Articles | Volume 19, issue 23
Atmos. Chem. Phys., 19, 14917–14932, 2019
https://doi.org/10.5194/acp-19-14917-2019
Atmos. Chem. Phys., 19, 14917–14932, 2019
https://doi.org/10.5194/acp-19-14917-2019
Research article
10 Dec 2019
Research article | 10 Dec 2019

The impact of fluctuations and correlations in droplet growth by collision–coalescence revisited – Part 2: Observational evidence of gel formation in warm clouds

Lester Alfonso et al.

Related authors

Parameterization of the collision–coalescence process using series of basis functions: COLNETv1.0.0 model development using a machine learning approach
Camilo Fernando Rodríguez Genó and Léster Alfonso
Geosci. Model Dev., 15, 493–507, https://doi.org/10.5194/gmd-15-493-2022,https://doi.org/10.5194/gmd-15-493-2022, 2022
Short summary
The impact of fluctuations and correlations in droplet growth by collision–coalescence revisited – Part 1: Numerical calculation of post-gel droplet size distribution
Lester Alfonso and Graciela B. Raga
Atmos. Chem. Phys., 17, 6895–6905, https://doi.org/10.5194/acp-17-6895-2017,https://doi.org/10.5194/acp-17-6895-2017, 2017
Short summary
An algorithm for the numerical solution of the multivariate master equation for stochastic coalescence
L. Alfonso
Atmos. Chem. Phys., 15, 12315–12326, https://doi.org/10.5194/acp-15-12315-2015,https://doi.org/10.5194/acp-15-12315-2015, 2015
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Snowfall in Northern Finland derives mostly from ice clouds
Claudia Mignani, Lukas Zimmermann, Rigel Kivi, Alexis Berne, and Franz Conen
Atmos. Chem. Phys., 22, 13551–13568, https://doi.org/10.5194/acp-22-13551-2022,https://doi.org/10.5194/acp-22-13551-2022, 2022
Short summary
Observation of secondary ice production in clouds at low temperatures
Alexei Korolev, Paul J. DeMott, Ivan Heckman, Mengistu Wolde, Earle Williams, David J. Smalley, and Michael F. Donovan
Atmos. Chem. Phys., 22, 13103–13113, https://doi.org/10.5194/acp-22-13103-2022,https://doi.org/10.5194/acp-22-13103-2022, 2022
Short summary
In situ and satellite-based estimates of cloud properties and aerosol–cloud interactions over the southeast Atlantic Ocean
Siddhant Gupta, Greg M. McFarquhar, Joseph R. O'Brien, Michael R. Poellot, David J. Delene, Ian Chang, Lan Gao, Feng Xu, and Jens Redemann
Atmos. Chem. Phys., 22, 12923–12943, https://doi.org/10.5194/acp-22-12923-2022,https://doi.org/10.5194/acp-22-12923-2022, 2022
Short summary
Ice fog observed at cirrus temperatures at Dome C, Antarctic Plateau
Étienne Vignon, Lea Raillard, Christophe Genthon, Massimo Del Guasta, Andrew J. Heymsfield, Jean-Baptiste Madeleine, and Alexis Berne
Atmos. Chem. Phys., 22, 12857–12872, https://doi.org/10.5194/acp-22-12857-2022,https://doi.org/10.5194/acp-22-12857-2022, 2022
Short summary
Life cycle of stratocumulus clouds over 1 year at the coast of the Atacama Desert
Jan H. Schween, Camilo del Rio, Juan-Luis García, Pablo Osses, Sarah Westbrook, and Ulrich Löhnert
Atmos. Chem. Phys., 22, 12241–12267, https://doi.org/10.5194/acp-22-12241-2022,https://doi.org/10.5194/acp-22-12241-2022, 2022
Short summary

Cited articles

Aldous, D. J.: Deterministic and stochastic models for coalescence (aggregation, coagulation): A review of the mean-field theory for probabilistic, Bernoulli, 5, 3–48, 1999. 
Alfonso, L.: An algorithm for the numerical solution of the multivariate master equation for stochastic coalescence, Atmos. Chem. Phys., 15, 12315–12326, https://doi.org/10.5194/acp-15-12315-2015, 2015. 
Alfonso, L. and Raga, G. B.: The impact of fluctuations and correlations in droplet growth by collision–coalescence revisited – Part 1: Numerical calculation of post-gel droplet size distribution, Atmos. Chem. Phys., 17, 6895–6905, https://doi.org/10.5194/acp-17-6895-2017, 2017. 
Alfonso, L., Raga, G. B., and Baumgardner, D.: The validity of the kinetic collection equation revisited, Atmos. Chem. Phys., 8, 969–982, https://doi.org/10.5194/acp-8-969-2008, 2008. 
Alfonso, L., Raga, G. B., and Baumgardner, D.: The validity of the kinetic collection equation revisited – Part 2: Simulations for the hydrodynamic kernel, Atmos. Chem. Phys., 10, 7189–7195, https://doi.org/10.5194/acp-10-7189-2010, 2010. 
Short summary
The aim of this paper is to find some observational evidence of gel formation in clouds, by analyzing the distribution of the largest droplet at an early stage of cloud formation, and to show that the mass of the gel (lucky droplet) is a mixture of Gaussian and Gumbel distributions. The results obtained may help advance the understanding of precipitation formation and are a novel application of the theory of critical phenomena in cloud physics.
Altmetrics
Final-revised paper
Preprint