Svetlana Tsyro, Wenche Aas, Augustin Colette, Camilla Andersson, Bertrand Bessagnet, Giancarlo Ciarelli, Florian Couvidat, Kees Cuvelier, Astrid Manders, Kathleen Mar, Mihaela Mircea, Noelia Otero, Maria-Teresa Pay, Valentin Raffort, Yelva Roustan, Mark R. Theobald, Marta G. Vivanco, Hilde Fagerli, Peter Wind, Gino Briganti, Andrea Cappelletti, Massimo D'Isidoro, and Mario Adani
Atmos. Chem. Phys., 22, 7207–7257, https://doi.org/10.5194/acp-22-7207-2022, https://doi.org/10.5194/acp-22-7207-2022, 2022
Short summary
Short summary
Particulate matter (PM) air pollution causes adverse health effects. In Europe, the emissions caused by anthropogenic activities have been reduced in the last decades. To assess the efficiency of emission reductions in improving air quality, we have studied the evolution of PM pollution in Europe. Simulations with six air quality models and observational data indicate a decrease in PM concentrations by 10 % to 30 % across Europe from 2000 to 2010, which is mainly a result of emission reductions.
Yuemeng Ji, Qiuju Shi, Xiaohui Ma, Lei Gao, Jiaxin Wang, Yixin Li, Yanpeng Gao, Guiying Li, Renyi Zhang, and Taicheng An
Atmos. Chem. Phys., 22, 7259–7271, https://doi.org/10.5194/acp-22-7259-2022, https://doi.org/10.5194/acp-22-7259-2022, 2022
Short summary
Short summary
The formation mechanisms of secondary organic aerosol and brown carbon from small α-carbonyls are still unclear. Thus, the mechanisms and kinetics of aqueous-phase reactions of glyoxal were investigated using quantum chemical and kinetic rate calculations. Several essential isomeric processes were identified, including protonation to yield diol/tetrol and carbenium ions as well as nucleophilic addition of carbenium ions to diol/tetrol and free methylamine/ammonia.
Jiyuan Gao, Yang Yang, Hailong Wang, Pinya Wang, Huimin Li, Mengyun Li, Lili Ren, Xu Yue, and Hong Liao
Atmos. Chem. Phys., 22, 7131–7142, https://doi.org/10.5194/acp-22-7131-2022, https://doi.org/10.5194/acp-22-7131-2022, 2022
Short summary
Short summary
China has been implementing a sequence of policies for clean air since the year 2013. The aerosol decline produced a 0.09 ± 0.10°C warming during 2013–2017 estimated in this study, and the increase in ozone in the lower troposphere during this time period accelerated the warming, leading to a total 0.16 ± 0.15°C temperature increase in eastern China. Residential emission reductions led to a cooling effect because of a substantial decrease in light-absorbing aerosols.
Vigneshkumar Balamurugan, Jia Chen, Zhen Qu, Xiao Bi, and Frank N. Keutsch
Atmos. Chem. Phys., 22, 7105–7129, https://doi.org/10.5194/acp-22-7105-2022, https://doi.org/10.5194/acp-22-7105-2022, 2022
Short summary
Short summary
In this study, we investigated the response of secondary pollutants to changes in precursor emissions, focusing on the formation of secondary PM, during the COVID-19 lockdown period. We show that, due to the decrease in primary NOx emissions, atmospheric oxidizing capacity is increased. The nighttime increase in ozone, caused by less NO titration, results in higher NO3 radicals, which contribute significantly to the formation of PM nitrates. O3 should be limited in order to control PM pollution.
An Ning, Ling Liu, Lin Ji, and Xiuhui Zhang
Atmos. Chem. Phys., 22, 6103–6114, https://doi.org/10.5194/acp-22-6103-2022, https://doi.org/10.5194/acp-22-6103-2022, 2022
Short summary
Short summary
Iodic acid (IA) and methanesulfonic acid (MSA) were previously proved to be significant nucleation precursors in marine areas. However, the nucleation process involved in IA and MSA remains unclear. We show the enhancement of MSA on IA cluster formation and reveal the IAM-SA nucleating mechanism using a theoretical approach. This study helps to understand the clustering process in which marine sulfur- and iodine-containing species are jointly involved and its impact on new particle formation.
Haoran Zhang, Nan Li, Keqin Tang, Hong Liao, Chong Shi, Cheng Huang, Hongli Wang, Song Guo, Min Hu, Xinlei Ge, Mindong Chen, Zhenxin Liu, Huan Yu, and Jianlin Hu
Atmos. Chem. Phys., 22, 5495–5514, https://doi.org/10.5194/acp-22-5495-2022, https://doi.org/10.5194/acp-22-5495-2022, 2022
Short summary
Short summary
We developed a new algorithm with low economic/technique costs to identify primary and secondary components of PM2.5. Our model was shown to be reliable by comparison with different observation datasets. We systematically explored the patterns and changes in the secondary PM2.5 pollution in China at large spatial and time scales. We believe that this method is a promising tool for efficiently estimating primary and secondary PM2.5, and has huge potential for future PM mitigation.
Chao Gao, Aijun Xiu, Xuelei Zhang, Qingqing Tong, Hongmei Zhao, Shichun Zhang, Guangyi Yang, and Mengduo Zhang
Atmos. Chem. Phys., 22, 5265–5329, https://doi.org/10.5194/acp-22-5265-2022, https://doi.org/10.5194/acp-22-5265-2022, 2022
Short summary
Short summary
With ever-growing applications of two-way coupled meteorology and air quality models in Asia over the past decade, this paper summarizes the current status and research focuses, as well as how aerosol effects impact model performance, meteorology, and air quality. These models enable investigations of ARI and ACI effects induced by natural and anthropogenic aerosols in Asia, which has serious air pollution problems. The current gaps and perspectives are also presented and discussed.
Susannah M. Burrows, Richard C. Easter, Xiaohong Liu, Po-Lun Ma, Hailong Wang, Scott M. Elliott, Balwinder Singh, Kai Zhang, and Philip J. Rasch
Atmos. Chem. Phys., 22, 5223–5251, https://doi.org/10.5194/acp-22-5223-2022, https://doi.org/10.5194/acp-22-5223-2022, 2022
Short summary
Short summary
Sea spray particles are composed of a mixture of salts and organic substances from oceanic microorganisms. In prior work, our team developed an approach connecting sea spray chemistry to ocean biology, called OCEANFILMS. Here we describe its implementation within an Earth system model, E3SM. We show that simulated sea spray chemistry is consistent with observed seasonal cycles and that sunlight reflected by simulated Southern Ocean clouds increases, consistent with analysis of satellite data.
Jiandong Wang, Jia Xing, Shuxiao Wang, Rohit Mathur, Jiaping Wang, Yuqiang Zhang, Chao Liu, Jonathan Pleim, Dian Ding, Xing Chang, Jingkun Jiang, Peng Zhao, Shovan Kumar Sahu, Yuzhi Jin, David C. Wong, and Jiming Hao
Atmos. Chem. Phys., 22, 5147–5156, https://doi.org/10.5194/acp-22-5147-2022, https://doi.org/10.5194/acp-22-5147-2022, 2022
Short summary
Short summary
Aerosols reduce surface solar radiation and change the photolysis rate and planetary boundary layer stability. In this study, the online coupled meteorological and chemistry model was used to explore the detailed pathway of how aerosol direct effects affect secondary inorganic aerosol. The effects through the dynamics pathway act as an equally or even more important route compared with the photolysis pathway in affecting secondary aerosol concentration in both summer and winter.
Adam Milsom, Adam M. Squires, Andrew D. Ward, and Christian Pfrang
Atmos. Chem. Phys., 22, 4895–4907, https://doi.org/10.5194/acp-22-4895-2022, https://doi.org/10.5194/acp-22-4895-2022, 2022
Short summary
Short summary
Cooking emissions can self-organise into nanostructured lamellar bilayers, and this can influence reaction kinetics. We developed a kinetic multi-layer model-based description of decay data we obtained from laboratory experiments of the ozonolysis of coated films of such a self-organised system, demonstrating a decreased diffusivity for both oleic acid and ozone. Nanostructure formation can thus increase the reactive half-life of oleic acid by days under typical indoor and outdoor conditions.
Suxia Yang, Bin Yuan, Yuwen Peng, Shan Huang, Wei Chen, Weiwei Hu, Chenglei Pei, Jun Zhou, David D. Parrish, Wenjie Wang, Xianjun He, Chunlei Cheng, Xiao-Bing Li, Xiaoyun Yang, Yu Song, Haichao Wang, Jipeng Qi, Baolin Wang, Chen Wang, Chaomin Wang, Zelong Wang, Tiange Li, E Zheng, Sihang Wang, Caihong Wu, Mingfu Cai, Chenshuo Ye, Wei Song, Peng Cheng, Duohong Chen, Xinming Wang, Zhanyi Zhang, Xuemei Wang, Junyu Zheng, and Min Shao
Atmos. Chem. Phys., 22, 4539–4556, https://doi.org/10.5194/acp-22-4539-2022, https://doi.org/10.5194/acp-22-4539-2022, 2022
Short summary
Short summary
We use a model constrained using observations to study the formation of nitrate aerosol in and downwind of a representative megacity. We found different contributions of various chemical reactions to ground-level nitrate concentrations between urban and suburban regions. We also show that controlling VOC emissions are effective for decreasing nitrate formation in both urban and regional environments, although VOCs are not direct precursors of nitrate aerosol.
Hao Yang, Lei Chen, Hong Liao, Jia Zhu, Wenjie Wang, and Xin Li
Atmos. Chem. Phys., 22, 4101–4116, https://doi.org/10.5194/acp-22-4101-2022, https://doi.org/10.5194/acp-22-4101-2022, 2022
Short summary
Short summary
Aerosols can influence O3 through aerosol–radiation interactions, including aerosol–photolysis interaction (API) and aerosol–radiation feedback (ARF). The weakened photolysis rates and changed meteorological conditions reduce surface-layer O3 concentrations by up to 9.3–11.4 ppb, with API and ARF contributing 74.6 %–90.0 % and 10.0 %–25.4 % of the O3 decrease in three episodes, respectively, which indicates that API is the dominant way for O3 reduction related to aerosol–radiation interactions.
Patricia Tarín-Carrasco, Ulas Im, Camilla Geels, Laura Palacios-Peña, and Pedro Jiménez-Guerrero
Atmos. Chem. Phys., 22, 3945–3965, https://doi.org/10.5194/acp-22-3945-2022, https://doi.org/10.5194/acp-22-3945-2022, 2022
Short summary
Short summary
The evidence of the effects of atmospheric pollution (and particularly fine particulate matter, PM2.5) on human mortality is now unquestionable. Here, 895 000 annual premature deaths (PD) are estimated for the present (1991–2010), which increases to 1 540 000 in the year 2050 due to the ageing of the European population. The implementation of a mitigation scenario (80 % of the energy production in Europe from renewable sources) could lead to a decrease of over 60 000 annual PD for the year 2050.
Cited articles
Aiken, A. C., Salcedo, D., Cubison, M. J., Huffman, J. A., DeCarlo, P. F.,
Ulbrich, I. M., Docherty, K. S., Sueper, D., Kimmel, J. R., Worsnop, D. R.,
Trimborn, A., Northway, M., Stone, E. A., Schauer, J. J., Volkamer, R. M.,
Fortner, E., de Foy, B., Wang, J., Laskin, A., Shutthanandan, V., Zheng, J.,
Zhang, R., Gaffney, J., Marley, N. A., Paredes-Miranda, G., Arnott, W. P.,
Molina, L. T., Sosa, G., and Jimenez, J. L.: Mexico City aerosol analysis
during MILAGRO using high resolution aerosol mass spectrometry at the urban
supersite (T0) – Part 1: Fine particle composition and organic source
apportionment, Atmos. Chem. Phys., 9, 6633–6653,
https://doi.org/10.5194/acp-9-6633-2009, 2009.
Allan, J. D., Williams, P. I., Morgan, W. T., Martin, C. L., Flynn, M. J.,
Lee, J., Nemitz, E., Phillips, G. J., Gallagher, M. W., and Coe, H.:
Contributions from transport, solid fuel burning and cooking to primary
organic aerosols in two UK cities, Atmos. Chem. Phys., 10, 647–668,
https://doi.org/10.5194/acp-10-647-2010, 2010.
Brinkman, G., Vance, G., Hannigan, M. P., and Milford, J. B.: Use of
synthetic data to evaluate positive matrix factorization as a source
apportionment tool for PM2.5 exposure data, Environ. Sci. Technol., 40,
1892–1901, 2006.
Canonaco, F., Crippa, M., Slowik, J. G., Baltensperger, U., and Prévôt,
A. S. H.: SoFi, an IGOR-based interface for the efficient use of the
generalized multilinear engine (ME-2) for the source apportionment: ME-2
application to aerosol mass spectrometer data, Atmos. Meas. Tech., 6,
3649–3661, https://doi.org/10.5194/amt-6-3649-2013, 2013.
Dall'Osto, M., Paglione, M., Decesari, S., Facchini, M. C., O'Dowd, C.,
Plass-Duellmer, C., and Harrison, R. M.: On the origin of AMS cooking Organic
Aerosol at a rural site, Environ. Sci. Technol., 49, 13964–13972, 2015.
de Gouw, J. and Jimenez, J. L.: Organic aerosols in the earth's atmosphere,
Environ. Sci. Technol., 43, 7614–7618, 2009.
Donahue, N. M., Robinson, A. L., Stanier, C. O., and Pandis, S. N.: Coupled
partitioning, dilution, and chemical aging of semivolatile organics, Environ.
Sci. Technol., 40, 2635–2643, 2006.
Fountoukis, C., Racherla, P. N., Denier van der Gon, H. A. C., Polymeneas,
P., Charalampidis, P. E., Pilinis, C., Wiedensohler, A., Dall'Osto, M.,
O'Dowd, C., and Pandis, S. N.: Evaluation of a three-dimensional chemical
transport model (PMCAMx) in the European domain during the EUCAARI May 2008
campaign, Atmos. Chem. Phys., 11, 10331–10347,
https://doi.org/10.5194/acp-11-10331-2011, 2011.
Fountoukis, C., Megaritis, A. G., Skyllakou, K., Charalampidis, P. E.,
Pilinis, C., Denier van der Gon, H. A. C., Crippa, M., Canonaco, F., Mohr,
C., Prévôt, A. S. H., Allan, J. D., Poulain, L., Petäjä, T., Tiitta,
P., Carbone, S., Kiendler-Scharr, A., Nemitz, E., O'Dowd, C., Swietlicki, E.,
and Pandis, S. N.: Organic aerosol concentration and composition over Europe:
insights from comparison of regional model predictions with aerosol mass
spectrometer factor analysis, Atmos. Chem. Phys., 14, 9061–9076,
https://doi.org/10.5194/acp-14-9061-2014, 2014.
Hildebrandt, L., Donahue, N. M., and Pandis, S. N.: High formation of
secondary organic aerosol from the photo-oxidation of toluene, Atmos. Chem.
Phys., 9, 2973–2986, https://doi.org/10.5194/acp-9-2973-2009, 2009.
Hildebrandt, L., Engelhart, G. J., Mohr, C., Kostenidou, E., Lanz, V. A.,
Bougiatioti, A., DeCarlo, P. F., Prevot, A. S. H., Baltensperger, U.,
Mihalopoulos, N., Donahue, N. M., and Pandis, S. N.: Aged organic aerosol in
the Eastern Mediterranean: the Finokalia Aerosol Measurement Experiment –
2008, Atmos. Chem. Phys., 10, 4167–4186,
https://doi.org/10.5194/acp-10-4167-2010, 2010.
Hodzic, A., Jimenez, J. L., Madronich, S., Canagaratna, M. R., DeCarlo, P.
F., Kleinman, L., and Fast, J.: Modeling organic aerosols in a megacity:
potential contribution of semi-volatile and intermediate volatility primary
organic compounds to secondary organic aerosol formation, Atmos. Chem. Phys.,
10, 5491–5514, https://doi.org/10.5194/acp-10-5491-2010, 2010.
Huffman, J. A., Docherty, K. S., Aiken, A. C., Cubison, M. J., Ulbrich, I.
M., DeCarlo, P. F., Sueper, D., Jayne, J. T., Worsnop, D. R., Ziemann, P. J.,
and Jimenez, J. L.: Chemically-resolved aerosol volatility measurements from
two megacity field studies, Atmos. Chem. Phys., 9, 7161–7182,
https://doi.org/10.5194/acp-9-7161-2009, 2009.
IPCC (Intergovernmental Panel on Climate Change): Climate Change 2014:
Mitigation of Climate Change. Contribution of Working Group III to the Fifth
Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge
University Press, Cambridge, UK and New York, 2014.
Kanakidou, M., Seinfeld, J. H., Pandis, S. N., Barnes, I., Dentener, F. J.,
Facchini, M. C., Van Dingenen, R., Ervens, B., Nenes, A., Nielsen, C. J.,
Swietlicki, E., Putaud, J. P., Balkanski, Y., Fuzzi, S., Horth, J., Moortgat,
G. K., Winterhalter, R., Myhre, C. E. L., Tsigaridis, K., Vignati, E.,
Stephanou, E. G., and Wilson, J.: Organic aerosol and global climate
modelling: a review, Atmos. Chem. Phys., 5, 1053–1123,
https://doi.org/10.5194/acp-5-1053-2005, 2005.
Kiendler-Scharr, A., Zhang, Qi, Hohaus, T., Kleist, E., Mensah, A., Mentel,
T. F., Spindler, Uerlings, R., Tillmann, R., and Wildt, J.: Aerosol mass
spectrometric features of biogenic SOA: observations from a plant chamber and
in rural atmospheric environments, Environ. Sci. Technol., 43, 8166–8172,
2009.
Kostenidou, E., Florou, K., Kaltsonoudis, C., Tsiflikiotou, M., Vratolis, S.,
Eleftheriadis, K., and Pandis, S. N.: Sources and chemical characterization
of organic aerosol during the summer in the eastern Mediterranean, Atmos.
Chem. Phys., 15, 11355–11371, https://doi.org/10.5194/acp-15-11355-2015,
2015.
Kostenidou, E., Karnezi, E., Hite Jr., J. R., Bougiatioti, A., Cerully, K.,
Xu, L., Ng, N. L., Nenes, A., and Pandis, S. N.: Organic aerosol in the
summertime southeastern United States: components and their link to
volatility distribution, oxidation state and hygroscopicity, Atmos. Chem.
Phys., 18, 5799–5819, https://doi.org/10.5194/acp-18-5799-2018, 2018.
Lane, T. E., Donahue, N. M., and Pandis, S. N.: Simulating secondary organic
aerosol formation using the volatility basis-set approach in a chemical
transport model, Atmos. Environ., 42, 7439–7451, 2008.
Lanz, V. A., Alfarra, M. R., Baltensperger, U., Buchmann, B., Hueglin, C.,
and Prévôt, A. S. H.: Source apportionment of submicron organic aerosols
at an urban site by factor analytical modelling of aerosol mass spectra,
Atmos. Chem. Phys., 7, 1503–1522, https://doi.org/10.5194/acp-7-1503-2007,
2007.
Lanz, V. A., Alfarra, M. R., Baltensperger, U., Buchmann, B., Hueglin, C.,
Szidat, S., Wehrli, M. N., Wacker, L., Weimer, S., Caseiro, A., Puxbaum, J.,
and Prévôt, A. S. H.: Source attribution of submicron organic
aerosols during wintertime inversions by advanced factor analysis of aerosol
mass spectra, Environ. Sci. Technol., 42, 214–220, 2008.
Louvaris, E. E., Florou, K., Karnezi, E., Papanastasiou, D. K., Gkatzelis,
G. I., and Pandis, S. N.: Volatility of source apportioned wintertime organic
aerosol in the city of Athens, Atmos. Environ., 158, 138–147, 2017.
May, A. A., Levin, E. J. T., Hennigan, C. J., Riipinen, I., Lee, T.,
Collett, J. L., Jimenez, J. L., Kreidenweis, S. M., and Robinson, A. L.:
Gas-particle partitioning of primary organic aerosol emissions: 3. Biomass
burning, J. Geophys. Res., 118, 11327–11338, 2013.
Murphy, B. N. and Pandis, S. N.: Simulating the formation of semivolatile
primary and secondary organic aerosol in a regional chemical transport model,
Environ. Sci. Technol., 43, 4722–4728, 2009.
Ng, N. L., Kroll, J. H., Keywood, M. D., Bahreini, R., Varutbangkul, V.,
Flagan, R. C., and Seinfeld, J. H.: Contribution of first- versus
second-generation products to secondary organic aerosols formed in the
oxidation of biogenic hydrocarbons, Environ. Sci. Technol., 40, 2283–2297,
2006.
Ng, N. L., Canagaratna, M. R., Zhang, Q., Jimenez, J. L., Tian, J., Ulbrich,
I. M., Kroll, J. H., Docherty, K. S., Chhabra, P. S., Bahreini, R., Murphy,
S. M., Seinfeld, J. H., Hildebrandt, L., Donahue, N. M., DeCarlo, P. F.,
Lanz, V. A., Prévôt, A. S. H., Dinar, E., Rudich, Y., and Worsnop, D. R.:
Organic aerosol components observed in Northern Hemispheric datasets from
Aerosol Mass Spectrometry, Atmos. Chem. Phys., 10, 4625–4641,
https://doi.org/10.5194/acp-10-4625-2010, 2010.
Paatero, P.: The multilinear engine – A table-driven, least squares program
for solving multilinear problems, including the n-way parallel factor
analysis model, J. Comput. Graph. Stat., 8, 854– 888, 1999.
Paatero, P. and Tapper, U.: Positive Matrix Factorization: a nonnegative
factor model with optimal utilization of error estimates of data values,
Environmetrics, 5, 111–126, 1994.
Paciga, A., Karnezi, E., Kostenidou, E., Hildebrandt, L., Psichoudaki, M.,
Engelhart, G. J., Lee, B.-H., Crippa, M., Prévôt, A. S. H.,
Baltensperger, U., and Pandis, S. N.: Volatility of organic aerosol and its
components in the megacity of Paris, Atmos. Chem. Phys., 16, 2013–2023,
https://doi.org/10.5194/acp-16-2013-2016, 2016.
Pope, C. A., Ezzati, M., and Dockery, D. W.: Fine-particulate air pollution
and life expectancy in the United States, New Engl. J. Med., 360, 376–386,
2009.
Poulain, L., Birmili, W., Canonaco, F., Crippa, M., Wu, Z. J., Nordmann, S.,
Spindler, G., Prévôt, A. S. H., Wiedensohler, A., and Herrmann, H.:
Chemical mass balance of 300 ∘C non-volatile particles at the
tropospheric research site Melpitz, Germany, Atmos. Chem. Phys., 14,
10145–10162, https://doi.org/10.5194/acp-14-10145-2014, 2014.
Robinson, A. L., Donahue, N. M., Shrivastava, M. K., Weitkamp, E. A., Sage,
A. M., Grieshop, A. P., Lane, T. E., Pierce, J. R., and Pandis, S. N.:
Rethinking organic aerosol: semivolatile emissions and photochemical aging,
Science, 315, 1259–1262, 2007.
Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics, 2nd
Edn., John Wiley and Sons, Hoboken, New Jersey, USA, 2006.
Shrivastava, M. K., Lane, T. E., Donahue, N. M., Pandis, S. N., and Robinson,
A. L.: Effects of gas-particle partitioning and aging of primary emissions on
urban and regional organic aerosol concentrations, J. Geophys. Res., 113,
D18301, https://doi.org/10.1029/2007JD009735, 2008.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Wang,
W., and Powers, J. G.: A Description of the Advanced Research WRF Version 2,
NCAR Technical Note, available at:
http://www.mmm.ucar.edu/wrf/users/docs/arw_v2.pdf (last access:
21 January 2019), 2005.
Skyllakou, K., Murphy, B. N., Megaritis, A. G., Fountoukis, C., and Pandis,
S. N.: Contributions of local and regional sources to fine PM in the megacity
of Paris, Atmos. Chem. Phys., 14, 2343–2352, https://doi.org/10.5194/acp-14-2343-2014,
2014.
Skyllakou, K., Fountoukis, C., Charalampidis, P., and Pandis, S. N.:
Volatility-resolved source apportionment of primary and secondary organic
aerosol over Europe, Atmos. Environ., 167, 1–10, 2017.
Sun, Y., Zhang, Q., Macdonald, A. M., Hayden, K., Li, S. M., Liggio, J., Liu,
P. S. K., Anlauf, K. G., Leaitch, W. R., Steffen, A., Cubison, M., Worsnop,
D. R., van Donkelaar, A., and Martin, R. V.: Size-resolved aerosol chemistry
on Whistler Mountain, Canada with a high-resolution aerosol mass spectrometer
during INTEX-B, Atmos. Chem. Phys., 9, 3095–3111,
https://doi.org/10.5194/acp-9-3095-2009, 2009.
Sun, Y. L., Wang, Z. F., Fu, P. Q., Yang, T., Jiang, Q., Dong, H. B., Li, J.,
and Jia, J. J.: Aerosol composition, sources and processes during wintertime
in Beijing, China, Atmos. Chem. Phys., 13, 4577–4592,
https://doi.org/10.5194/acp-13-4577-2013, 2013.
Theodoritsi, G. N. and Pandis, S. N.: Simulation of the chemical evolution of
biomass burning organic aerosol, Atmos. Chem. Phys. Discuss.,
https://doi.org/10.5194/acp-2018-1166, in review, 2018.
Tsimpidi, A. P., Karydis, V. A., Zavala, M., Lei, W., Molina, L., Ulbrich, I.
M., Jimenez, J. L., and Pandis, S. N.: Evaluation of the volatility basis-set
approach for the simulation of organic aerosol formation in the Mexico City
metropolitan area, Atmos. Chem. Phys., 10, 525–546,
https://doi.org/10.5194/acp-10-525-2010, 2010.
Tsimpidi, A. P., Karydis, V. A., Pandis, S. N., and Lelieveld, J.: Global
combustion sources of organic aerosols: model comparison with 84 AMS
factor-analysis data sets, Atmos. Chem. Phys., 16, 8939–8962,
https://doi.org/10.5194/acp-16-8939-2016, 2016.
Ulbrich, I. M., Canagaratna, M. R., Zhang, Q., Worsnop, D. R., and Jimenez,
J. L.: Interpretation of organic components from Positive Matrix
Factorization of aerosol mass spectrometric data, Atmos. Chem. Phys., 9,
2891–2918, https://doi.org/10.5194/acp-9-2891-2009, 2009.
Wagstrom, K. M., Pandis, S. N., Yarwood, G., Wilson, G. M., and Morris, R.
E.: Development and application of a computationally efficient particulate
matter apportionment algorithm in a three-dimensional chemical transport
model, Atmos. Environ., 42, 5650–5659, 2008.
Xu, L., Guo, H., Weber, R. J., and Ng, N. L.: Chemical characterization of
water soluble soluble organic aerosol in contrasting rural and urban
environments in the Southeastern United States, Environ. Sci. Technol., 51,
78–88, 2017.
Yuan, B., Shao, M., de Gouw, J., Parrish, D. D., Lu, S., Wang, M., Zeng, L.,
Zhang, Q., Song, Y., Zhang, J., and Hu, M.: Volatile organic compounds (VOCs)
in urban air: How chemistry affects the interpretation of positive matrix
factorization (PMF) analysis, J. Geophys. Res., 117, 24302,
https://doi.org/10.1029/2012JD018236, 2012.
Zhang, Q., Alfarra, M. R., Wornsop, D. R., Allan, J. D., Coe, H.,
Canagaratna, M., and Jimenez, J. L.: Deconvolution and quantification of
hydrocarbon-like and oxygenated organic aerosols based on aerosol mass
spectrometry, Environ. Sci. Technol., 39, 4938–4952, 2005a.
Zhang, Q., Worsnop, D. R., Canagaratna, M. R., and Jimenez, J. L.:
Hydrocarbon-like and oxygenated organic aerosols in Pittsburgh: insights into
sources and processes of organic aerosols, Atmos. Chem. Phys., 5, 3289–3311,
https://doi.org/10.5194/acp-5-3289-2005, 2005b.
Zhang, Q., Jimenez, J. L., Canagaratna, M. R., Allan, J. D., Coe, H.,
Ulbrich, I., Alfarra, M. R., Takami, A., Middlebrook, A. M., Sun, Y. L.,
Dzepina, K., Dunlea, E., Docherty, K., DeCarlo, P. F., Salcedo, D., Onasch,
T., Jayne, J. T., Miyoshi, T., Shimono, A., Hatakeyama, S., Takegawa, N.,
Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer, S., Demerjian,
K., Williams, P., Bower, K., Bahreini, R., Cottrell, L., Griffin, R. J.,
Rautiainen, J., Sun, J. Y., Zhang, Y. M., and Worsnop, D. R.: Ubiquity and
dominance of oxygenated species in organic aerosols in
anthropogenically-influenced Northern Hemisphere midlatitudes, Geophys. Res.
Lett., 34, L13801, https://doi.org/10.1029/2007GL029979, 2007.
Zhang, Q., Jimenez, J. L., Canagaratna, M. R., Ulbrich, I. M., Ng, N. L.,
Worsnop, D. R., and Sun, Y.: Understanding atmospheric organic aerosols via
factor analysis of aerosol mass spectrometry: a review, Anal. Bioanal. Chem.,
401, 3045–3067, 2011.
Short summary
The ability of positive matrix factorization (PMF) factor analysis to identify and quantify the organic aerosol (OA) sources accurately is tested in this modeling study. The estimated uncertainty of the contribution of fresh biomass burning is less than 30 % and of the other primary sources is less than 40 %, when these sources contribute more than 20 % to the OA. Τhe first oxygenated OA factor includes mainly highly aged OA, while the second oxygenated OA factor contains fresher secondary OA.
The ability of positive matrix factorization (PMF) factor analysis to identify and quantify the...
Altmetrics
Final-revised paper
Preprint