Articles | Volume 19, issue 6
https://doi.org/10.5194/acp-19-4139-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-19-4139-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The global climatology of the intensity of the ionospheric sporadic E layer
Bingkun Yu
CAS Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Sciences, University of Science and Technology of China, Hefei, China
Mengcheng National Geophysical Observatory, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China
Department of Meteorology, University of Reading, Reading, Berkshire, UK
CAS Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Sciences, University of Science and Technology of China, Hefei, China
Mengcheng National Geophysical Observatory, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China
Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, China
Xin'an Yue
Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
Chengyun Yang
CAS Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Sciences, University of Science and Technology of China, Hefei, China
Mengcheng National Geophysical Observatory, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China
CAS Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Sciences, University of Science and Technology of China, Hefei, China
Mengcheng National Geophysical Observatory, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China
Xiankang Dou
CAS Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Sciences, University of Science and Technology of China, Hefei, China
Mengcheng National Geophysical Observatory, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China
Baiqi Ning
Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
Lianhuan Hu
Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
Related authors
Christopher John Scott, Matthew N. Wild, Luke Anthony Barnard, Bingkun Yu, Tatsuhiro Yokoyama, Michael Lockwood, Cathryn Mitchel, John Coxon, and Andrew Kavanagh
Ann. Geophys., 42, 395–418, https://doi.org/10.5194/angeo-42-395-2024, https://doi.org/10.5194/angeo-42-395-2024, 2024
Short summary
Short summary
Long-term change in the ionosphere are expected due to increases in greenhouse gases in the lower atmosphere. Empirical formulae are used to estimate height. Through comparison with independent data we show that there are seasonal and long-term biases introduced by the empirical model. We conclude that estimates of long-term changes in ionospheric height need to account for these biases.
Penghao Tian, Bingkun Yu, Hailun Ye, Xianghui Xue, Jianfei Wu, and Tingdi Chen
Atmos. Chem. Phys., 23, 13413–13431, https://doi.org/10.5194/acp-23-13413-2023, https://doi.org/10.5194/acp-23-13413-2023, 2023
Short summary
Short summary
Modeling and prediction of ionospheric irregularities is an important topic in upper-atmospheric and upper-ionospheric physics. We proposed an artificial intelligence model to reconstruct the E-region ionospheric irregularities and first developed an open-source application for the community. The model reveals complex relationships between ionospheric irregularities and external driving factors. The findings suggest that spatiotemporal information plays an important role in the reconstruction.
Bingkun Yu, Xianghui Xue, Christopher J. Scott, Mingjiao Jia, Wuhu Feng, John M. C. Plane, Daniel R. Marsh, Jonas Hedin, Jörg Gumbel, and Xiankang Dou
Atmos. Chem. Phys., 22, 11485–11504, https://doi.org/10.5194/acp-22-11485-2022, https://doi.org/10.5194/acp-22-11485-2022, 2022
Short summary
Short summary
We present a study on the climatology of the metal sodium layer in the upper atmosphere from the ground-based measurements obtained from a lidar network, the Odin satellite measurements, and a global model of meteoric sodium in the atmosphere. Comprehensively, comparisons show good agreement and some discrepancies between ground-based observations, satellite measurements, and global model simulations.
Bingkun Yu, Xianghui Xue, Christopher J. Scott, Jianfei Wu, Xinan Yue, Wuhu Feng, Yutian Chi, Daniel R. Marsh, Hanli Liu, Xiankang Dou, and John M. C. Plane
Atmos. Chem. Phys., 21, 4219–4230, https://doi.org/10.5194/acp-21-4219-2021, https://doi.org/10.5194/acp-21-4219-2021, 2021
Short summary
Short summary
A long-standing mystery of metal ions within Es layers in the Earth's upper atmosphere is the marked seasonal dependence, with a summer maximum and a winter minimum. We report a large-scale winter-to-summer transport of metal ions from 6-year multi-satellite observations and worldwide ground-based stations. A global atmospheric circulation is responsible for the phenomenon. Our results emphasise the effect of this atmospheric circulation on the transport of composition in the upper atmosphere.
Bingkun Yu, Xianghui Xue, Chengling Kuo, Gaopeng Lu, Xiankang Dou, Qi Gao, Jianfei Wu, Mingjiao Jia, Chao Yu, and Xiushu Qie
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1025, https://doi.org/10.5194/acp-2018-1025, 2018
Preprint withdrawn
Short summary
Short summary
This paper explores the relationship between the intensifications of atomic sodium layer and Es layer in the Mesosphere/Lower Thermosphere (MLT) region (the earth's upper atmosphere at altitudes between 90 and 130 km above ground). The multi-instrument experiment of sodium lidar observations, ionospheric observations and sodium chemical simulations advances our understanding of the dynamical and chemical coupling processes in the mesosphere and ionosphere above thunderstorms.
Jianyuan Wang, Na Li, Wen Yi, Xianghui Xue, Iain M. Reid, Jianfei Wu, Hailun Ye, Jian Li, Zonghua Ding, Jinsong Chen, Guozhu Li, Yaoyu Tian, Boyuan Chang, Jiajing Wu, and Lei Zhao
Atmos. Chem. Phys., 24, 13299–13315, https://doi.org/10.5194/acp-24-13299-2024, https://doi.org/10.5194/acp-24-13299-2024, 2024
Short summary
Short summary
We present the impact of quasi-biennial oscillation (QBO) disruption events on diurnal tides over the low- and mid-latitude MLT region observed by a meteor radar chain. By using a global atmospheric model and reanalysis data, it is found that the stratospheric QBO winds can affect the mesospheric diurnal tides by modulating the subtropical ozone variability in the upper stratosphere and the interaction between tides and gravity waves in the mesosphere.
Jianfei Wu, Wuhu Feng, Xianghui Xue, Daniel Robert Marsh, and John Maurice Campbell Plane
Atmos. Chem. Phys., 24, 12133–12141, https://doi.org/10.5194/acp-24-12133-2024, https://doi.org/10.5194/acp-24-12133-2024, 2024
Short summary
Short summary
Metal layers occur in the mesosphere and lower thermosphere region 80–120 km from the ablation of cosmic dust. Nonmigrating diurnal tides are persistent global oscillations. We investigate nonmigrating diurnal tidal variations in metal layers using satellite observations and global climate model simulations; these have not been studied previously due to the limitations of measurements. The nonmigrating diurnal tides in temperature are strongly linked to the corresponding change in metal layers.
Christopher John Scott, Matthew N. Wild, Luke Anthony Barnard, Bingkun Yu, Tatsuhiro Yokoyama, Michael Lockwood, Cathryn Mitchel, John Coxon, and Andrew Kavanagh
Ann. Geophys., 42, 395–418, https://doi.org/10.5194/angeo-42-395-2024, https://doi.org/10.5194/angeo-42-395-2024, 2024
Short summary
Short summary
Long-term change in the ionosphere are expected due to increases in greenhouse gases in the lower atmosphere. Empirical formulae are used to estimate height. Through comparison with independent data we show that there are seasonal and long-term biases introduced by the empirical model. We conclude that estimates of long-term changes in ionospheric height need to account for these biases.
Penghao Tian, Bingkun Yu, Hailun Ye, Xianghui Xue, Jianfei Wu, and Tingdi Chen
Atmos. Chem. Phys., 23, 13413–13431, https://doi.org/10.5194/acp-23-13413-2023, https://doi.org/10.5194/acp-23-13413-2023, 2023
Short summary
Short summary
Modeling and prediction of ionospheric irregularities is an important topic in upper-atmospheric and upper-ionospheric physics. We proposed an artificial intelligence model to reconstruct the E-region ionospheric irregularities and first developed an open-source application for the community. The model reveals complex relationships between ionospheric irregularities and external driving factors. The findings suggest that spatiotemporal information plays an important role in the reconstruction.
Xu Zhou, Xinan Yue, Yihui Cai, Zhipeng Ren, Yong Wei, and Yongxin Pan
Atmos. Chem. Phys., 23, 6383–6393, https://doi.org/10.5194/acp-23-6383-2023, https://doi.org/10.5194/acp-23-6383-2023, 2023
Short summary
Short summary
Secular variations in CO2 concentration and geomagnetic field can affect the dynamics of the upper atmosphere. We examine how these two factors influence the dynamics of the upper atmosphere during the Holocene, using two sets of ~ 12 000-year control runs by the coupled thermosphere–ionosphere model. The main results show that (a) increased CO2 enhances the thermospheric circulation, but non-linearly; and (b) geomagnetic variation induced a significant hemispheric asymmetrical effect.
Yihui Cai, Xinan Yue, Xu Zhou, Zhipeng Ren, Yong Wei, and Yongxin Pan
Atmos. Chem. Phys., 23, 5009–5021, https://doi.org/10.5194/acp-23-5009-2023, https://doi.org/10.5194/acp-23-5009-2023, 2023
Short summary
Short summary
On timescales longer than the solar cycle, secular changes in CO2 concentration and geomagnetic field play a key role in influencing the thermosphere. We performed four sets of ~12000-year control runs with the coupled thermosphere–ionosphere model to examine the effects of the geomagnetic field, CO2, and solar activity on thermospheric density and temperature, deepening our understanding of long-term changes in the thermosphere and making projections for future thermospheric changes.
Wen Yi, Jie Zeng, Xianghui Xue, Iain Reid, Wei Zhong, Jianfei Wu, Tingdi Chen, and Xiankang Dou
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-254, https://doi.org/10.5194/amt-2022-254, 2022
Revised manuscript not accepted
Short summary
Short summary
In recent years, the concept of multistatic meteor radar systems has attracted the attention of the atmospheric radar community, focusing on the MLT region. In this study, we apply a multistatic meteor radar system consisting of a monostatic meteor radar in Mengcheng (33.36° N, 116.49° E) and a remote receiver in Changfeng (31.98° N, 117.22° E) to estimate the two-dimensional horizontal wind field, and the horizontal divergence and relative vorticity of the wind field.
Bingkun Yu, Xianghui Xue, Christopher J. Scott, Mingjiao Jia, Wuhu Feng, John M. C. Plane, Daniel R. Marsh, Jonas Hedin, Jörg Gumbel, and Xiankang Dou
Atmos. Chem. Phys., 22, 11485–11504, https://doi.org/10.5194/acp-22-11485-2022, https://doi.org/10.5194/acp-22-11485-2022, 2022
Short summary
Short summary
We present a study on the climatology of the metal sodium layer in the upper atmosphere from the ground-based measurements obtained from a lidar network, the Odin satellite measurements, and a global model of meteoric sodium in the atmosphere. Comprehensively, comparisons show good agreement and some discrepancies between ground-based observations, satellite measurements, and global model simulations.
Shican Qiu, Mengzhen Yuan, Willie Soon, Victor Manuel Velasco Herrera, Zhanming Zhang, and Xiankang Dou
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2022-22, https://doi.org/10.5194/angeo-2022-22, 2022
Revised manuscript not accepted
Short summary
Short summary
In this paper, the solar radiation index Y10 acts as an indicator of the solar activity, and the vertical column of ice water content (IWC) characterizes the nature of the polar mesosphere cloud (PMC). Superposed epoch analysis is used to determine the time lag days of temperature and IWC anomalies in responding to Y10 for the PMC seasons from 2007–2015. The results show that the IWC can respond quickly to temperature within time lag of one day.
Yetao Cen, Chengyun Yang, Tao Li, James M. Russell III, and Xiankang Dou
Atmos. Chem. Phys., 22, 7861–7874, https://doi.org/10.5194/acp-22-7861-2022, https://doi.org/10.5194/acp-22-7861-2022, 2022
Short summary
Short summary
The MLT DW1 amplitude is suppressed during El Niño winters in both satellite observation and SD-WACCM simulations. The suppressed Hough mode (1, 1) in the tropopause region propagates vertically to the MLT region, leading to decreased DW1 amplitude. The latitudinal zonal wind shear anomalies during El Niño winters would narrow the waveguide and prevent the vertical propagation of DW1. The gravity wave drag excited by ENSO-induced anomalous convection could also modulate the MLT DW1 amplitude.
Dawei Tang, Tianwen Wei, Jinlong Yuan, Haiyun Xia, and Xiankang Dou
Atmos. Meas. Tech., 15, 2819–2838, https://doi.org/10.5194/amt-15-2819-2022, https://doi.org/10.5194/amt-15-2819-2022, 2022
Short summary
Short summary
During 11–20 March 2020, three aerosol transport events were investigated by a lidar system and an online bioaerosol detection system in Hefei, China.
Observation results reveal that the events not only contributed to high particulate matter pollution but also to the transport of external bioaerosols, resulting in changes in the fraction of fluorescent biological aerosol particles.
This detection method improved the time resolution and provided more parameters for aerosol detection.
Shican Qiu, Mengxi Shi, Willie Soon, Mingjiao Jia, Xianghui Xue, Tao Li, Peng Ju, and Xiankang Dou
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-1085, https://doi.org/10.5194/acp-2021-1085, 2022
Revised manuscript not accepted
Short summary
Short summary
The solitary wave theory is applied for the first time to study the sporadic sodium layers (NaS). We perform soliton fitting processes on the observed data from the Andes Lidar Observatory, and find out that 24/27 NaS events exhibit similar features to a soliton. Time series of the net anomaly reveal the same variation process to the solution of a five-order KdV equation. Our results suggest the NaS phenomenon would be an appropriate tracer for nonlinear wave studies in the atmosphere.
Liang Tang, Sheng-Yang Gu, and Xian-Kang Dou
Atmos. Chem. Phys., 21, 17495–17512, https://doi.org/10.5194/acp-21-17495-2021, https://doi.org/10.5194/acp-21-17495-2021, 2021
Short summary
Short summary
Our study explores the variation in the occurrence date, peak amplitude and wave period for eastward waves and the role of instability, background wind structure and the critical layer in eastward wave propagation and amplification.
Jianfei Wu, Wuhu Feng, Han-Li Liu, Xianghui Xue, Daniel Robert Marsh, and John Maurice Campbell Plane
Atmos. Chem. Phys., 21, 15619–15630, https://doi.org/10.5194/acp-21-15619-2021, https://doi.org/10.5194/acp-21-15619-2021, 2021
Short summary
Short summary
Metal layers occur in the MLT region (80–120 km) from the ablation of cosmic dust. The latest lidar observations show these metals can reach a height approaching 200 km, which is challenging to explain. We have developed the first global simulation incorporating the full life cycle of metal atoms and ions. The model results compare well with lidar and satellite observations of the seasonal and diurnal variation of the metals and demonstrate the importance of ion mass and ion-neutral coupling.
Shican Qiu, Ning Wang, Willie Soon, Gaopeng Lu, Mingjiao Jia, Xingjin Wang, Xianghui Xue, Tao Li, and Xiankang Dou
Atmos. Chem. Phys., 21, 11927–11940, https://doi.org/10.5194/acp-21-11927-2021, https://doi.org/10.5194/acp-21-11927-2021, 2021
Short summary
Short summary
Our results suggest that lightning strokes would probably influence the ionosphere and thus give rise to the occurrence of a sporadic sodium layer (NaS), with the overturning of the electric field playing an important role. Model simulation results show that the calculated first-order rate coefficient could explain the efficient recombination of Na+→Na in this NaS case study. A conjunction between the lower and upper atmospheres could be established by these inter-connected phenomena.
Wei Zhong, Xianghui Xue, Wen Yi, Iain M. Reid, Tingdi Chen, and Xiankang Dou
Atmos. Meas. Tech., 14, 3973–3988, https://doi.org/10.5194/amt-14-3973-2021, https://doi.org/10.5194/amt-14-3973-2021, 2021
Mingzhe Li and Xinan Yue
Atmos. Meas. Tech., 14, 3003–3013, https://doi.org/10.5194/amt-14-3003-2021, https://doi.org/10.5194/amt-14-3003-2021, 2021
Short summary
Short summary
In this study, we statistically analyzed the correlation between the ionospheric irregularity and the quality of the GNSS atmospheric radio occultation (RO) products. The results show that the ionospheric irregularity could affect the GNSS atmospheric RO in terms of causing failed inverted RO events and the bending angle oscillation. Awareness of the ionospheric irregularity effect on RO could be beneficial to improve the RO data quality for weather and climate research.
Bingkun Yu, Xianghui Xue, Christopher J. Scott, Jianfei Wu, Xinan Yue, Wuhu Feng, Yutian Chi, Daniel R. Marsh, Hanli Liu, Xiankang Dou, and John M. C. Plane
Atmos. Chem. Phys., 21, 4219–4230, https://doi.org/10.5194/acp-21-4219-2021, https://doi.org/10.5194/acp-21-4219-2021, 2021
Short summary
Short summary
A long-standing mystery of metal ions within Es layers in the Earth's upper atmosphere is the marked seasonal dependence, with a summer maximum and a winter minimum. We report a large-scale winter-to-summer transport of metal ions from 6-year multi-satellite observations and worldwide ground-based stations. A global atmospheric circulation is responsible for the phenomenon. Our results emphasise the effect of this atmospheric circulation on the transport of composition in the upper atmosphere.
Jianyuan Wang, Wen Yi, Jianfei Wu, Tingdi Chen, Xianghui Xue, Robert A. Vincent, Iain M. Reid, Paulo P. Batista, Ricardo A. Buriti, Toshitaka Tsuda, and Xiankang Dou
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-33, https://doi.org/10.5194/acp-2021-33, 2021
Revised manuscript not accepted
Short summary
Short summary
In this study, we report the climatology of migrating and non-migrating tides in mesopause winds estimated using multiyear observations from three meteor radars in the southern equatorial region. The results reveal that the climatological patterns of tidal amplitudes by meteor radars is similar to the Climatological Tidal Model of the Thermosphere (CTMT) results and the differences are mainly due to the effect of the stratospheric sudden warming (SSW) event.
Kun Wu, Jiyao Xu, Xinan Yue, Chao Xiong, Wenbin Wang, Wei Yuan, Chi Wang, Yajun Zhu, and Ji Luo
Ann. Geophys., 38, 163–177, https://doi.org/10.5194/angeo-38-163-2020, https://doi.org/10.5194/angeo-38-163-2020, 2020
Short summary
Short summary
An equatorial plasma bubble (EPB) event, emerging near dawn and developing after sunrise, was simultaneously observed by an all-sky imager and the global navigation satellite system (GNSS) network. The observed EPBs showed westward drifts, different from post-sunset EPBs. The EPBs occurred in the recovery phase of a geomagnetic storm, possibly playing a key role in initializing their developments. The results provide a new perspective of EPBs, enriching our knowledge of ionospheric irregularity.
Mingjiao Jia, Jinlong Yuan, Chong Wang, Haiyun Xia, Yunbin Wu, Lijie Zhao, Tianwen Wei, Jianfei Wu, Lu Wang, Sheng-Yang Gu, Liqun Liu, Dachun Lu, Rulong Chen, Xianghui Xue, and Xiankang Dou
Atmos. Chem. Phys., 19, 15431–15446, https://doi.org/10.5194/acp-19-15431-2019, https://doi.org/10.5194/acp-19-15431-2019, 2019
Short summary
Short summary
Gravitational waves (GWs) with periods ranging from 10 to 30 min over 10 h and 20 wave cycles are detected within a 2 km height in the atmospheric boundary layer (ABL) by a coherent Doppler wind lidar. Observations and computational fluid dynamics (CFD) simulations lead to a conclusion that the GWs are excited by the wind shear of a low-level jet under the condition of light horizontal wind. The GWs are trapped in the ABL due to a combination of thermal and Doppler ducts.
Chong Wang, Mingjiao Jia, Haiyun Xia, Yunbin Wu, Tianwen Wei, Xiang Shang, Chengyun Yang, Xianghui Xue, and Xiankang Dou
Atmos. Meas. Tech., 12, 3303–3315, https://doi.org/10.5194/amt-12-3303-2019, https://doi.org/10.5194/amt-12-3303-2019, 2019
Short summary
Short summary
To investigate the relationship between BLH and air pollution under different conditions, a compact micro-pulse lidar integrating both direct-detection lidar and coherent Doppler wind lidar is built. Evolution of atmospheric boundary layer height (BLH), aerosol layer and fine structure in cloud base are well retrieved. Negative correlation exists between BLH and PM2.5. Different trends show that the relationship between PM2.5 and BLH should be considered in different boundary layer categories.
Wen Yi, Xianghui Xue, Iain M. Reid, Damian J. Murphy, Chris M. Hall, Masaki Tsutsumi, Baiqi Ning, Guozhu Li, Robert A. Vincent, Jinsong Chen, Jianfei Wu, Tingdi Chen, and Xiankang Dou
Atmos. Chem. Phys., 19, 7567–7581, https://doi.org/10.5194/acp-19-7567-2019, https://doi.org/10.5194/acp-19-7567-2019, 2019
Short summary
Short summary
The seasonal variations in the mesopause densities, especially with regard to its global structure, are still unclear. In this study, we report the climatology of the mesopause density estimated using multiyear observations from nine meteor radars from Arctic to Antarctic latitudes. The results reveal a significant AO and SAO in mesopause density, an asymmetry between the two polar regions and evidence of intraseasonal oscillations (ISOs), perhaps associated with the ISOs of the troposphere.
Bingkun Yu, Xianghui Xue, Chengling Kuo, Gaopeng Lu, Xiankang Dou, Qi Gao, Jianfei Wu, Mingjiao Jia, Chao Yu, and Xiushu Qie
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1025, https://doi.org/10.5194/acp-2018-1025, 2018
Preprint withdrawn
Short summary
Short summary
This paper explores the relationship between the intensifications of atomic sodium layer and Es layer in the Mesosphere/Lower Thermosphere (MLT) region (the earth's upper atmosphere at altitudes between 90 and 130 km above ground). The multi-instrument experiment of sodium lidar observations, ionospheric observations and sodium chemical simulations advances our understanding of the dynamical and chemical coupling processes in the mesosphere and ionosphere above thunderstorms.
Tao Li, Chao Ban, Xin Fang, Jing Li, Zhaopeng Wu, Wuhu Feng, John M. C. Plane, Jiangang Xiong, Daniel R. Marsh, Michael J. Mills, and Xiankang Dou
Atmos. Chem. Phys., 18, 11683–11695, https://doi.org/10.5194/acp-18-11683-2018, https://doi.org/10.5194/acp-18-11683-2018, 2018
Short summary
Short summary
A total of 154 nights of observations by the USTC Na temperature and wind lidar (32° N, 117° E) suggest significant seasonal variability in the mesopause. Chemistry plays an important role in Na atom formation. More than half of the observed gravity wave (GW) momentum flux (MF), whose divergence determines the GW forcing, is induced by short-period (10 min–2 h) waves. The anticorrelation between MF and zonal wind (U) suggests strong filtering of short-period GWs by semiannual oscillation U.
Libin Weng, Jiuhou Lei, Eelco Doornbos, Hanxian Fang, and Xiankang Dou
Ann. Geophys., 36, 489–496, https://doi.org/10.5194/angeo-36-489-2018, https://doi.org/10.5194/angeo-36-489-2018, 2018
Short summary
Short summary
Thermospheric mass density from the GOCE satellite for Sun-synchronous orbits between 83.5° S and 83.5° N normalized to 270 km during 2009–2013 has been used to develop our GOCE model at dawn/dusk local solar time sectors based on the empirical orthogonal function (EOF) method. We find that both amplitude and phase of the seasonal variations have strong latitudinal and solar activity dependences, and the annual asymmetry and effect of the Sun–Earth distance vary with latitude and solar activity.
Sheng-Yang Gu, Xiankang Dou, and Dora Pancheva
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-563, https://doi.org/10.5194/acp-2017-563, 2017
Revised manuscript not accepted
Short summary
Short summary
We used the NOGAPS-ALPHA reanalysis datasets upto mesopause region to investigate the anomalous Quasi-Two-Day Wave (QTDW) activities during the major Sudden Stratospheric Warming period of January 2006. We found that the SSW in the winter stratosphere could have significant influence on the QTDWs in the summer mesosphere through inter-hemispheric couplings. Our finding sheds new light on the coulings during SSW period.
Feng Ding, Tian Mao, Lianhuan Hu, Baiqi Ning, Weixing Wan, and Yungang Wang
Ann. Geophys., 34, 1045–1051, https://doi.org/10.5194/angeo-34-1045-2016, https://doi.org/10.5194/angeo-34-1045-2016, 2016
Short summary
Short summary
Two traveling ionospheric disturbances (TIDs) were observed by the GPS network in Asia following the large meteorite blast over Chelyabinsk, Russia. No TIDs propagating in a global range were found. Features of TIDs were compared with those excited by early nuclear explosion tests. It is inferred from our analysis that the energy release of the Chelyabinsk meteorite blast may not be large enough to excite such ionospheric disturbances in a global range as some nuclear explosions have done.
Sheng-Yang Gu, Han-Li Liu, Xiankang Dou, and Tao Li
Atmos. Chem. Phys., 16, 4885–4896, https://doi.org/10.5194/acp-16-4885-2016, https://doi.org/10.5194/acp-16-4885-2016, 2016
Short summary
Short summary
The influences of sudden stratospheric warming in the Northern Hemisphere on quasi-2-day waves are studied with both observations and simulations. We found the energy of W3 is transferred to W2 through the nonlinear interaction with SPW1 and the instability at winter mesopause could provide additional amplification for W3. The summer easterly is enhanced during SSW, which is more favorable for the propagation of quasi-2-day waves.
Y. Zhang, W. Wan, G. Li, L. Liu, L. Hu, and B. Ning
Ann. Geophys., 33, 1421–1430, https://doi.org/10.5194/angeo-33-1421-2015, https://doi.org/10.5194/angeo-33-1421-2015, 2015
X. Yue, W. S. Schreiner, Z. Zeng, Y.-H. Kuo, and X. Xue
Atmos. Meas. Tech., 8, 225–236, https://doi.org/10.5194/amt-8-225-2015, https://doi.org/10.5194/amt-8-225-2015, 2015
Short summary
Short summary
The occurrence of sporadic E (Es) layers has been a hot scientific topic for a long time. GNSS (global navigation satellite system)-based radio occultation (RO) has proven to be a powerful technique for detecting the global Es layers. In this paper, we show some examples of multiple Es layers occurring in one RO event and the occurrence of Es in a broad region during a certain time interval. The results are then evaluated by independent observations such as lidar and ionosondes.
L. Hu, B. Ning, L. Liu, B. Zhao, G. Li, B. Wu, Z. Huang, X. Hao, S. Chang, and Z. Wu
Ann. Geophys., 32, 1311–1319, https://doi.org/10.5194/angeo-32-1311-2014, https://doi.org/10.5194/angeo-32-1311-2014, 2014
X. Luan and X. Dou
Ann. Geophys., 31, 1699–1708, https://doi.org/10.5194/angeo-31-1699-2013, https://doi.org/10.5194/angeo-31-1699-2013, 2013
F. Ding, W. Wan, B. Ning, B. Zhao, Q. Li, Y. Wang, L. Hu, R. Zhang, and B. Xiong
Ann. Geophys., 31, 377–385, https://doi.org/10.5194/angeo-31-377-2013, https://doi.org/10.5194/angeo-31-377-2013, 2013
Related subject area
Subject: Dynamics | Research Activity: Remote Sensing | Altitude Range: Mesosphere | Science Focus: Physics (physical properties and processes)
Lidar measurements of noctilucent clouds at Rio Grande, Tierra del Fuego, Argentina
Upper-atmosphere responses to the 2022 Hunga Tonga–Hunga Ha′apai volcanic eruption via acoustic gravity waves and air–sea interaction
Influences of sudden stratospheric warmings on the ionosphere above Okinawa
Gravity waves generated by the Hunga Tonga–Hunga Ha′apai volcanic eruption and their global propagation in the mesosphere/lower thermosphere observed by meteor radars and modeled with the High-Altitude general Mechanistic Circulation Model
Long-term studies of the summer wind in the mesosphere and lower thermosphere at middle and high latitudes over Europe
Progress in investigating long-term trends in the mesosphere, thermosphere, and ionosphere
Aura/MLS observes and SD-WACCM-X simulates the seasonality, quasi-biennial oscillation and El Niño–Southern Oscillation of the migrating diurnal tide driving upper mesospheric CO primarily through vertical advection
Hydroxyl airglow observations for investigating atmospheric dynamics: results and challenges
Signatures of gravity wave-induced instabilities in balloon lidar soundings of polar mesospheric clouds
Sources of concentric gravity waves generated by a moving mesoscale convective system in southern Brazil
How do gravity waves triggered by a typhoon propagate from the troposphere to the upper atmosphere?
Interhemispheric differences of mesosphere–lower thermosphere winds and tides investigated from three whole-atmosphere models and meteor radar observations
The semiannual oscillation (SAO) in the tropical middle atmosphere and its gravity wave driving in reanalyses and satellite observations
Mesospheric gravity wave activity estimated via airglow imagery, multistatic meteor radar, and SABER data taken during the SIMONe–2018 campaign
Interhemispheric transport of metallic ions within ionospheric sporadic E layers by the lower thermospheric meridional circulation
Formation of an additional density peak in the bottom side of the sodium layer associated with the passage of multiple mesospheric frontal systems
Gravity-wave-perturbed wind shears derived from SABER temperature observations
Comparative study between ground-based observations and NAVGEM-HA analysis data in the mesosphere and lower thermosphere region
Analysis of 24 years of mesopause region OH rotational temperature observations at Davis, Antarctica – Part 2: Evidence of a quasi-quadrennial oscillation (QQO) in the polar mesosphere
The MATS satellite mission – gravity wave studies by Mesospheric Airglow/Aerosol Tomography and Spectroscopy
Winter 2018 major sudden stratospheric warming impact on midlatitude mesosphere from microwave radiometer measurements
Climatology of the mesopause relative density using a global distribution of meteor radars
Observations of OH airglow from ground, aircraft, and satellite: investigation of wave-like structures before a minor stratospheric warming
Mesospheric semidiurnal tides and near-12 h waves through jointly analyzing observations of five specular meteor radars from three longitudinal sectors at boreal midlatitudes
Statistical climatology of mid-latitude mesospheric summer echoes characterised by OSWIN (Ostsee-Wind) radar observations
Can VHF radars at polar latitudes measure mean vertical winds in the presence of PMSE?
Long-term lidar observations of the gravity wave activity near the mesopause at Arecibo
Characterization of flow recirculation zones at the Perdigão site using multi-lidar measurements
Solar 27-day signatures in standard phase height measurements above central Europe
Mesospheric bores at southern midlatitudes observed by ISS-IMAP/VISI: a first report of an undulating wave front
Simultaneous observations of NLCs and MSEs at midlatitudes: implications for formation and advection of ice particles
Long-term observation of midlatitude quasi 2-day waves by a water vapor radiometer
Climatology of mesopause region nocturnal temperature, zonal wind and sodium density observed by sodium lidar over Hefei, China (32° N, 117° E)
Multi-static spatial and angular studies of polar mesospheric summer echoes combining MAARSY and KAIRA
Observation of Kelvin–Helmholtz instabilities and gravity waves in the summer mesopause above Andenes in Northern Norway
Temporal variability of tidal and gravity waves during a record long 10-day continuous lidar sounding
Quasi 18 h wave activity in ground-based observed mesospheric H2O over Bern, Switzerland
Winds and temperatures of the Arctic middle atmosphere during January measured by Doppler lidar
Short-period mesospheric gravity waves and their sources at the South Pole
Long-term dynamics of OH * temperatures over central Europe: trends and solar correlations
MIPAS observations of longitudinal oscillations in the mesosphere and the lower thermosphere: climatology of odd-parity daily frequency modes
Neutral atmosphere temperature trends and variability at 90 km, 70 °N, 19 °E, 2003–2014
Response of OH airglow emissions to mesospheric gravity waves and comparisons with full-wave model simulation at a low-latitude Indian station
First continuous ground-based observations of long period oscillations in the vertically resolved wind field of the stratosphere and mesosphere
Semi-annual oscillation (SAO) of the nighttime ionospheric D region as detected through ground-based VLF receivers
Meteor radar quasi 2-day wave observations over 10 years at Collm (51.3° N, 13.0° E)
Observations of planetary waves in the mesosphere-lower thermosphere during stratospheric warming events
Evidence for tropospheric wind shear excitation of high-phase-speed gravity waves reaching the mesosphere using the ray-tracing technique
The quasi 16-day wave in mesospheric water vapor during boreal winter 2011/2012
Quantification of waves in lidar observations of noctilucent clouds at scales from seconds to minutes
Natalie Kaifler, Bernd Kaifler, Markus Rapp, Guiping Liu, Diego Janches, Gerd Baumgarten, and Jose-Luis Hormaechea
EGUsphere, https://doi.org/10.5194/egusphere-2024-2318, https://doi.org/10.5194/egusphere-2024-2318, 2024
Short summary
Short summary
Noctilucent clouds (NLC) are silvery clouds that can be viewed during twilight and indicate atmospheric conditions like temperature and water vapor in the upper mesosphere. High-resolution measurements from a remote-sensing laser instrument provide NLC height, brightness and occurrence rate since 2017. Most observations occur in the morning hours, likely caused by strong tidal winds, and NLC ice particles are thus transported from elsewhere to the observing location in the southern hemisphere.
Qinzeng Li, Jiyao Xu, Aditya Riadi Gusman, Hanli Liu, Wei Yuan, Weijun Liu, Yajun Zhu, and Xiao Liu
Atmos. Chem. Phys., 24, 8343–8361, https://doi.org/10.5194/acp-24-8343-2024, https://doi.org/10.5194/acp-24-8343-2024, 2024
Short summary
Short summary
The 2022 Hunga Tonga–Hunga Ha’apai (HTHH) volcanic eruption not only triggered broad-spectrum atmospheric waves but also generated unusual tsunamis which can generate atmospheric gravity waves (AGWs). Multiple strong atmospheric waves were observed in the far-field area of the 2022 HTHH volcano eruption in the upper atmosphere by a ground-based airglow imager network. AGWs caused by tsunamis can propagate to the mesopause region; there is a good match between atmospheric waves and tsunamis.
Klemens Hocke, Wenyue Wang, and Guanyi Ma
Atmos. Chem. Phys., 24, 5837–5846, https://doi.org/10.5194/acp-24-5837-2024, https://doi.org/10.5194/acp-24-5837-2024, 2024
Short summary
Short summary
We find a sudden stratospheric warming (SSW) effect in the F2 critical frequency (foF2) series for Okinawa. Across 29 SSW events, the amplitude of the semidiurnal cycle of foF2 peaks at the SSW onset in the SSW years. In these years, we find, for the first time, a lunar terdiurnal component with a relative amplitude of about 5 %, and lunar diurnal and semidiurnal components have relative amplitudes of about 10 %. The periods of lunar ionospheric tidal variations align with those of ocean tides.
Gunter Stober, Sharon L. Vadas, Erich Becker, Alan Liu, Alexander Kozlovsky, Diego Janches, Zishun Qiao, Witali Krochin, Guochun Shi, Wen Yi, Jie Zeng, Peter Brown, Denis Vida, Neil Hindley, Christoph Jacobi, Damian Murphy, Ricardo Buriti, Vania Andrioli, Paulo Batista, John Marino, Scott Palo, Denise Thorsen, Masaki Tsutsumi, Njål Gulbrandsen, Satonori Nozawa, Mark Lester, Kathrin Baumgarten, Johan Kero, Evgenia Belova, Nicholas Mitchell, Tracy Moffat-Griffin, and Na Li
Atmos. Chem. Phys., 24, 4851–4873, https://doi.org/10.5194/acp-24-4851-2024, https://doi.org/10.5194/acp-24-4851-2024, 2024
Short summary
Short summary
On 15 January 2022, the Hunga Tonga-Hunga Ha‘apai volcano exploded in a vigorous eruption, causing many atmospheric phenomena reaching from the surface up to space. In this study, we investigate how the mesospheric winds were affected by the volcanogenic gravity waves and estimated their propagation direction and speed. The interplay between model and observations permits us to gain new insights into the vertical coupling through atmospheric gravity waves.
Juliana Jaen, Toralf Renkwitz, Huixin Liu, Christoph Jacobi, Robin Wing, Aleš Kuchař, Masaki Tsutsumi, Njål Gulbrandsen, and Jorge L. Chau
Atmos. Chem. Phys., 23, 14871–14887, https://doi.org/10.5194/acp-23-14871-2023, https://doi.org/10.5194/acp-23-14871-2023, 2023
Short summary
Short summary
Investigation of winds is important to understand atmospheric dynamics. In the summer mesosphere and lower thermosphere, there are three main wind flows: the mesospheric westward, the mesopause southward (equatorward), and the lower-thermospheric eastward wind. Combining almost 2 decades of measurements from different radars, we study the trend, their interannual oscillations, and the effects of the geomagnetic activity over these wind maxima.
Jan Laštovička
Atmos. Chem. Phys., 23, 5783–5800, https://doi.org/10.5194/acp-23-5783-2023, https://doi.org/10.5194/acp-23-5783-2023, 2023
Short summary
Short summary
Increasing concentration of greenhouse gases, particularly of CO2, in the atmosphere causes well-known heating of the troposphere and surface. However, the increasing concentration of CO2 also affects higher levels of the atmosphere, the stratosphere, mesosphere, thermosphere, and ionosphere, where it results in remarkable long-term trends. This article reviews significant progress in investigations of long-term trends in the mesosphere, thermosphere, and ionosphere during the period 2018–2022.
Cornelius Csar Jude H. Salinas, Dong L. Wu, Jae N. Lee, Loren C. Chang, Liying Qian, and Hanli Liu
Atmos. Chem. Phys., 23, 1705–1730, https://doi.org/10.5194/acp-23-1705-2023, https://doi.org/10.5194/acp-23-1705-2023, 2023
Short summary
Short summary
Upper mesospheric carbon monoxide's (CO) photochemical lifetime is longer than dynamical timescales. This work uses satellite observations and model simulations to establish that the migrating diurnal tide and its seasonal and interannual variabilities drive CO primarily through vertical advection. Vertical advection is a transport process that is currently difficult to observe. This work thus shows that we can use CO as a tracer for vertical advection across seasonal and interannual timescales.
Sabine Wüst, Michael Bittner, Patrick J. Espy, W. John R. French, and Frank J. Mulligan
Atmos. Chem. Phys., 23, 1599–1618, https://doi.org/10.5194/acp-23-1599-2023, https://doi.org/10.5194/acp-23-1599-2023, 2023
Short summary
Short summary
Ground-based OH* airglow measurements have been carried out for almost 100 years. Advanced detector technology has greatly simplified the automatic operation of OH* airglow observing instruments and significantly improved the temporal and/or spatial resolution. Studies based on long-term measurements or including a network of instruments are reviewed, especially in the context of deriving gravity wave properties. Scientific and technical challenges for the next few years are described.
Natalie Kaifler, Bernd Kaifler, Markus Rapp, and David C. Fritts
Atmos. Chem. Phys., 23, 949–961, https://doi.org/10.5194/acp-23-949-2023, https://doi.org/10.5194/acp-23-949-2023, 2023
Short summary
Short summary
We used a lidar to measure polar mesospheric clouds from a balloon floating in the upper stratosphere. The thin-layered ice clouds at 83 km altitude are perturbed by waves. The high-resolution lidar soundings reveal small-scale structures induced by the breaking of those waves. We study these patterns and find that they occur very often. We show their morphology and discuss associated dynamical physical processes, which help to interpret case studies and to guide modelling.
Prosper K. Nyassor, Cristiano M. Wrasse, Igo Paulino, Eliah F. M. T. São Sabbas, José V. Bageston, Kleber P. Naccarato, Delano Gobbi, Cosme A. O. B. Figueiredo, Toyese T. Ayorinde, Hisao Takahashi, and Diego Barros
Atmos. Chem. Phys., 22, 15153–15177, https://doi.org/10.5194/acp-22-15153-2022, https://doi.org/10.5194/acp-22-15153-2022, 2022
Short summary
Short summary
This work investigates the sources of concentric gravity waves (CGWs) excited by a moving system of clouds with several overshooting regions on 1–2 October 2019 at São Martinho da Serra. The parameters of these waves were estimated using 2D spectral analysis and their source locations identified using backward ray tracing. Furthermore, the sources of these waves were properly identified by tracking the individual overshooting regions in space and time since the system of clouds was moving.
Qinzeng Li, Jiyao Xu, Hanli Liu, Xiao Liu, and Wei Yuan
Atmos. Chem. Phys., 22, 12077–12091, https://doi.org/10.5194/acp-22-12077-2022, https://doi.org/10.5194/acp-22-12077-2022, 2022
Short summary
Short summary
We use ground-based airglow network observations, reanalysis data, and satellite observations to explore the propagation process of concentric gravity waves (CGWs) excited by a typhoon between the troposphere, stratosphere, mesosphere, and thermosphere. We find that CGWs in the mesosphere are generated directly by the typhoon but the CGW observed in the thermosphere may be excited by CGW dissipation in the mesosphere, rather than directly excited by a typhoon and propagated to the thermosphere.
Gunter Stober, Ales Kuchar, Dimitry Pokhotelov, Huixin Liu, Han-Li Liu, Hauke Schmidt, Christoph Jacobi, Kathrin Baumgarten, Peter Brown, Diego Janches, Damian Murphy, Alexander Kozlovsky, Mark Lester, Evgenia Belova, Johan Kero, and Nicholas Mitchell
Atmos. Chem. Phys., 21, 13855–13902, https://doi.org/10.5194/acp-21-13855-2021, https://doi.org/10.5194/acp-21-13855-2021, 2021
Short summary
Short summary
Little is known about the climate change of wind systems in the mesosphere and lower thermosphere at the edge of space at altitudes from 70–110 km. Meteor radars represent a well-accepted remote sensing technique to measure winds at these altitudes. Here we present a state-of-the-art climatological interhemispheric comparison using continuous and long-lasting observations from worldwide distributed meteor radars from the Arctic to the Antarctic and sophisticated general circulation models.
Manfred Ern, Mohamadou Diallo, Peter Preusse, Martin G. Mlynczak, Michael J. Schwartz, Qian Wu, and Martin Riese
Atmos. Chem. Phys., 21, 13763–13795, https://doi.org/10.5194/acp-21-13763-2021, https://doi.org/10.5194/acp-21-13763-2021, 2021
Short summary
Short summary
Details of the driving of the semiannual oscillation (SAO) of the tropical winds in the middle atmosphere are still not known. We investigate the SAO and its driving by small-scale gravity waves (GWs) using satellite data and different reanalyses. In a large altitude range, GWs mainly drive the SAO westerlies, but in the upper mesosphere GWs seem to drive both SAO easterlies and westerlies. Reanalyses reproduce some features of the SAO but are limited by model-inherent damping at upper levels.
Fabio Vargas, Jorge L. Chau, Harikrishnan Charuvil Asokan, and Michael Gerding
Atmos. Chem. Phys., 21, 13631–13654, https://doi.org/10.5194/acp-21-13631-2021, https://doi.org/10.5194/acp-21-13631-2021, 2021
Short summary
Short summary
We study large- and small-scale gravity wave cases observed in both airglow imagery and meteor radar data obtained during the SIMONe campaign carried out in early November 2018. We calculate the intrinsic features of several waves and estimate their impact in the mesosphere and lower thermosphere region via transferring energy and momentum to the atmosphere. We also associate cases of large-scale waves with secondary wave generation in the stratosphere.
Bingkun Yu, Xianghui Xue, Christopher J. Scott, Jianfei Wu, Xinan Yue, Wuhu Feng, Yutian Chi, Daniel R. Marsh, Hanli Liu, Xiankang Dou, and John M. C. Plane
Atmos. Chem. Phys., 21, 4219–4230, https://doi.org/10.5194/acp-21-4219-2021, https://doi.org/10.5194/acp-21-4219-2021, 2021
Short summary
Short summary
A long-standing mystery of metal ions within Es layers in the Earth's upper atmosphere is the marked seasonal dependence, with a summer maximum and a winter minimum. We report a large-scale winter-to-summer transport of metal ions from 6-year multi-satellite observations and worldwide ground-based stations. A global atmospheric circulation is responsible for the phenomenon. Our results emphasise the effect of this atmospheric circulation on the transport of composition in the upper atmosphere.
Viswanathan Lakshmi Narayanan, Satonori Nozawa, Shin-Ichiro Oyama, Ingrid Mann, Kazuo Shiokawa, Yuichi Otsuka, Norihito Saito, Satoshi Wada, Takuya D. Kawahara, and Toru Takahashi
Atmos. Chem. Phys., 21, 2343–2361, https://doi.org/10.5194/acp-21-2343-2021, https://doi.org/10.5194/acp-21-2343-2021, 2021
Short summary
Short summary
In the past, additional sodium peaks occurring above the main sodium layer of the upper mesosphere were discussed. Here, formation of an additional sodium peak below the main sodium layer peak is discussed in detail. The event coincided with passage of multiple mesospheric bores, which are step-like disturbances occurring in the upper mesosphere. Hence, this work highlights the importance of such mesospheric bores in causing significant changes to the minor species concentration in a short time.
Xiao Liu, Jiyao Xu, Jia Yue, and Hanli Liu
Atmos. Chem. Phys., 20, 14437–14456, https://doi.org/10.5194/acp-20-14437-2020, https://doi.org/10.5194/acp-20-14437-2020, 2020
Short summary
Short summary
Large wind shears in the mesosphere and lower thermosphere are recognized as a common phenomenon. Simulation and ground-based observations show that the main contributor of large wind shears is gravity waves. We present a method of deriving wind shears induced by gravity waves according to the linear theory and using the global temperature observations by SABER (Sounding of the Atmosphere using Broadband Emission Radiometry). Our results agree well with observations and model simulations.
Gunter Stober, Kathrin Baumgarten, John P. McCormack, Peter Brown, and Jerry Czarnecki
Atmos. Chem. Phys., 20, 11979–12010, https://doi.org/10.5194/acp-20-11979-2020, https://doi.org/10.5194/acp-20-11979-2020, 2020
Short summary
Short summary
This paper presents a first cross-comparison of meteor ground-based observations and a meteorological analysis (NAVGEM-HA) to compare a seasonal climatology of winds and temperatures at the mesosphere/lower thermosphere. The validation is insofar unique as we not only compare the mean state but also provide a detailed comparison of the short time variability of atmospheric tidal waves. Our analysis questions previous results claiming the importance of lunar tides.
W. John R. French, Andrew R. Klekociuk, and Frank J. Mulligan
Atmos. Chem. Phys., 20, 8691–8708, https://doi.org/10.5194/acp-20-8691-2020, https://doi.org/10.5194/acp-20-8691-2020, 2020
Short summary
Short summary
We explore a quasi-quadrennial oscillation (QQO; 3–4 K amplitude, ~ 4-year period) in mesopause region temperatures observed in 24 years of hydroxyl airglow measurements over Davis, Antarctica (68° S, 78° E). Correlation and composite analysis using meteorological reanalysis and satellite data reveals complex patterns on the QQO timescale in both hemispheres. Modulation of the meridional circulation, linked to the propagation of gravity waves, plays a significant role in producing the QQO response.
Jörg Gumbel, Linda Megner, Ole Martin Christensen, Nickolay Ivchenko, Donal P. Murtagh, Seunghyuk Chang, Joachim Dillner, Terese Ekebrand, Gabriel Giono, Arvid Hammar, Jonas Hedin, Bodil Karlsson, Mikael Krus, Anqi Li, Steven McCallion, Georgi Olentšenko, Soojong Pak, Woojin Park, Jordan Rouse, Jacek Stegman, and Georg Witt
Atmos. Chem. Phys., 20, 431–455, https://doi.org/10.5194/acp-20-431-2020, https://doi.org/10.5194/acp-20-431-2020, 2020
Short summary
Short summary
Gravity waves can link together atmospheric conditions over large distances. MATS is a new Swedish satellite that will study gravity waves at altitudes around 80–110 km. MATS will take images of emissions from excited molecules, so-called airglow, and of the highest clouds in our atmosphere, so-called noctilucent clouds. These measurements will be analysed to provide three-dimensional wave structures and a comprehensive picture of wave interactions in the atmosphere.
Yuke Wang, Valerii Shulga, Gennadi Milinevsky, Aleksey Patoka, Oleksandr Evtushevsky, Andrew Klekociuk, Wei Han, Asen Grytsai, Dmitry Shulga, Valery Myshenko, and Oleksandr Antyufeyev
Atmos. Chem. Phys., 19, 10303–10317, https://doi.org/10.5194/acp-19-10303-2019, https://doi.org/10.5194/acp-19-10303-2019, 2019
Short summary
Short summary
The major sudden stratospheric warming (SSW) dramatically changed atmospheric conditions. This event is accompanied by a sharp increase in the polar stratosphere temperature, zonal wind reverse, and strong changes in the polar mesosphere. These changes affect even the midlatitude mesosphere, which is not widely covered by observations. Our newly installed microwave radiometer allowed for studying mesospheric zonal wind and CO variations to understand the SSW 2018 effects at midlatitudes.
Wen Yi, Xianghui Xue, Iain M. Reid, Damian J. Murphy, Chris M. Hall, Masaki Tsutsumi, Baiqi Ning, Guozhu Li, Robert A. Vincent, Jinsong Chen, Jianfei Wu, Tingdi Chen, and Xiankang Dou
Atmos. Chem. Phys., 19, 7567–7581, https://doi.org/10.5194/acp-19-7567-2019, https://doi.org/10.5194/acp-19-7567-2019, 2019
Short summary
Short summary
The seasonal variations in the mesopause densities, especially with regard to its global structure, are still unclear. In this study, we report the climatology of the mesopause density estimated using multiyear observations from nine meteor radars from Arctic to Antarctic latitudes. The results reveal a significant AO and SAO in mesopause density, an asymmetry between the two polar regions and evidence of intraseasonal oscillations (ISOs), perhaps associated with the ISOs of the troposphere.
Sabine Wüst, Carsten Schmidt, Patrick Hannawald, Michael Bittner, Martin G. Mlynczak, and James M. Russell III
Atmos. Chem. Phys., 19, 6401–6418, https://doi.org/10.5194/acp-19-6401-2019, https://doi.org/10.5194/acp-19-6401-2019, 2019
Short summary
Short summary
In winter 2016, the camera system FAIM derived information about the OH* airglow at ca. 86 km height during six flights on board the research aircraft FALCON in northern Scandinavia. Coincident ground- and satellite-based measurements (GRIPS and TIMED-SABER) complete the data set. The data are analysed with respect to the temporal and spatial evolution of small-scale atmospheric dynamics just before a minor stratospheric warming. Special emphasis is placed on possible instability features.
Maosheng He and Jorge Luis Chau
Atmos. Chem. Phys., 19, 5993–6006, https://doi.org/10.5194/acp-19-5993-2019, https://doi.org/10.5194/acp-19-5993-2019, 2019
Short summary
Short summary
We propose an approach to resolve waves with multiple spatial scales at a given frequency using ground-based detectors from few longitudinal sectors. The approach is used to investigate near-12 h waves. Results suggest that broadly reported enhancements of two solar nonmigrating tides during sudden stratospheric warming events are just low-frequency-resolved signatures of two neighboring waves. The tides do not enhance.
Dimitry Pokhotelov, Gunter Stober, and Jorge Luis Chau
Atmos. Chem. Phys., 19, 5251–5258, https://doi.org/10.5194/acp-19-5251-2019, https://doi.org/10.5194/acp-19-5251-2019, 2019
Short summary
Short summary
Twelve years of radar observations from a mid-latitude location in Kühlungsborn, Germany have been analysed to study characteristics of mesospheric summer echoes (MSEs). The statistical analysis shows that MSEs have a strong daytime preference and early summer seasonal preference. It is demonstrated that the meridional wind transport from polar regions is the important controlling factor for MSEs, while no clear connection to geomagnetic and solar activity is found.
Nikoloz Gudadze, Gunter Stober, and Jorge L. Chau
Atmos. Chem. Phys., 19, 4485–4497, https://doi.org/10.5194/acp-19-4485-2019, https://doi.org/10.5194/acp-19-4485-2019, 2019
Short summary
Short summary
We show a possibility of measuring mean vertical winds during the summer months using polar mesosphere summer echo (PMSE) observations. Middle Atmosphere Alomar Radar System observations of PMSE five-beam radial velocities are analysed to obtain the results. We found that sampling issues are the reason for bias in vertical wind measurements at the edges of PMSE altitudes. However, the PMSE is a good tracer for the mean vertical wind estimation at the central altitudes with its peak occurrence.
Xianchang Yue, Jonathan S. Friedman, Qihou Zhou, Xiongbin Wu, and Jens Lautenbach
Atmos. Chem. Phys., 19, 3207–3221, https://doi.org/10.5194/acp-19-3207-2019, https://doi.org/10.5194/acp-19-3207-2019, 2019
Short summary
Short summary
Using 11 years of lidar temperature data, the seasonal variations (SVs) of gravity waves (GWs) are addressed in the tropical mesopause region, shown to be clearly associated with the SVs of zonal winds reported in the literature. The SVs of GWs are determined by the filtering effect of the local background wind. The altitudes of GW potential energy have a close relation to the upper mesospheric temperature inversion layers (TILs), which provides support for the formation mechanism of TILs.
Robert Menke, Nikola Vasiljević, Jakob Mann, and Julie K. Lundquist
Atmos. Chem. Phys., 19, 2713–2723, https://doi.org/10.5194/acp-19-2713-2019, https://doi.org/10.5194/acp-19-2713-2019, 2019
Short summary
Short summary
This research utilizes several months of lidar measurements from the Perdigão 2017 campaign to investigate flow recirculation zones that occur at the two parallel ridges at the measurement site in Portugal. We found that recirculation occurs in over 50 % of the time when the wind direction is perpendicular to the direction of the ridges. Moreover, we show three-dimensional changes of the zones along the ridges and the implications of recirculation on wind turbines that are operating downstream.
Christian von Savigny, Dieter H. W. Peters, and Günter Entzian
Atmos. Chem. Phys., 19, 2079–2093, https://doi.org/10.5194/acp-19-2079-2019, https://doi.org/10.5194/acp-19-2079-2019, 2019
Short summary
Short summary
This study investigates solar effects in radio reflection height observations in the ionospheric D region at an altitude of about 80 km at northern midlatitudes. The analyzed time series covers almost six solar cycles. Statistically significant solar 27-day and 11-year signatures are identified. However, the driving mechanisms are not fully understood. We also provide evidence for dynamical effects on the radio reflection heights with periods close to the solar rotational cycle.
Yuta Hozumi, Akinori Saito, Takeshi Sakanoi, Atsushi Yamazaki, and Keisuke Hosokawa
Atmos. Chem. Phys., 18, 16399–16407, https://doi.org/10.5194/acp-18-16399-2018, https://doi.org/10.5194/acp-18-16399-2018, 2018
Short summary
Short summary
Spatial structures of wave disturbances in the upper atmosphere were investigated with space-borne imaging from the International Space Station. The wave disturbance occurred around an altitude of 100 km, and is called a mesospheric bore. The large-scale structure of mesospheric bores has not been fully captured by previous ground-based imagers, but the space-borne imaging captured a bore with a wide field of view, and showed that bores can have a large undulating wave front as long as 2000 km.
Michael Gerding, Jochen Zöllner, Marius Zecha, Kathrin Baumgarten, Josef Höffner, Gunter Stober, and Franz-Josef Lübken
Atmos. Chem. Phys., 18, 15569–15580, https://doi.org/10.5194/acp-18-15569-2018, https://doi.org/10.5194/acp-18-15569-2018, 2018
Short summary
Short summary
We describe the first comparative study of noctilucent clouds (NLCs) and mesospheric summer echoes at midlatitudes. Therefore, this study compares fresh clouds (small particles) with fully evolved clouds in the mesosphere, hinting at their evolution. It is shown that, in contrast to higher latitudes, here only a thin layer of fresh particles exist above the NLCs. This gives evidence that NLCs are not formed locally but are typically advected. This needs to be acknowledged in trend studies.
Martin Lainer, Klemens Hocke, and Niklaus Kämpfer
Atmos. Chem. Phys., 18, 12061–12074, https://doi.org/10.5194/acp-18-12061-2018, https://doi.org/10.5194/acp-18-12061-2018, 2018
Short summary
Short summary
A long continuous record (in total 7 years) of middle atmospheric water vapor at the midlatitude NDACC station in Bern is investigated to study quasi 2-day wave oscillations (Q2DWs). We present monthly climatologies of the wave amplitudes and show the periods that the Q2DWs developed. What we observe is very-high-frequency variability. An autobicoherence analysis revealed nonlinear phase couplings between Q2DWs and other atmospheric waves. Our results are useful for model validation purposes.
Tao Li, Chao Ban, Xin Fang, Jing Li, Zhaopeng Wu, Wuhu Feng, John M. C. Plane, Jiangang Xiong, Daniel R. Marsh, Michael J. Mills, and Xiankang Dou
Atmos. Chem. Phys., 18, 11683–11695, https://doi.org/10.5194/acp-18-11683-2018, https://doi.org/10.5194/acp-18-11683-2018, 2018
Short summary
Short summary
A total of 154 nights of observations by the USTC Na temperature and wind lidar (32° N, 117° E) suggest significant seasonal variability in the mesopause. Chemistry plays an important role in Na atom formation. More than half of the observed gravity wave (GW) momentum flux (MF), whose divergence determines the GW forcing, is induced by short-period (10 min–2 h) waves. The anticorrelation between MF and zonal wind (U) suggests strong filtering of short-period GWs by semiannual oscillation U.
Jorge L. Chau, Derek McKay, Juha P. Vierinen, Cesar La Hoz, Thomas Ulich, Markku Lehtinen, and Ralph Latteck
Atmos. Chem. Phys., 18, 9547–9560, https://doi.org/10.5194/acp-18-9547-2018, https://doi.org/10.5194/acp-18-9547-2018, 2018
Short summary
Short summary
Combining a phased-array power radar and a phased-array radio telescope, we have been able to identify and characterized horizontal structures and movement of noctilucent clouds, but at 3 m scales instead of optical scales. As a byproduct of our observations, we have studied their angular dependence. We show a new alternative to study these clouds on routine basis and therefore study the atmospheric dynamics that modulate them.
Gunter Stober, Svenja Sommer, Carsten Schult, Ralph Latteck, and Jorge L. Chau
Atmos. Chem. Phys., 18, 6721–6732, https://doi.org/10.5194/acp-18-6721-2018, https://doi.org/10.5194/acp-18-6721-2018, 2018
Kathrin Baumgarten, Michael Gerding, Gerd Baumgarten, and Franz-Josef Lübken
Atmos. Chem. Phys., 18, 371–384, https://doi.org/10.5194/acp-18-371-2018, https://doi.org/10.5194/acp-18-371-2018, 2018
Short summary
Short summary
Gravity waves (GWs) as well as solar tides are a key driving mechanism for the circulation in the Earth's atmosphere. The temporal variation of these waves is studied using a record long 10-day continuous Rayleigh–Mie–Raman lidar sounding at midlatitudes. This data set shows a large variability of these waves on timescales of a few days and therefore provides new insights into wave intermittency phenomena, which can help to improve model simulations.
Martin Lainer, Klemens Hocke, Rolf Rüfenacht, and Niklaus Kämpfer
Atmos. Chem. Phys., 17, 14905–14917, https://doi.org/10.5194/acp-17-14905-2017, https://doi.org/10.5194/acp-17-14905-2017, 2017
Short summary
Short summary
We report on middle-atmospheric water vapor measurements above Bern from the ground-based microwave radiometer MIAWARA (NDACC affiliated) during two winter periods of 6 months. Quasi 18 h oscillations of mesospheric water vapor above 0.1 hPa are observed. Further, the 18 h wave is seen in a zonal wind data set from the Doppler wind radiometer WIRA. Inertia-gravity-wave-induced fluctuations or a nonlinear coupling between tides and quasi 2-day waves are considered as possible drivers.
Jens Hildebrand, Gerd Baumgarten, Jens Fiedler, and Franz-Josef Lübken
Atmos. Chem. Phys., 17, 13345–13359, https://doi.org/10.5194/acp-17-13345-2017, https://doi.org/10.5194/acp-17-13345-2017, 2017
Short summary
Short summary
We present altitude profiles of winds and temperatures in the Arctic strato- and mesosphere obtained during three Januaries. The data show large year-to-year variations. We compare the observations to model data. For monthly mean profiles we find good agreement below 55 km altitude but also differences of up to 20 K and 20 m s-1 above. The fluctuations during single nights indicate gravity waves. The kinetic energy of such waves is typically 5 to 10 times larger than their potential energy.
Dhvanit Mehta, Andrew J. Gerrard, Yusuke Ebihara, Allan T. Weatherwax, and Louis J. Lanzerotti
Atmos. Chem. Phys., 17, 911–919, https://doi.org/10.5194/acp-17-911-2017, https://doi.org/10.5194/acp-17-911-2017, 2017
Short summary
Short summary
This paper presents an investigation into the sources of atmospheric gravity waves observed at 90 km above Amundsen-Scott South Pole Station, Antarctica. By combining gravity wave characteristics obtained from imager data and a numerical model for 3-D wave propagation through the atmosphere, we find that the development of baroclinic instabilities via displacement of the polar vortex is a significant and unique source of vertically propagating, short-period (< 1 h) gravity waves in the region.
Christoph Kalicinsky, Peter Knieling, Ralf Koppmann, Dirk Offermann, Wolfgang Steinbrecht, and Johannes Wintel
Atmos. Chem. Phys., 16, 15033–15047, https://doi.org/10.5194/acp-16-15033-2016, https://doi.org/10.5194/acp-16-15033-2016, 2016
Short summary
Short summary
The analysis of temperatures in the mesopause region between 1988 to 2015 shows, besides the known correlation with the 11-year solar activity cycle, a trend reversal in 2008 that can be described by a long-term oscillation. Understanding such long periodic oscillations in the atmosphere is of prime importance for climate modelling and predictions of future trends.
Maya García-Comas, Francisco González-Galindo, Bernd Funke, Angela Gardini, Aythami Jurado-Navarro, Manuel López-Puertas, and William E. Ward
Atmos. Chem. Phys., 16, 11019–11041, https://doi.org/10.5194/acp-16-11019-2016, https://doi.org/10.5194/acp-16-11019-2016, 2016
Short summary
Short summary
In this paper, for the first time, temperature longitudinal oscillations are derived from 20 to 150 km from a single instrument. A climatology of amplitudes and phases of zonal waves with odd daily frequencies is presented on a global scale. The interannual variability in amplitudes of the migrating modes shows a QBO in the MLT, which is probably originated in the stratosphere. The results are useful for testing general circulation models considering tidal effects in the MLT region.
Silje Eriksen Holmen, Chris M. Hall, and Masaki Tsutsumi
Atmos. Chem. Phys., 16, 7853–7866, https://doi.org/10.5194/acp-16-7853-2016, https://doi.org/10.5194/acp-16-7853-2016, 2016
Short summary
Short summary
Atmospheric temperatures at 90 km height above Tromsø, Norway, from 2003 to 2014 have been determined using meteor radar. Periodic oscillations ranging from ~ 9 days to a year were found in the dataset, which were related to the large-scale circulation in the middle atmosphere and with wave activity. A trend analysis was performed, revealing an overall weak cooling trend from 2003 to 2014, which is in line with other recent studies on mesopause region (~ 90 km) temperature trends.
Rupesh N. Ghodpage, Michael P. Hickey, Alok K. Taori, Devendraa Siingh, and Parashram T. Patil
Atmos. Chem. Phys., 16, 5611–5621, https://doi.org/10.5194/acp-16-5611-2016, https://doi.org/10.5194/acp-16-5611-2016, 2016
Short summary
Short summary
Gravity-wave-induced oscillations have been characterized over Kolhapur (16.8°N and 74.2°E), India, using the adiabatic variations in OH airglow intensity and temperature data. The results show that there exist large deviations from one investigation to the other. We also use a full-wave model to simulate the response of OH emission to the wave motion and compare the results with observed values. This report discusses the observed wave characteristics and cause of the noted difference.
Rolf Rüfenacht, Klemens Hocke, and Niklaus Kämpfer
Atmos. Chem. Phys., 16, 4915–4925, https://doi.org/10.5194/acp-16-4915-2016, https://doi.org/10.5194/acp-16-4915-2016, 2016
Short summary
Short summary
We quantitatively analyze oscillations with periods from 5 to 50 days in horizontal wind profiles between mid-stratosphere and mesopause based on more than 44 months of data from high, mid- and low latitudes measured by a novel instrument. For the first time, long time series of continuous wind measurements allow direct observations of dynamics throughout this altitude range. The observations agree remarkably well with the ECMWF model in the stratosphere but discrepancies exist in the mesosphere.
Israel Silber, Colin Price, and Craig J. Rodger
Atmos. Chem. Phys., 16, 3279–3288, https://doi.org/10.5194/acp-16-3279-2016, https://doi.org/10.5194/acp-16-3279-2016, 2016
Short summary
Short summary
We report for the first time that the semi-annual oscillation (SAO) is one of the dominant oscillations in the nighttime lower ionosphere, using ground-based measurements of VLF signals reflected off the lower part of the ionosphere. We conclude that the origins of this oscillation are oscillatory changes of the D region's electrical characteristics, driven by NOx transport from the lower thermosphere. This oscillation should be considered in lower ionospheric and VLF wave propagation models.
F. Lilienthal and Ch. Jacobi
Atmos. Chem. Phys., 15, 9917–9927, https://doi.org/10.5194/acp-15-9917-2015, https://doi.org/10.5194/acp-15-9917-2015, 2015
Short summary
Short summary
The quasi 2-day wave (QTDW), one of the most striking features in the mesosphere/lower thermosphere, is analyzed using meteor radar measurements at Collm (51°N, 13°E) during 2004-2014. The QTDW has periods lasting between 43 and 52h during strong summer bursts, and weaker enhancements are found during winter. A correlation between QTDW amplitudes and wind shear suggests baroclinic instability to be a likely forcing mechanism.
N. H. Stray, Y. J. Orsolini, P. J. Espy, V. Limpasuvan, and R. E. Hibbins
Atmos. Chem. Phys., 15, 4997–5005, https://doi.org/10.5194/acp-15-4997-2015, https://doi.org/10.5194/acp-15-4997-2015, 2015
Short summary
Short summary
Planetary wave activity measured in the mesosphere to lower thermosphere is shown to increase drastically after strong stratospheric polar cap wind reversals associated with sudden stratospheric warmings. In addition, a moderate but significant correlation was found between planetary wave enhancement in the mesosphere to lower thermosphere and all stratospheric polar cap wind reversals, irrespective of the strength of the reversal.
M. Pramitha, M. Venkat Ratnam, A. Taori, B. V. Krishna Murthy, D. Pallamraju, and S. Vijaya Bhaskar Rao
Atmos. Chem. Phys., 15, 2709–2721, https://doi.org/10.5194/acp-15-2709-2015, https://doi.org/10.5194/acp-15-2709-2015, 2015
Short summary
Short summary
Sources and propagation characteristics of high-frequency gravity waves observed in the mesosphere using airglow emissions from Gadanki and Hyderabad, India, are investigated using reverse ray tracing. Wave amplitudes are also traced back, including both radiative and diffusive damping. Interestingly, large vertical shears in the horizontal wind are noticed near the ray terminal points (at 10-12km altitude) and are thus identified to be the source for generating the observed gravity waves.
D. Scheiben, B. Tschanz, K. Hocke, N. Kämpfer, S. Ka, and J. J. Oh
Atmos. Chem. Phys., 14, 6511–6522, https://doi.org/10.5194/acp-14-6511-2014, https://doi.org/10.5194/acp-14-6511-2014, 2014
N. Kaifler, G. Baumgarten, J. Fiedler, and F.-J. Lübken
Atmos. Chem. Phys., 13, 11757–11768, https://doi.org/10.5194/acp-13-11757-2013, https://doi.org/10.5194/acp-13-11757-2013, 2013
Cited articles
Baggaley, W. J.: Radar observations, Cambridge University Press, Cambridge,
2002. a
Carrillo-Sánchez, J. D., Plane, J. M. C., Feng, W., Nesvornỳ, D., and
Janches, D.: On the size and velocity distribution of cosmic dust particles
entering the atmosphere, Geophys. Res. Lett., 42, 6518–6525, 2015.
Carrillo-Sánchez, J. D., Nesvornỳ, D., Pokornỳ, P., Janches, D.,
and Plane, J. M. C.: Sources of cosmic dust in the Earth's atmosphere,
Geophys. Res. Lett., 43, 11979–11986, https://doi.org/10.1002/2016GL071697, 2016. a
Carter, L. N. and Forbes, J. M.: Global transport and localized layering of
metallic ions in the upper atmosphere, Ann. Geophys., 17, 190–209, 1999. a
Ceplecha, Z., Borovička, J., Elford, W. G., ReVelle, D. O., Hawkes,
R. L., Porubčan, V., and Šimek, M.: Meteor phenomena and bodies,
Space Sci. Rev., 84, 327–471, 1998. a
Chu, Y.-H. and Wang, C.-Y.: Interferometry observations of three-dimensional
spatial structures of sporadic E irregularities using the Chung-Li VHF radar,
Radio Sci., 32, 817–832, 1997. a
Chu, Y.-H., Brahmanandam, P. S., Wang, C.-Y., Su, C.-L., and Kuong, R.-M.:
Coordinated sporadic E layer observations made with Chung-Li 30 MHz radar,
ionosonde and FORMOSAT-3/COSMIC satellites, J. Atmos. Sol.-Terr. Phy., 73, 883–894, 2011. a
Davis, C. J. and Johnson, C. G.: Lightning-induced intensification of the
ionospheric sporadic E layer, Nature, 435, 799–801, https://doi.org/10.1038/nature03638, 2005. a
Farley, D. T.: Theory of equatorial electrojet plasma waves-new developments
and current status, J. Atmos. Terr. Phys., 47,
729–744, 1985. a
Feng, W., Marsh, D. R., Chipperfield, M. P., Janches, D., Höffner, J., Yi,
F., and Plane, J. M. C.: A global atmospheric model of meteoric iron, J. Geophys. Res.-Atmos., 118, 9456–9474, 2013. a
Grebowsky, J. M. and Aikin, A.: In situ measurements of meteoric ions, in:
Meteors in the Earth's Atmosphere, edited by: Murad, E. and Williams, I. P.,
189–214, Cambridge Univ. Press, UK, 2002. a
Haldoupis, C., Pancheva, D., Singer, W., Meek, C., and MacDougall, J.: An
explanation for the seasonal dependence of midlatitude sporadic E layers,
J. Geophys. Res.-Space, 112, A06315, https://doi.org/10.1029/2007JA012322, 2007. a, b, c, d
Hocke, K. and Tsuda, T.: Gravity waves and ionospheric irregularities over
tropical convection zones observed by GPS/MET radio occultation, Geophys. Res. Lett., 28, 2815–2818, 2001. a
Janches, D., Pellinen-Wannberg, A., Wannberg, G., Westman, A.,
Häggström, I., and Meisel, D. D.: Tristatic observations of meteors
using the 930 MHz European Incoherent Scatter radar system, J. Geophys. Res.-Space, 107, 14–1, https://doi.org/10.1029/2001JA009205, 2002. a
Janches, D., Heinselman, C. J., Chau, J. L., Chandran, A., and Woodman, R.:
Modeling the global micrometeor input function in the upper atmosphere
observed by high power and large aperture radars, J. Geophys. Res.-Space, 111, A07317, https://doi.org/10.1029/2006JA011628, 2006. a
Johnson, C. G. and Davis, C. J.: The location of lightning affecting the
ionospheric sporadic-E layer as evidence for multiple enhancement mechanisms,
Geophys. Res. Lett., 33, L07811, https://doi.org/10.1029/2005GL025294, 2006. a
Johnson, F. S., Hanson, W. B., Hodges, R. R., Coley, W. R., Carignan, G. R.,
and Spencer, N. W.: Gravity waves near 300 km over the polar caps, J. Geophys. Res.-Space, 100, 23993–24002, 1995. a
Kelley, M. C.: The Earth's Ionosphere, Int. Geophys. Ser., 43, 71, Academic,
San Diego, Calif., 1989. a
Kirkwood, S. and Nilsson, H.: High-latitude sporadic-E and other thin
layers–the role of magnetospheric electric fields, Space Sci. Rev.,
91, 579–613, 2000. a
Ko, C. P. and Yeh, H. C.: COSMIC/FORMOSAT-3 observations of equatorial F region
irregularities in the SAA longitude sector, J. Geophys. Res.-Space, 115, A11309, https://doi.org/10.1029/2010JA015618, 2010. a
Kopp, E.: On the abundance of metal ions in the lower ionosphere, J. Geophys. Res.-Space, 102, 9667–9674, 1997. a
Liu, H.-L., McInerney, J. M., Santos, S., Lauritzen, P. H., Taylor, M. A., and
Pedatella, N. M.: Gravity waves simulated by high-resolution whole atmosphere
community climate model, Geophys. Res. Lett., 41, 9106–9112, 2014. a
MacDougall, J. W., Hall, G. E., and Hayashi, K.: F region gravity waves in the
central polar cap, J. Geophys. Res.-Space, 102,
14513–14530, 1997. a
Macleod, M. A.: Sporadic E theory. I. Collision-geomagnetic equilibrium,
J. Atmos. Sci., 23, 96–109, 1966. a
Pavelyev, A. G., Liou, Y. A., Wickert, J., Schmidt, T., Pavelyev, A. A., and
Liu, S.-F.: Effects of the ionosphere and solar activity on radio occultation
signals: Application to CHAllenging Minisatellite Payload satellite
observations, J. Geophys. Res.-Space, 112, A06326, https://doi.org/10.1029/ 2006JA011625, 2007. a
Picone, J. M., Hedin, A. E., Drob, D. P., and Aikin, A. C.: NRLMSISE-00
empirical model of the atmosphere: Statistical comparisons and scientific
issues, J. Geophys. Res.-Space, 107, 1468, https://doi.org/10.1029/2002JA009430, 2002. a
Plane, J. M. C.: A time-resolved model of the mesospheric Na layer:
constraints on the meteor input function, Atmos. Chem. Phys., 4, 627–638,
https://doi.org/10.5194/acp-4-627-2004, 2004. a
Plane, J. M. C.: Cosmic dust in the Earth's atmosphere, Chem. Soc. Rev., 41,
6507–6518, 2012. a
Plane, J. M. C., Feng, W., and Dawkins, E. C. M. D.: The mesosphere and metals:
Chemistry and changes, Chem. Rev., 115, 4497–4541, 2015. a
Schreiner, W., Rocken, C., Sokolovskiy, S., Syndergaard, S., and Hunt, D.:
Estimates of the precision of GPS radio occultations from the
COSMIC/FORMOSAT-3 mission, Geophys. Res. Lett., 34, L04808, https://doi.org/10.1029/2006GL027557, 2007. a
Shinagawa, H., Miyoshi, Y., Jin, H., and Fujiwara, H.: Global distribution of
neutral wind shear associated with sporadic E layers derived from GAIA,
J. Geophys. Res.-Space, 122, 4450–4465, 2017. a
Smith, E. K.: Temperate zone sporadic-E maps (f0Es >7 MHz), Radio Sci.,
13,
571–575, 1978. a
Syndergaard, S., Schreiner, W. S., Rocken, C., Hunt, D. C., and Dymond, K. F.:
Preparing for COSMIC: Inversion and analysis of ionospheric data products,
in: Atmosphere and Climate, edited by: Foelsche, U., Kirchengast, G., and Steiner, A. K., 137–146, Springer, Berlin, 2006. a
Thébault, E., Finlay, C. C., Beggan, C. D., et al.: International
geomagnetic reference field: the 12th generation, Earth Planets Space,
67, 79, https://doi.org/10.1186/s40623-015-0228-9, 2015. a
Tsunoda, R. T.: On blanketing sporadic E and polarization effects near the
equatorial electrojet, J. Geophys. Res.-Space, 113, A09304, https://doi.org/10.1029/2008JA013158, 2008. a
Whitehead, J. D.: Production and prediction of sporadic E, Rev. Geophys., 8, 65–144, 1970. a
Williams, I. P. and Murad, E.: Meteors in the Earth's Atmosphere, Cambridge
University Press, Cambridge, 2002. a
Yu, B., Xue, X., Lu, G., Ma, M., Dou, X., Qie, X., Ning, B., Hu, L., Wu, J.,
and Chi, Y.: Evidence for lightning-associated enhancement of the ionospheric
sporadic E layer dependent on lightning stroke energy, J. Geophys. Res.-Space, 120, 9202–9212, 2015. a
Yue, J., Wang, W., Richmond, A. D., and Liu, H.-L.: Quasi-two-day wave coupling
of the mesosphere and lower thermosphere-ionosphere in the TIME-GCM: Two-day
oscillations in the ionosphere, J. Geophys. Res.-Space, 117, A07305, https://doi.org/10.1029/2012JA017815, 2012. a
Yue, X., Schreiner, W. S., Lei, J., Rocken, C., Hunt, D. C., Kuo, Y.-H., and
Wan, W.: Global ionospheric response observed by COSMIC satellites during the
January 2009 stratospheric sudden warming event, J. Geophys. Res.-Space, 115, A00G09, https://doi.org/10.1029/2010JA015466, 2010. a
Yue, X., Schreiner, W. S., Hunt, D. C., Rocken, C., and Kuo, Y.-H.:
Quantitative evaluation of the low Earth orbit satellite based slant total
electron content determination, Adv. Space Res., 9, S09001, https://doi.org/10.1029/2011SW000687, 2011. a
Yue, X., Schreiner, W. S., Zeng, Z., Kuo, Y.-H., and Xue, X.: Case study on
complex sporadic E layers observed by GPS radio occultations, Atmos.
Meas. Tech., 8, 225–236, https://doi.org/10.5194/amt-8-225-2015, 2015. a, b, c
Zeng, Z. and Sokolovskiy, S.: Effect of sporadic E clouds on GPS radio
occultation signals, Geophys. Res. Lett., 37, L18817, https://doi.org/10.1029/2010GL044561, 2010. a, b, c, d
Short summary
It reports the long-term climatology of the intensity of Es layers from COSMIC satellites. The global Es maps present high-resolution spatial distributions and seasonal dependence. It mainly occurs at mid-latitudes and polar regions. Based on wind shear theory, simulation results indicate the convergence of vertical ion velocity could partially explain the Es seasonal dependence and some disagreements between observations and simulations suggest other processes play roles in the Es variations.
It reports the long-term climatology of the intensity of Es layers from COSMIC satellites. The...
Altmetrics
Final-revised paper
Preprint