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Abstract. Factor analysis of aerosol mass spectrometer mea-
surements (organic aerosol mass spectra) is often used to de-
termine the sources of organic aerosol (OA). In this study we
aim to gain insights regarding the ability of positive matrix
factorization (PMF) to identify and quantify the OA sources
accurately. We performed PMF and multilinear engine (ME-
2) analysis on the predictions of a state-of-the-art chemi-
cal transport model (PMCAMx-SR, Particulate Matter Com-
prehensive Air Quality Model with extensions – source re-
solved) during a photochemically active period for specific
sites in Europe in an effort to interpret the diverse factors usu-
ally identified by PMF analysis of field measurements. Our
analysis used the predicted concentrations of 27 OA compo-
nents, assuming that each of them is “chemically different”
from the others.

The PMF results based on the chemical transport model
predictions are quite consistent (same number of factors and
source types) with those of the analysis of AMS measure-
ments. The estimated uncertainty of the contribution of fresh
biomass burning is less than 30 % and of the other primary
sources less than 40 %, when these sources contribute more
than 20 % to the total OA. The PMF uncertainty increases for
smaller source contributions, reaching a factor of 2 or even 3
for sources which contribute less than 10 % to the OA.

One of the major questions in PMF analysis of AMS mea-
surements concerns the sources of the two or more oxy-
genated OA (OOA) factors often reported in field studies.
Our analysis suggests that these factors include secondary
OA compounds from a variety of anthropogenic and biogenic
sources and do not correspond to specific sources. Their

characterization in the literature as low- and high-volatility
factors is probably misleading, because they have overlap-
ping volatility distributions. However, the average volatility
of the one often characterized as a low-volatility factor is
indeed lower than that of the other (high-volatility factor).
Based on the analysis of the PMCAMx-SR predictions, the
first oxygenated OA factor includes mainly highly aged OA
transported from outside Europe, but also highly aged sec-
ondary OA from precursors emitted in Europe. The second
oxygenated OA factor contains fresher secondary organic
aerosol from volatile, semivolatile, and intermediate volatil-
ity anthropogenic and biogenic organic compounds. The ex-
act contribution of these OA components to each OA factor
depends on the site and the prevailing meteorology during
the analysis period.

1 Introduction

Exposure to high levels of fine atmospheric particles results
in increased mortality and morbidity (Pope et al., 2009). The
same particles affect climate by scattering and absorbing so-
lar radiation (Seinfeld and Pandis, 2006) and also influence
the properties and lifetime of clouds (IPCC, 2014). Organic
aerosol (OA) represents an important fraction (20 % to 90 %)
of fine particulate matter (Kanakidou et al., 2005; Zhang et
al., 2007) and is generated from biogenic and anthropogenic
sources (de Gouw and Jimenez, 2009). It is usually charac-
terized as primary (POA) when it is emitted directly in the
particulate phase and secondary (SOA) when formed during
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the atmospheric oxidation of volatile, intermediate-volatility,
and semivolatile organic components.

The aerosol mass spectrometer (AMS) is a state-of-the-art
instrument that can measure continuously the fine OA con-
centration providing at the same time unit or high resolution
mass spectra of the OA. These spectra can be used in factor
analysis to acquire information about OA sources, processes,
and properties (Zhang et al., 2011). Several factor analysis
techniques have been developed to estimate the contributions
of sources and processes to the observed OA. These tech-
niques include custom principal component analysis (Zhang
et al., 2005a), multiple component analysis (Zhang et al.,
2007), positive matrix factorization (PMF) (Paatero and Tap-
per, 1994; Lanz et al., 2007), and the multilinear engine (ME-
2) (Paatero, 1999; Lanz et al., 2008; Canonaco et al., 2013).

Zhang et al. (2005b) separated the OA in Pittsburgh into
an oxygenated OA factor (OOA) associated with secondary
sources and a hydrocarbon-like OA factor (HOA) that repre-
sents POA related to urban sources and fossil fuel combus-
tion. Lanz et al. (2007) identified additional important pri-
mary sources like biomass burning OA (bbOA). Measure-
ments in Beijing showed that coal combustion (CCOA) is a
major primary source in that area (Sun et al., 2013). Allan
et al. (2010) identified cooking OA (COA) as a significant
component of urban OA. However, Dall’Osto et al. (2015)
argued that the interpretation of the COA factor may be prob-
lematic as it may include OA from other sources and not just
cooking. Kostenidou et al. (2018) also argued that the bbOA
factor determined in the southern US by Xu et al. (2017)
may include oxygenated OA from other sources. Yuan et
al. (2012) suggested that PMF factors may correspond to dif-
ferent stages of photochemical processing, rather than to in-
dependent sources. Aiken et al. (2009) found that PMF can
also yield factors that represent more than one source, es-
pecially in heavily polluted areas, due to their complex emis-
sion patterns. Brinkman et al. (2006) reported that when con-
tributions from a pair of sources, such as diesel and gasoline
exhaust, were highly correlated in synthetic datasets, a sin-
gle factor corresponding to both sources was usually found.
Despite these advances the accuracy of the PMF-determined
primary organic sources remains an issue of debate.

OOA represents a significant fraction of OA at many lo-
cations (Zhang et al., 2007). Lanz et al. (2007) further sep-
arated OOA into more oxygenated OA (OOA-1) and less
oxygenated OA (OOA-2) during summer in Zurich. Ulbrich
et al. (2009) also reported an OOA-1 and an OOA-2 fac-
tor in Pittsburgh repeating the original analysis of Zhang et
al. (2005b). Typically, PMF of ambient AMS data identifies
two types of OOA: a more oxidized OOA factor which is
thought to be more aged and almost non-volatile and a less
oxidized factor which is thought to be semivolatile (Jimenez
et al., 2009; Ng et al., 2010). Huffman et al. (2009) have
showed that OOA-2 is usually more volatile than OOA-1
and includes less oxygenated secondary material (Jimenez
et al., 2009). Jimenez et al. (2009) used the acronyms LV-

OOA (low volatility) and SV-OOA (semivolatile) for OOA-1
and OOA-2, respectively. Paciga et al. (2016) using volatil-
ity measurements in Paris confirmed that SV-OOA is more
volatile on average than LV-OOA, but argued that they both
contain components with a wide range of overlapping volatil-
ities. Kostenidou et al. (2015) proposed that the use of the
SV-OOA and LV-OOA may be misleading and used the terms
very oxygenated OA (V-OOA) and moderately oxygenated
OA (M-OOA). Hildebrandt et al. (2010), using measure-
ments from Finokalia, Greece, proposed that the two OOA
factors represent the more and less oxidized states of sec-
ondary OA during the period of the analyzed field measure-
ments. They suggested that in remote areas during photo-
chemically active periods the two OOA factors are quite sim-
ilar to each other as the OA is always at a very aged state.
Other interpretations of the two OOA factors have also been
proposed. For example, the less oxidized OOA appeared to
resemble biogenic SOA (bSOA) and the more oxidized OOA
appeared to be associated with transported OA from other ar-
eas in a study in Canada (Kiender-Schar et al., 2009; Sun et
al., 2009). In most of the above studies OOA-1, LV-OOA,
and MO-OOA have been used as names for the same factor.
The same applies to OOA-2, SV-OOA, and LO-OOA.

Modeling efforts have so far focused on the comparisons
of the factor analysis results of AMS measurements and the
concentrations of modeled OA (Hodzic et al., 2010; Foun-
toukis et al., 2014; Tsimpidi et al., 2016). All these studies
implicitly assume that each factor determined by PMF anal-
ysis of the AMS measurements corresponds to one group of
sources.

In this work, we apply PMF analysis to the OA predic-
tions of a chemical transport model in order to investigate
whether PMF is able to separate the OA components from
different sources or processes. Our main objective is to gain
insights into the nature of the primary (POA, bbOA, etc.) and
secondary (OOA-1, OOA-2, etc.) factors often determined in
field studies and to quantify the corresponding uncertainties.
Our analysis assumes that each OA component in the model
is chemically different than the rest. This is not the case in
reality as different OA components may have similar AMS
spectra. As a result, our analysis represents to some extent
a best-case scenario. However, the fact that the true sources
and processes are known in this case makes this approach
potentially useful.

2 Model description

2.1 PMCAMx-SR

The model used in this study is the three-dimensional re-
gional chemical transport model (CTM) PMCAMx-SR (Par-
ticulate Matter Comprehensive Air Quality Model with ex-
tensions – source resolved; Theodoritsi and Pandis, 2018).
The major difference of PMCAMx-SR compared to its sis-
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ter model, PMCAMx, is its ability to simulate separately the
primary and secondary OA from different sources. There-
fore, one can use different volatility distributions and ag-
ing schemes for organic compounds from different sources.
PMCAMx-SR was applied to a 5400 km× 5832 km region
covering Europe with 36 km× 36 km grid resolution and 14
vertical layers extending up to 6 km. The model was set to
perform simulations on a rotated polar stereographic map
projection. The necessary inputs to the model include hor-
izontal wind components, temperature, pressure, water va-
por, vertical diffusivity, clouds, and rainfall. All meteoro-
logical inputs were created using the meteorological model
WRF (Weather Research and Forecasting) (Skamarock et al.,
2005).

The gas-phase chemical mechanism of PMCAMx-SR is
based on an updated version of the SAPRC99 mechanism
with 211 reactions of 56 gases and 18 radicals including pa-
rameterizations, based on the 1-D volatility basis set (VBS),
of the gas-phase oxidation of semivolatile organic com-
pounds (SVOCs), intermediate volatility organic compounds
(IVOCs), and volatile organic compounds (VOCs). The OA
composition is described in PMCAMx-SR using a set of
lumped species distributed across a VBS (Donahue et al.,
2006), with volatility bins (surrogate species) that have sat-
uration concentration C∗ ranging from 0.01 to 106 µg m−3

separated by 1 order of magnitude at 298 K. Primary or-
ganic compounds are all treated as semivolatile, so their
partitioning between the gas and particulate phases is sim-
ulated. The simulated C∗ range of primary organic com-
pounds in the VBS ranges in this application from 10−2

to 106 µg m−3 at 298 K (Shrivastava et al., 2008). Anthro-
pogenic SOA (aSOA) and biogenic SOA (bSOA) are de-
scribed separately using four volatility bins (1, 10, 100,
1000 µg m−3). The SOA formation and growth follows Mur-
phy and Pandis (2009). The SOA module incorporates NOx-
dependent SOA yields (Lane et al., 2008b) and contains an-
thropogenic aerosol yields based on the studies of Ng et
al. (2006) and Hildebrandt et al. (2009). The volatility dis-
tribution proposed by Shrivastava et al. (2008) was used as-
suming that the mass of IVOC emissions is approximately
equal to 1.5 times the primary organic aerosol emissions
(Robinson et al., 2007; Tsimpidi et al., 2010). This POA
volatility distribution is used in PMCAMx-SR for all sources
with the exception of biomass burning. PMCAMx-SR sim-
ulates separately the fresh biomass burning organic aerosol
(bbPOA) and its secondary oxidation products (bbSOA) us-
ing the volatility distribution of May et al. (2013) for the cor-
responding emissions.

Chemical aging in PMCAMx-SR is simulated assuming
that the dominant pathway is gas-phase oxidation of the cor-
responding organic compounds by OH, assuming a rate con-
stant equal to 1× 10−11 cm3 molec−1 s−1 for anthropogenic
SOA components and 4× 10−11 cm3 molec−1 s−1 for the
primary OA components and IVOCs (Murphy and Pandis,
2009). Each reaction leads to a reduction of 1 order of mag-

nitude in the volatility of compound. The increase in the OA
concentration due to the chemical aging of biogenic SOA
(bSOA) is assumed to be negligible. The production of SOA
by aqueous-phase chemistry is not simulated in this version
of PMCAMx-SR.

The simulation period is May 2008, a warm summer-like
month for most of Europe. This period was selected because
PMCAMx has been evaluated against measurements from
the EUCAARI campaign that took place during that month
(Fountoukis et al., 2011). Fountoukis et al. (2014) in a sub-
sequent study found encouraging agreement between predic-
tions of PMCAMx and ME-2 analysis of AMS data for OA.

The boundary conditions used in this study are the same
as in Fountoukis et al. (2011). The constant values used are
based on measured average background concentrations in
sites close to the boundaries of the domain. The boundary
OA is assumed to be highly aged and to have low volatility
(C∗ = 0.01 µg m−3).

For the PMF analysis of the PMCAMx OA predictions,
we created a matrix X in which each column consists of the
hourly PMCAMx-SR predicted concentrations of POA, SOA
from SVOCs (SOA-sv) and SOA from IVOCs (SOA-iv),
biomass burning POA, biomass burning SOA, anthropogenic
SOA, biogenic SOA, and long-range transport (OA trans-
ported from outside the model domain). The material in each
bin with C∗ ≤ 102 µg m−3 was included in the PMF analysis
as an independent OA component. The OA in volatility bins
with higher saturation concentrations was excluded, because
its particulate phase concentrations are negligibly small or
zero. PM1 was used in our analysis for consistency with the
AMS measurements. However, the difference in predicted
OA in the PM2.5 and PM1 range is small in PMCAMx-SR
so our conclusions are also valid for PM2.5.

Table S1 in the Supplement provides a complete list of the
27 OA components used in our PMF analysis. We implic-
itly assume that each OA component is “chemically differ-
ent” from the others. As we provide PMF with the concentra-
tions of 27 different predicted OA surrogate components, we
implicitly assume that the corresponding measurement tech-
nique or techniques can separate and quantify these compo-
nents. For the AMS, this may not be the case as two OA
components (e.g., processed bbOA and aged SOA) may have
quite similar AMS spectra.

2.2 Particulate source apportionment technology

PSAT (particulate source apportionment technology) is
a computationally efficient source apportionment algo-
rithm for studying PM source apportionment contributions
(Wagstrom et al., 2008) extended by Skyllakou et al. (2014)
to include OA simulated with the VBS. Skyllakou et
al. (2017) used PSAT together with the volatility basis set
framework (Donahue et al., 2006) to estimate the age of the
OA components in Europe during the same period as in this
study. In this application, the PSAT algorithm works in par-
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allel with the CTM and provides the “fresh” secondary com-
ponents (first generation), the products of two generations of
reactions, etc. These results of Skyllakou et al. (2017) are
used here.

In order to apply PMF to the results of PSAT we generated
a matrix X which includes the hourly concentration of OA
components categorized as “fresh”, long-range-transported
OA, fresh biogenic SOA, fresh anthropogenic SOA, and aged
(second and later) SOA-sv and SOA-iv with each saturation
concentration (C∗) ranging from 0.01 to 100. Table S2 shows
the 19 OA components used in this PSAT-based PMF analy-
sis.

2.3 Positive matrix factorization (PMF)

PMF (Paatero and Taaper, 1994) is a bilinear model that has
been used for the quantification of the sources of airborne
particulate matter measurement. PMF decomposes the “ob-
servation” matrix X into two matrices G and F:

xij =

p∑
k=1

gikfkj + eij , (1)

where xij represents the measurements used as the PMF in-
puts, gik represents the contributions of sources, fkj repre-
sents the factor profiles and eij represents the residuals of the
analysis. The subscript i corresponds to time, j to the com-
pounds, and p is the number of factors. Factor profiles and
time series are derived by the PMF model minimizing the
objective function Q:

Q=

m∑
i=1

n∑
j=1

(
eij

uij

)2

, (2)

where uij represents the data uncertainties with the constraint
that G and F are positive matrices. In this study we used 5 %,
10 %, and 20 % uncertainty for each data point of matrix U
and we did not observe significant differences in the results.
For this reason, a 10 % uncertainty is assumed for each data
point.

In this work, we first created the matrices X and U in
proper format consistent with EPA PMF v5.0. Then, we ran
PMF assuming 2, 3, 4 factors and so on. For the selection of
the number of factors that best describes our data we used a
series of metrics. We first examined the change in Q/Qexp
for each solution. Q is the sum of the squares of the scaled
residuals and Qexp represents the ideal value if the residuals
were the same as the uncertainty assumed for each data point.
We then examined the residuals of the model as a function of
the number of factors. We also estimated the correlation coef-
ficients of the time series of the factors determined by PMF.
If a pair of factors was strongly correlated, we reduced the
number of factors. We also checked the composition of each
factor. If there is a pair of factors with similar composition,
this solution is rejected. For the chosen solution, we also in-
vestigated the change in factor profile with positive and neg-

ative values of fpeak. If the factor profiles are insensitive to
the fpeak choice, we proceeded with fpeak equal to zero.

Factor analysis methods are in general based on the tem-
poral correlation among the concentrations of different pol-
lutants. However, in their effort to limit the dimensional-
ity of the chemical (or AMS m/z) space, these approaches
distribute the pollutants into factors in ways that are by no
means transparent. Our goal in this work is to shed a little
more light on what PMF does when it is applied to the AMS
organic aerosol data. The PMF analysis in this work was per-
formed using the PMCAMx-SR predictions for each site sep-
arately. The sites were selected to cover a wide range of con-
ditions and source contributions. For example, we chose Ma-
jkow Duzy (Poland) because it has the highest predicted con-
tribution of POA to OA. St. Petersburg, Catania, and Majden
are three locations in different environments with bbOA dur-
ing the simulation period. Melpitz, Cabauw, and Finokalia
were chosen because there are AMS measurements available
for the simulation period and they also cover quite different
environments. Other sites were chosen because they had dif-
ferent predicted bbOA/OA levels.

2.4 The multilinear engine (ME-2)

In selected cases, we also used the multilinear engine (ME-
2) algorithm (Paatero, 1999) implemented within the toolkit
Sofi (Source Finder) developed by Canonaco et al. (2013).
We used ME-2 in areas in which an HOA factor was not
found by PMF. For the selection of the number of factors,
we followed similar steps to those in PMF. The main differ-
ence with PMF analysis is that we introduced the vector F j

(factor profile), which includes only the contribution of POA
components, while the rest of the OA components have zero
contribution to this factor. The ME-2 algorithm a value deter-
mines the extent to which the output factor profile can vary
from the factor profile which we provide (Canonaco et al.,
2013). We used a = 0.1 for our analysis. We also examined
different values of a ranging from 0 to 0.3, but our results
were not sensitive to that choice.

3 Results and discussion

3.1 PMCAMx-SR results

The predicted average OA at the ground level was 1.8 µg m−3

during the simulation period with average concentrations
as high as 4 µg m−3 in central and north-eastern Europe
(Fig. S1a in the Supplement). The average concentration of
POA was 1.4 µg m−3 with the highest levels predicted in
northern Europe (Fig. S1b). SOA levels were higher in cen-
tral Europe (Fig. S1c). Details about these predictions can be
found in Fountoukis et al. (2011, 2014) and Theodoritsi and
Pandis (2018).
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3.2 Application of PMF to PMCAMx-SR OA

We first analyze the PMCAMx-SR OA predictions in Mel-
pitz (Germany) because there were AMS measurements
and corresponding PMF results available for this site dur-
ing the same period. The average PMCAMx-SR-predicted
OA in that site was 4.2 µg m−3, while the observed OA
was 5.3 µg m−3. PMCAMx-SR predicted that long-range-
transported OA contributed 24 %, biogenic SOA 23 %, SOA
from SVOCs and IVOCs 20 %, anthropogenic SOA 18 %,
biomass burning SOA 10 %, POA 3 % and biomass burn-
ing POA 2 % to the total OA. The AMS PMF analysis did
not identify a POA or a fresh biomass burning OA factor
for the corresponding period (Poulain et al., 2014), a result
consistent with the low predicted contributions of these two
sources.

The two-factor PMF solution explained the PMCAMx-
SR OA predictions. A two-factor solution had also been
found by Poulain et al. (2014) during their PMF analy-
sis of the field measurements in the same period. The first
PMCAMx-SR factor includes a variety of secondary OA
components: biomass burning SOA (10 %), anthropogenic
SOA (20 %), biogenic SOA (45 %), and SOA-sv and SOA-
iv (20 %) (Fig. 1). It contains mostly SOA (around 95 %) and
therefore will be called the “SOA factor” (Fig. 1). The second
factor contains mostly (50 %) OA from long-range transport
and therefore will be called the “LRT factor”. The remain-
ing 50 % of the LRT factor is mainly anthropogenic SOA
(14 %), SOA-sv and SOA-iv (24 %), and biomass burning
SOA (10 %). The SOA factor contributed 53 % to the pre-
dicted OA while the LRT factor 47 %. The concentrations of
both factors were quite variable (Fig. 2), but the SOA factor
fluctuated more than the LRT factor.

During the same period two factors were identified by an-
alyzing the AMS measurements in Melpitz: low-volatility
oxygenated OA (LV-OOA) and a semivolatile oxygenated
OA (SV-OOA) factor (Poulain et al., 2014). The average di-
urnal profile of the PMCAMx-SR SOA factor follows the
same pattern as SV-OOA (Fig. 3a) with higher values dur-
ing the night. The PMCAMx-SR LRT factor is less than the
AMS LV-OOA factor during the day. These differences can
be due to model errors or can be actual differences in the
PMF analysis of the two datasets.

The above results are quite encouraging. This analysis
of the two datasets suggests that the PMCAMx-SR PMF
analysis provides results that are similar to the correspond-
ing analysis of the AMS measurements. Both approaches
result in two oxygenated OA factors. The AMS LV-OOA
factor appears to correspond even more to the LRT fac-
tor of PMCAMx-SR, and the AMS SV-OOA factor to the
PMCAMx-SR SOA factor. We will return to the Melpitz
dataset in a subsequent section focusing on OOA. In the next
two sections we focus on the major primary OA factors.

Figure 1. Factor profiles resulting from the PMF analysis of the
PMCAMx-SR OA predictions in Melpitz: (a) SOA factor and
(b) LRT factor.

Figure 2. PMCAMx-SR factor time series of the (a) SOA and
(b) LRT factors in Melpitz during May 2008.

3.2.1 Biomass burning organic aerosol

In this section, we examine whether the PMCAMx-SR fac-
tor which represents biomass burning (bbOA) sources con-
sists of only bbOA components. In St. Petersburg (Russia)
PMCAMx-SR predicted that hourly bbOA levels exceeded
200 µg m−3 due to the nearby fires affecting the site on 4–
5 May (Fig. S2a). During the full month in this site, the aver-
age contribution of fresh biomass burning OA to the total OA
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Figure 3. Comparison of average diurnal profiles of factors of PMF
analysis of PMCAMx-SR results and PMF analysis of AMS mea-
surements in Melpitz: (a) SOA factor and SV-OOA and (b) LRT
factor and LV-OOA.

was approximately 65 %. During the fire period (4–5 May)
the bbOA contribution was 96 %. The four-factor PMF so-
lution seems to best represent the PMCAMx-SR OA predic-
tions in St. Petersburg. PMF determined a factor which con-
sists of 96 % biomass burning POA and low contributions
from biogenic SOA and biomass burning SOA components
(Fig. 4). This factor will be called the “bbPOA factor”. In
this case, the bbPOA factor includes little else. Comparing
the time series of the bbPOA factor and the bbPOA predicted
by PMCAMx-SR we estimated a fractional error of 5 % and
a fractional bias of −3 % (Table S3).

In Catania (Italy) the hourly bbPOA concentration ex-
ceeded 35 µg m−3 during 15–17 May due to nearby fires
(Fig. S2b). During the fire period, the contribution of bbPOA
to OA reached 94 %. During the full month, the average
bbPOA contribution to the total OA was 40 %. A three-factor
PMF solution was selected in this case. PMF determined a
factor with 93 % biomass burning POA and the remaining

Figure 4. Contribution of each OA component to the PMCAMx-
SR bbPOA factor in St. Petersburg, Catania, and Majden during
May 2008.

7 % was biomass burning SOA (4 %), biogenic SOA (2 %),
and anthropogenic SOA (1 %) (Fig. 4). The corresponding
normalized error when the time series of the bbOA factor
was compared to the PMCAMx-SR bbOA predictions was
11 % in this case.

In Majden (FYROM) fires contributed up to 15 µg m−3 of
bbPOA on 25–26 May and bbPOA was 75 % of the OA dur-
ing the fire period (Fig. S2c). The average bbPOA contri-
bution to OA was 14 % during the simulation period. The
three-factor PMF solution best fit our data. PMF identified a
factor consisting of 81 % bbPOA, 11 % biogenic SOA, 4 %
long-range-transported OA, 2 % biomass burning SOA, and
2 % anthropogenic SOA (Fig. 4). The corresponding normal-
ized error comparing this factor against the actual bbPOA
was 24 % due to the mixing of the fresh bbPOA with sec-
ondary OA from other sources by the PMF.

In Cabauw (the Netherlands) bbPOA contributed 8 % to
OA according to PMCAMx-SR, with an average concentra-
tion of 0.4 µg m−3. There were no major fires nearby and
the predicted hourly bbPOA concentration was always less
than 3 µg m−3. The bbPOA in this case was included by the
PMCAMx-SR PMF in a “bbPOA/SOA” factor. This factor
is called bbPOA/SOA because it consisted of bbPOA and
SOA components. The PMF analysis did not give a bbPOA
factor even when five factors were used. The same lack of
a bbPOA factor was found in the analysis of the PMCAMx-
SR OA in Melpitz and Finokalia. The maximum predicted
hourly concentration of bbPOA in Melpitz was 0.5 µg m−3

and in Finokalia was 0.1 µg m−3. The bbPOA in these areas
was less than 2 % of the OA.

In areas affected by major fires (St. Petersburg, Catania,
and Majden) the maximum predicted hourly concentration of
bbSOA was 12, 6.5, and 5.7 µg m−3, respectively. In all areas
examined in this study bbSOA was included mainly in one of
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Figure 5. Contribution of each OA component to the PMCAMx-
SR PMF POA factor in St. Petersburg (Russia) and Majkow Duzy
(Poland) during May 2008.

the OOA factors, which will be discussed in detail in the next
section. This is due to the fact that the temporal evolution
of bbSOA is closer to that of the other SOA components.
Therefore, the contribution of biomass burning determined
by PMF represents a lower estimate of the impact of fires on
OA in a receptor since it includes only a small fraction of the
bbSOA.

3.2.2 Primary organic aerosol

The ability of PMF to identify the fresh POA from sources
other than biomass burning is explored in this section. POA
according to PMCAMx-SR contributed 10 % to OA dur-
ing May in St. Petersburg. The four-factor PMF solution
included a factor which consisted of 67 % POA (Fig. 5).
The remaining was SOA-sv and SOA-iv (9 %), biogenic
SOA (6 %), anthropogenic SOA (5 %), biomass burning POA
(8 %), and biomass burning SOA (5 %). We call this the
“POA factor”, but it clearly includes other OA components.
For the purposes of our analysis, we consider that PMF iden-
tifies a POA factor if there is a factor containing more than
60 % POA. The POA factor and PMCAMx-SR POA concen-
trations correlated well to each other (R2

= 0.99, Fig. S3).
The average concentration of the POA factor was 1.1 µg m−3

and that of the actual POA was 0.9 µg m−3. The normalized
error of the POA factor compared to the PMCAMx-SR POA
was 34 % (Table S4).

The highest contribution of POA to total OA was predicted
in Majkow Duzy in central Poland and it was 50 %. In this lo-
cation, the POA contributed 90 % to the corresponding POA
factor (Fig. 5). The remaining was biogenic SOA (3 %), long-
range-transported OA (4 %), anthropogenic SOA (1 %), bio-

genic SOA (1 %), and biomass burning SOA (1 %). The av-
erage concentration of the POA factor was 3.2 µg m−3, while
the actual PMCAMx-SR POA was 3.4 µg m−3. The normal-
ized error of the POA factor 10 % in this case (Table S4).

In rural and remote sites (Cabauw, Melpitz, and Finokalia)
POA contributed around 3 % to the total OA according to
PMCAMx-SR. In Cabauw the three-factor solution included
factors which contained 6 %, 11 %, and 10 % POA, respec-
tively. In the four-factor solution POA contributed 12 %,
10 %, 5 %, and 0 % to the factors. In these areas, PMF did
not separate the POA from the rest of the OA components.

3.3 PMF source apportionment error for primary OA
components

The above analysis of the bbOA and POA factors suggests
that the corresponding PMF error does depend on the mag-
nitude of the contribution of the corresponding source to the
total OA levels. Higher relative errors are estimated when a
source contributes less to the total OA. To better quantify the
corresponding dependence of the error on the magnitude of
the source we used the PMF solutions in a number of lo-
cations and we also artificially scaled up and down the pre-
dicted bbOA and POA in certain locations (St. Petersburg,
Maiden, Catania, Cabauw, and Majkow Duzy) and repeated
the PMF analysis. The results are summarized in Fig. 6.

The normalized mean error of the bbPOA estimated by
the PMF is less than 30 % when the bbPOA contributes more
than 20 % to the total OA in the area. The error is reduced
to less than 20 % for contributions higher than 30 %. On the
other hand, when the bbPOA represents 10 %–20 % of the
total OA the PMF error can be up to 50 %. When biomass
burning contributes less than 10 % the error is 200 %–300 %.
Please note that in these cases, the absolute error is still rea-
sonable and the PMF correctly predicts that bbOA is a rela-
tively small component of OA.

The uncertainty in POA from other sources appears to be
a little higher than that of bbPOA probably because PMF
mixes it with other sources that have similar temporal pro-
files. When the POA represents more than 20 % of the OA,
the PMF error is less than 40 %. The errors can be up to a
factor of 2, when the POA is less than 20 % of the OA.

3.4 Oxygenated organic aerosol

In this section we try to determine the characteristics that
differentiate the two OOA factors that are often present in
ambient AMS data analysis. One hypothesis is that the two
OOA factors contain different OA components (e.g., anthro-
pogenic versus biogenic). A second hypothesis is that one
represents the semivolatile and the other the low-volatility
OA components. The third hypothesis is that these two fac-
tors have different degrees of aging (one is relatively fresh
SOA and the other SOA that has undergone multiple genera-
tions of oxidation).
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Figure 6. PMF normalized error (%) for (α) bbPOA and (β) POA
for various locations as a function of their contribution to OA.

The two PMCAMx-SR OOA factors in all areas consist
mainly of multiple SOA components. The first OOA factor
determined by PMF analysis of PMCAMx-SR OA predic-
tions contains mainly OA from long-range transport. This
factor was determined in all areas examined.

In St. Petersburg long-range-transported OA was 11 %
of the OA according to PMCAMx-SR. The four-factor so-
lution included a factor which contained 55 % long-range-
transported OA and is described here as the “LRT fac-
tor” (Fig. 7). In Majden the contribution of long-range-
transported OA to total OA was 25 %. In this area PMF deter-
mined a LRT factor with 68 % long-range-transported OA. In
Catania long-range-transported OA contributed 29 % to OA
and the LRT factor consists of 70 % long-range-transported
OA. In Cabauw and Melpitz the contribution of long-range-
transported OA was 21 % and 24 % and the corresponding

Figure 7. Contribution of each OA component to the PMCAMx-
SR LRT factor in St. Petersburg, Catania, Majden, Melpitz, and Fi-
nokalia during May 2008.

LRT factors consist of 58 % and 48 % long-range-transported
OA, respectively. During May, the highest contribution of
long-range-transported OA to total OA was determined in Fi-
nokalia and it was around 40 %. In this site, the long-range-
transported OA contributed 87 % to the LRT factor (Fig. 7).
Thus, the contribution of highly aged OA transported from
outside the domain to the LRT factor ranges from approxi-
mately 50 % to 90 % for the areas examined.

The second OOA factor determined in all areas contains
SOA-sv and SOA-iv, anthropogenic SOA, biomass burning
SOA, and biogenic SOA (Fig. 8). We call this the “SOA
factor” because it mostly includes SOA produced inside the
modeling domain. In Catania, PMF combines bbSOA (20 %
contribution to SOA factor), aSOA (20 %), and SOA-sv and
SOA-iv (30 %) in the SOA factor because the time series
of these OA components follow a similar pattern during the
simulation period (Fig. S4). This is also the case in the other
areas (Majden, Melpitz, and Finokalia; Figs. S5–S7) exam-
ined. The contribution of each SOA component to the SOA
factor depends on the examined area. Therefore, the SOA
factor consists of a mixture of contributions from various an-
thropogenic and biogenic sources.

While the two OOA factors both include a mixture of all
SOA components (Figs. 8 and 9) the LRT factor is domi-
nated by the highly aged OA transported to Europe from out-
side the domain, while the SOA factor includes mainly SOA
produced over Europe. Therefore, the hypothesis that PMF
separates the SOA components based on their sources (e.g.,
biogenic versus anthropogenic) is not supported by our re-
sults.

3.4.1 Volatility of OOA factors

We analyzed the volatility distribution of the two PMCAMx-
SR OOA factors predicted by PMCAMx-SR in order to ex-
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Figure 8. Contribution of each OA component to the PMCAMx-
SR SOA factor in St. Petersburg, Catania, Majden, Melpitz, and
Finokalia during May 2008.

Figure 9. Volatility distribution of the (a) LRT factor in Melpitz,
(b) SOA factor in Melpitz, (c) LRT factor in Finokalia, and (d) SOA
factor in Finokalia.

amine whether these factors include OA components with
different volatility. In Melpitz the volatility distribution of the
SOA factor peaks at effective saturation concentration equal
to 1 µg m−3 (Fig. 9a). A total of 90 % of the OA in this fac-
tor has effective saturation concentration (C∗) higher than or
equal to 1 µg m−3. On the other hand, the LRT factor is dom-
inated by components with C∗ equal to 0.01 and 0.1 µg m−3,
contributing 80 % to the factor. In Finokalia the highest mass
fraction of the LRT factor has effective saturation concen-
tration equal to 0.01 µg m−3 (Fig. 9c). The LRT factor in this
case contains almost exclusively low-volatility OA. The SOA

Figure 10. Contribution of first generation and second plus later
generations of SOA components to each factor in Melpitz and Fi-
nokalia during May 2008.

factor includes both low-volatility and semivolatile compo-
nents. In St. Petersburg, Catania, and Majden the results for
the volatility distribution of LRT and SOA factor were be-
tween those in St. Petersburg and in Finokalia (Fig. S8).

These results suggest that both factors have components
covering a wide range of volatilities and their volatility dis-
tributions overlap. However, the LRT factor has on average
lower volatility than the SOA factor. These suggest that the
PMF does not separate these factors exclusively based on the
volatility of the corresponding components. For example, in
Melpitz both factors include a lot of OA with C∗ equal to
1 µg m−3.

The use of the volatility-based terminology (low-volatility
and semivolatile OOA) suggests that there is a volatility
threshold and OA components that are more volatile than
this are grouped by PMF in one factor (e.g., SV-OOA) and
the less volatile compounds in the second (LV-OOA). Our
results both from this theoretical analysis but also from di-
rect volatility measurements of AMS factors (Paciga et al.,
2016; Louvaris et al., 2017) show that this is not the case. The
so-called semivolatile factor may include very low-volatility
OA, and vice versa, the so-called low-volatility factor may
include semivolatile material.

3.4.2 The degree of aging of OOA factors

We applied PMF analysis to PSAT results, separating all the
SOA components into two subcategories, first generation and
later generation products (second, third, etc.), to investigate
whether the degree of chemical processing differentiates the
two OOA factors.

In Melpitz the first PMCAMx/PSAT factor consists of
63 % first generation OA and 37 % later generation OA and
is called the “less aged factor” (Fig. 10). The second factor
includes 97 % later generation OA and can be described as
the “more aged factor”.

In the more remote site of Finokalia, we determined two
factors which both contain aged OA. We characterize the
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first factor as “extremely aged” because highly aged long-
range-transported OA dominated this factor (98 %) (Fig. 10).
The second factor is characterized as “very aged”, contain-
ing 32 % later generation aSOA, 54 % later generation SOA
from semivolatile and intermediate volatility organic com-
pounds and only 14 % first generation SOA. These results are
consistent with the analysis of Hildebrandt et al. (2010) who
argued that the OA behavior in Finokalia is quite different to
that in continental European sites and that the two OOA fac-
tors are quite similar to each other. This is also predicted by
PMCAMx-SR, suggesting that the model is consistent with
that interpretation of the measurements.

One of the limitations of this application of PMCAMx-
SR is that we assumed constant low-volatility OA boundary
conditions. In general boundary conditions of regional chem-
ical transport models are obtained from the output of similar
global models or from some averages of measurements and
can be a lot more variable (both in concentration but also in
composition and volatility). Obviously, the absolute OA con-
centrations, especially near the boundaries of the domain, can
be dominated by these boundary conditions. To avoid such
issues, in this analysis we have used sites that are far from
the boundaries. Overall, our conclusions are quite robust to
the choice of the OA boundary condition values.

Our analysis suggests that the evolution of the terms used
to describe the often-observed two OOA factors reflects our
understanding (or lack thereof) of the nature of these fac-
tors and not so much site-to-site variability. The use of OOA-
1 and OOA-2 reflected the complete lack of understanding.
Then the use of less and more volatile OOA showed the be-
ginning of some understanding, but it has probably led to
some confusion and a few misconceptions. The next step (use
of less and more oxidized OA) is probably more accurate.
Our work here supports the hypothesis that these factors cor-
respond to less and more aged OOA present in each site.

3.4.3 Comparison of OOA factors of PMF and ME-2
analysis

In this section, we compare the two OOA factors determined
by PMF and ME-2 analysis in order to estimate the change
in these factors when ME-2 analysis is used. In ME-2 we
used the “correct” POA factor (forced the model to assume
100 % contribution of POA to the POA factor). Moving from
PMF to ME-2, the changes in the composition of the SOA
and LRT factor were minor in all examined areas. Figures S9
and S10 illustrate the two OOA factors in Melpitz and in Fi-
nokalia when PMF and ME-2 are used. Thus, the above con-
clusions for the two OOA factors do not change when ME-2
is used. The advantage of the use of ME-2 analysis is that a
better separation of primary sources is obtained if of course
the correct POA fingerprint is used.

3.5 Sensitivity analysis

To better quantify the role of the volatility of the OA compo-
nents on the results of the PMF analysis we repeated the PMF
application on the PMCAMx-SR predictions, this time using
only the volatility distributions of the predicted total OA as
inputs. In this case the PMF inputs were the total concentra-
tions of OA in the five C∗ volatility bins ranging from 10−2

to 102 µg m−3. We first assumed two factors. The resulting
PMF factors included material from all volatility bins. For
example, for St. Petersburg, the first factor contained 65 %
semivolatile OA and the second contained 70 %, with the rest
being low-volatility OA. So PMF did not separate the OA
into semivolatile and low-volatility material. In the next step
we assumed three factors, but still the factors included surro-
gate compounds with a mixture of volatilities. These results
suggest once more that the OA volatility plays a secondary
role in the process in which PMF separates the OA compo-
nents into factors.

In a second test, we performed PMF analysis on a dataset
consisting of the PMCAMx-SR hourly predictions for six
of the sites (St. Petersburg, Catania, Majden, Melpitz, Fi-
nokalia, and Cabauw) used in the analysis in the previous
sections. Something like this is rarely done with field data
because it is assumed that the composition of the primary
and secondary factors may be different in different areas.
Thus, the merging of the datasets may introduce additional
uncertainties in the PMF analysis. In this case, the composi-
tion of all sources in all areas is assumed to be the same in
PMCAMx-SR, so one can examine the behavior of PMF in
this ideal situation. PMF could reproduce the overall dataset
using four factors: a primary OA factor, a biomass burning
OA factor, and two secondary OA factors.

For the primary OA factors, applying PMF to the complete
dataset resulted in factor compositions that had an interme-
diate composition compared to the factors from the site-by-
site analysis. For example, the POA factor in the common
analysis contained 81 % fresh POA, a value close to the mid-
dle of the 67 % for St. Petersburg and the 89 % for Majkow
Duzy (Fig. S11). The predicted concentrations of the POA
factor in the site-by-site and common PMF were quite simi-
lar, with differences less than 10 % in the average predicted
concentrations (Fig. S12). The same behavior was observed
for primary bbOA, with the common analysis giving inter-
mediate results but closer to the best than the average. The
corresponding PMF bbOA factor contained 93 % bbOA in
this case (Fig. S13), a little less than the 96 % in the indepen-
dent analysis of the St. Petersburg predictions, but a lot more
than the 81 % in Majden. The bbOA factor time series for
the site-by-site analysis were once more quite similar to each
other (Fig. S14), with differences in the average concentra-
tions of less than 15 %.

The situation was quite different for the OOA factors. The
results of the common analysis were quite different from
those of the site-by-site analysis in most but not all sites. For
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example, the common SOA factor contained 27 % biogenic
SOA, while the corresponding factors for the site-by-site
analysis contained from approximately 5 % to 42 % bSOA
(Fig. S15). It is interesting, though, that the common SOA
factor did not include any aged OA from long-range trans-
port. The resulting concentrations of the predicted SOA fac-
tor for the common analysis could be quite different from
those of the site-by-site analysis. For example, in St. Peters-
burg the concentration of the SOA factor was 1.1 µg m−3 for
the site-by-site analysis and 0.7 µg m−3 for the common anal-
ysis (Fig. S16). On the other hand, for Catania the results of
the approaches were quite similar, with average concentra-
tions of 1.5 µg m−3 for the site-by-site and 1.3 µg m−3 for
the common analysis (Fig. S17). The common LRT factor
contained 73 % OA from long-range transport a value closer
to the upper limit (79 % for Finokalia) than to the lower
(47 % for Melpitz) for the site-by-site analysis (Fig. S18).
The average concentration of the LRT factor in Melpitz was
1.9 µg m−3 for the individual and 1.3 µg m−3 for the common
analysis (Fig. S19). These results indicate that the composi-
tion of the OOA factors and the resulting concentrations are
quite sensitive to the range of data included in the analysis.

4 Conclusions

We analyzed for the first time, to the best of our knowl-
edge, the organic aerosol composition predictions of a chem-
ical transport model (PMCAMx-SR) using positive matrix
factorization in an effort to better understand the results of
PMF analysis of ambient organic aerosol AMS measure-
ments. The high-level results of our analysis are quite con-
sistent with those of the corresponding field studies; we find
similar quantities and characteristics of factors for a number
of sites in Europe. This consistency indicates that the analy-
sis of the model results can be used as a first-order interpre-
tation of the various factors often reported in field data PMF
analysis. These factors include the hydrocarbon-like OA and
biomass burning OA and two oxygenated organic OA fac-
tors. Cooking OA was not included as a source in the emis-
sions inventory used, so it cannot be studied at this stage.

The primary OA factor (which corresponds to the
hydrocarbon-like OA in AMS analysis) of the PMCAMx-
SR predictions usually contains not only primary OA com-
pounds but also secondary components or biomass burn-
ing OA. These additional components represent on average
one-third of the factor mass. The average error of using
HOA instead of POA is around 25 % in the cases examined
and increases when the POA contribution to OA decreases.
PMF identifies a POA factor in the PMCAMx-SR predictions
when this group of sources contributes more than 10 % to the
OA and is one of the top three sources.

PMF determines a biomass burning OA factor in all areas
influenced by major nearby fires. In these cases of major fire
influence, the biomass burning primary OA factor consists

of around 90 % biomass burning primary OA. The error in
the bbPOA factor is less than 30 %, when biomass burning
contributes more than 20 % to the average OA. The biomass
burning secondary OA is always grouped with secondary OA
components and only a small fraction of it is included in the
biomass burning factor. Therefore, the bbOA factor provides
a lower limit of the impact of fires on the OA of an area.

Our analysis suggests that PMF has difficulties identifying
sources that contribute approximately 10 % or less to the to-
tal OA during the period of the analysis. The use of ME-2
constraining the primary OA factor (which contains 100 %
contribution from primary OA) provides a better separation
of primary and secondary sources, reducing the contribution
of POA to the two oxygenated OA factors. However, this as-
sumes perfect knowledge of the “fingerprint” of the POA fac-
tor.

The two oxygenated OA factors both contain a series
of SOA components from both anthropogenic and biogenic
sources. The first oxygenated OA factor includes mainly
highly aged OA transported from outside Europe, but also
highly aged secondary OA from sources in Europe that
has undergone multiple generations of oxidation. The sec-
ond oxygenated OA factor contains SOA from volatile,
semivolatile, and intermediate volatility anthropogenic and
biogenic organic compounds. The exact contribution of these
OA components to each OA factor depends on the site. In ru-
ral continental areas (like Melpitz) the first oxygenated OA
factor includes highly aged secondary OA and the second
includes mostly “fresh” first-generation secondary organic
compounds. On the other hand, in remote sites such as in
Finokalia in Crete, both oxygenated OA factors include or-
ganic components that have undergone two or more gener-
ations of aging. This suggests that the PMF determines the
two extremes of the chemical processing of the OA present
in the site during the measurements and reports them as the
corresponding OOA factors.

Most of the time, the two oxygenated OA factors have
overlapping volatility distributions and therefore their char-
acterization as low and high volatility that has been used in
the literature may be misleading in at least some cases. This
is consistent with the measurements of Paciga et al. (2016)
in Paris and Louvaris et al. (2017) in Athens. However, the
more aged factor has lower average volatility than the fresh
secondary OA factor.

Our results suggest that the comparison of CTM predic-
tions of POA and fresh biomass burning OA to the cor-
responding AMS results is meaningful if these are major
sources for the specific locations. The PMF uncertainties es-
timated here should also be taken into account. The compar-
ison of the less and more volatile OA predicted by CTMs to
the corresponding OOA factors is probably not a good idea.
Summation of the two OOA factors into just OOA appears to
be quite safe, based on our results here. On the other hand,
if a CTM can keep track of the age of OA the comparison
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of more and less aged predicted OA to the two OOA factors
could be potentially useful.
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