Articles | Volume 19, issue 14
https://doi.org/10.5194/acp-19-9241-2019
https://doi.org/10.5194/acp-19-9241-2019
Research article
 | 
19 Jul 2019
Research article |  | 19 Jul 2019

The sensitivity of oceanic precipitation to sea surface temperature

Jörg Burdanowitz, Stefan A. Buehler, Stephan Bakan, and Christian Klepp

Related authors

How adequately are elevated moist layers represented in reanalysis and satellite observations?
Marc Prange, Stefan A. Buehler, and Manfred Brath
Atmos. Chem. Phys., 23, 725–741, https://doi.org/10.5194/acp-23-725-2023,https://doi.org/10.5194/acp-23-725-2023, 2023
Short summary
Assessing the consistency of satellite-derived upper tropospheric humidity measurements
Lei Shi, Carl J. Schreck III, Viju O. John, Eui-Seok Chung, Theresa Lang, Stefan A. Buehler, and Brian J. Soden
Atmos. Meas. Tech., 15, 6949–6963, https://doi.org/10.5194/amt-15-6949-2022,https://doi.org/10.5194/amt-15-6949-2022, 2022
Short summary
Measurement report: Plume heights of the April 2021 La Soufrière eruptions from GOES-17 side views and GOES-16–MODIS stereo views
Ákos Horváth, James L. Carr, Dong L. Wu, Julia Bruckert, Gholam Ali Hoshyaripour, and Stefan A. Buehler
Atmos. Chem. Phys., 22, 12311–12330, https://doi.org/10.5194/acp-22-12311-2022,https://doi.org/10.5194/acp-22-12311-2022, 2022
Short summary
Optically thin clouds in the trades
Theresa Mieslinger, Bjorn Stevens, Tobias Kölling, Manfred Brath, Martin Wirth, and Stefan A. Buehler
Atmos. Chem. Phys., 22, 6879–6898, https://doi.org/10.5194/acp-22-6879-2022,https://doi.org/10.5194/acp-22-6879-2022, 2022
Short summary
Synergistic radar and sub-millimeter radiometer retrievals of ice hydrometeors in mid-latitude frontal cloud systems
Simon Pfreundschuh, Stuart Fox, Patrick Eriksson, David Duncan, Stefan A. Buehler, Manfred Brath, Richard Cotton, and Florian Ewald
Atmos. Meas. Tech., 15, 677–699, https://doi.org/10.5194/amt-15-677-2022,https://doi.org/10.5194/amt-15-677-2022, 2022
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Estimating the snow density using collocated Parsivel and Micro-Rain Radar measurements: a preliminary study from ICE-POP 2017/2018
Wei-Yu Chang, Yung-Chuan Yang, Chen-Yu Hung, Kwonil Kim, Gyuwon Lee, and Ali Tokay
Atmos. Chem. Phys., 24, 11955–11979, https://doi.org/10.5194/acp-24-11955-2024,https://doi.org/10.5194/acp-24-11955-2024, 2024
Short summary
Technical note: On the ice microphysics of isolated thunderstorms and non-thunderstorms in southern China – a radar polarimetric perspective
Chuanhong Zhao, Yijun Zhang, Dong Zheng, Haoran Li, Sai Du, Xueyan Peng, Xiantong Liu, Pengguo Zhao, Jiafeng Zheng, and Juan Shi
Atmos. Chem. Phys., 24, 11637–11651, https://doi.org/10.5194/acp-24-11637-2024,https://doi.org/10.5194/acp-24-11637-2024, 2024
Short summary
Distinctive aerosol–cloud–precipitation interactions in marine boundary layer clouds from the ACE-ENA and SOCRATES aircraft field campaigns
Xiaojian Zheng, Xiquan Dong, Baike Xi, Timothy Logan, and Yuan Wang
Atmos. Chem. Phys., 24, 10323–10347, https://doi.org/10.5194/acp-24-10323-2024,https://doi.org/10.5194/acp-24-10323-2024, 2024
Short summary
Drivers of droplet formation in east Mediterranean orographic clouds
Romanos Foskinis, Ghislain Motos, Maria I. Gini, Olga Zografou, Kunfeng Gao, Stergios Vratolis, Konstantinos Granakis, Ville Vakkari, Kalliopi Violaki, Andreas Aktypis, Christos Kaltsonoudis, Zongbo Shi, Mika Komppula, Spyros N. Pandis, Konstantinos Eleftheriadis, Alexandros Papayannis, and Athanasios Nenes
Atmos. Chem. Phys., 24, 9827–9842, https://doi.org/10.5194/acp-24-9827-2024,https://doi.org/10.5194/acp-24-9827-2024, 2024
Short summary
Observability of moisture transport divergence in Arctic atmospheric rivers by dropsondes
Henning Dorff, Heike Konow, Vera Schemann, and Felix Ament
Atmos. Chem. Phys., 24, 8771–8795, https://doi.org/10.5194/acp-24-8771-2024,https://doi.org/10.5194/acp-24-8771-2024, 2024
Short summary

Cited articles

Allan, R. P., Liu, C., Zahn, M., Lavers, D. A., Koukouvagias, E., and Bodas-Salcedo, A.: Physically Consistent Responses of the Global Atmospheric Hydrological Cycle in Models and Observations, Surv. Geophys., 35, 533–552, https://doi.org/10.1007/s10712-012-9213-z, 2014. a, b
Allen, M. R. and Ingram, W. J.: Constraints on future changes in climate and the hydrologic cycle, Nature, 419, 224, https://doi.org/10.1038/nature01092, 2002. a
Arkin, P. A., Smith, T. M., Sapiano, M. R. P., and Janowiak, J.: The observed sensitivity of the global hydrological cycle to changes in surface temperature, Environ. Res. Lett., 5, 035201, https://doi.org/10.1088/1748-9326/5/3/035201, 2010. a
Burdanowitz, J., Klepp, C., and Bakan, S.: An automatic precipitation-phase distinction algorithm for optical disdrometer data over the global ocean, Atmos. Meas. Tech., 9, 1637–1652, https://doi.org/10.5194/amt-9-1637-2016, 2016. a
Burdanowitz, J., Klepp, C., Bakan, S., and Buehler, S. A.: Towards an along-track validation of HOAPS precipitation using OceanRAIN optical disdrometer data over the Atlantic Ocean, Q. J. Roy. Meteor. Soc., 144, 235–254, https://doi.org/10.1002/qj.3248, 2018. a
Download
Short summary
Sensitivity of precipitation to sea surface temperature over the ocean determines how precipitation potentially changes in a warming climate. This relationship has hardly been studied over ocean due to a lack of long-term oceanic data. Our study shows how the precipitation sensitivity depends on resolution, what process limits oceanic precipitation and how the event duration depends on temperature. This provides valuable information for future climate observations, modeling and understanding.
Altmetrics
Final-revised paper
Preprint