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Abstract. In recent papers (Alfonso et al., 2013; Alfonso and
Raga, 2017) the sol–gel transition was proposed as a mecha-
nism for the formation of large droplets required to trigger
warm rain development in cumulus clouds. In the context
of cloud physics, gelation can be interpreted as the forma-
tion of the “lucky droplet” that grows by accretion of smaller
droplets at a much faster rate than the rest of the population
and becomes the embryo for raindrops. However, all the re-
sults in this area have been theoretical or simulation studies.
The aim of this paper is to find some observational evidence
of gel formation in clouds by analyzing the distribution of
the largest droplet at an early stage of cloud formation and to
show that the mass of the gel (largest drop) is a mixture of
a Gaussian distribution and a Gumbel distribution, in accor-
dance with the pseudo-critical clustering scenario described
in Gruyer et al. (2013) for nuclear multi-fragmentation.

1 Introduction

A fundamental, ongoing problem in cloud physics is associ-
ated with the discrepancy between the times modeled and ob-
served for the formation of precipitation in warm clouds. Ob-
servational studies show that precipitation can develop in less
than 20 min. For example, in Göke et al. (2007), an analysis
of radar observations in the framework of the Small Cumu-
lus Microphysics Study (SCMS), demonstrated that maritime
clouds increased their reflectivity from −5 to +7.5 dBZ in a
characteristic time of 333 s. Simulations of the collision and

coalescence process, such as those described in the review
published by Beard and Ochs (1993), require longer times
for precipitation formation, unless giant nuclei (aerosols with
diameters greater than 2 µm) are incorporated in the simula-
tion.

Numerous mechanisms have been proposed to close the
gap between observations and simulations. Some theories ex-
plain this phenomenon as an increase in collision efficien-
cies due to turbulence (Wang et al., 2008; Pinsky and Khain,
2004; Pinsky et al., 2007, 2008), turbulence-enhanced col-
lision rate of cloud droplets (Falkovich and Pumir, 2007;
Grabowski and Wang, 2013) or turbulent dispersion of cloud
droplets (Sidin et al., 2009).

More recent papers (Onishi and Seifert, 2016; Li et al.,
2017, 2018, and Chen et al., 2018) also investigated the effect
of turbulence in early development of precipitation.

Other research points to the supersaturation fluctuations
resulting from homogeneous (Warner, 1969) and inhomoge-
neous mixing (Baker et al., 1980), which allow some droplets
to grow faster by condensation in areas with larger super-
saturation. Cooper (1989) found evidence of faster growth
of the larger droplets due to the variability that results from
mixing and random positioning of droplets during cloud for-
mation. Shaw et al. (1998) explored the possibility that vor-
tex structures in a turbulent cloud cause variations in droplet
concentration and supersaturation (at the centimeter scale),
allowing droplets in areas of higher concentration to grow
more rapidly. Their calculations show an important widening
of the spectrum from this mechanism. Roach (1976) showed
that the growth of larger droplets increases due to radiative
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cooling at the top of stratiform clouds and the addition of sul-
fate cloud condensation nuclei (CCN), activated as droplets
as a result of aqueous-phase chemical reactions (Zhang et
al., 1999). In the same manner, Feingold and Chuang (2002)
proposed the theory that certain organic compounds (film-
forming compounds) can create a layer around droplets that
inhibits their growth, causing a fraction of droplets to grow
under conditions of higher supersaturation with the conse-
quent widening of the spectrum. The existence of giant CCN
is another of the proposed mechanisms. Even at concentra-
tions as low as 1 L−1, they can contribute significantly to the
broadening of the spectrum (Johnson, 1982; Feingold et al.,
1999; Yin et al., 2000; Van Den Heever and Cotton, 2007).

More recently, the sol–gel transition has been proposed
as a possible mechanism for the formation of embryonic
drops that trigger the formation of precipitation (Alfonso et
al., 2010, 2013). Although this phenomenon is not as well
known in the field of cloud physics, the sol–gel transition
(also known as “gelation” in English-language literature),
has been widely studied in other fields of research to explain,
for example, the formation of planets (Wetherill, 1990) and
aerogels in aerosol physics (Lushnikov, 1978) or the emer-
gence of giant components in percolation theory (Aldous,
1999).

In the framework of cloud physics, the sol–gel phe-
nomenon can be interpreted as the formation of the lucky
droplet that becomes the embryo for raindrops and is defined
by a transition from a continuous system of small droplets, to
another system with a continuous spectrum plus a giant drop
(runaway droplet, embryonic drop, gel) that interacts with
the system increasing its mass by accretion with the smallest
drops.

Telford (1955) may be the first to propose the “lucky
droplet” model for collision–coalescence of cloud droplets.
One of the novelties of Telford’s approach was to recog-
nize the shortcomings of the “continuous growth model” and
took into account the statistical fluctuations inherent to the
collision–coalescence process and its discrete nature. He per-
formed his analysis for a cloud consisting of identical 10 µm
droplets together with collector drops with twice the volume
(12.6 µm radius). From this initial bimodal distribution, he
found that 100 of the 12.6 µm droplets per cubic meter (a
10−6 fraction), will grow more rapidly than predicted by the
continuous growth model, experiencing their first 10 coales-
cences after a time of approximately 5 min, while the time to
undergo 10 collisions assuming continuous growth was about
33 min.

The lucky droplet model was further developed by Kostin-
ski and Shaw (2005), who presented numerical evidence that
their model can lead to a rapid development of precipita-
tion. Their analysis was based on the derivation of the dis-
tribution of times for N collisions (which gave the result of
an Erlang distribution). They concluded that the 10−6 lucky
droplets are expected to reach 50 µm 10 times faster than the
average droplet. More recently, Wilkinson (2016) further ad-

vanced the model by using large deviation theory (Touchette,
2009). He derived the probability for the time T to undergo
N collisions being a very small fraction of its mean value and
showed that the timescale for the initiation of precipitation is
smaller than the mean time for a single collision.

The results obtained by Kostinski and Shaw (2005) were
tested by Dziekan and Pawlowska (2017) by calculating the
“luck factor”, i.e., how much faster the luckiest droplets grow
to r = 40 µm compared to the average droplets. They esti-
mated that the luckiest 10−3 fraction will cross the size gap
around 5 times faster, and the luckiest 10−5 fraction was
around 11 times faster, in good agreement with the results
obtained by Kostinksi and Shaw (2005) (about 6 and 9 times
faster, respectively).

However, previous efforts in this direction were mainly fo-
cused on finding the distribution of times for N collisions
(Telford, 1955; Kostinski and Shaw, 2005; Wilkinson, 2016),
while we were concentrated on studying the lucky droplet
size distribution to determine whether or not the runaway
growth process due to collision–coalescence has started.

Recent studies that address the sol–gel transition interpre-
tation in cloud physics (Alfonso et al., 2013; Alfonso and
Raga, 2017) analyze the problem from the theoretical and
simulation point of view. The aim of the present work here
is to find observational evidence of gel formation, taking as
a reference recent studies in percolation theory (Botet and
Płoszajczak, 2005) and nuclear physics (Botet et al., 2001;
Gruyer et al., 2013), which can shed some light on the gel
(largest droplet) size distribution during the initial stage of
precipitation formation.

The paper is organized as follows: Sect. 2 presents an
overview of previous results for both infinite and finite sys-
tems. An analysis of the largest droplet distribution from syn-
thetic data obtained from Monte Carlo simulations (for the
product and hydrodynamic kernels, respectively) is presented
in Sect. 3. Sect. 4 is devoted to the analysis of experimental
data. Finally, in Sect. 5 we discuss our results accompanied
by the relevant conclusions.

2 An overview of previous theoretical and
experimental results

2.1 Results for infinite systems in coagulation and
percolation theory

The most commonly accepted approach to modeling the col-
lision coalescence process in cloud models with detailed mi-
crophysics relies upon the Smoluchowski kinetic equation or
kinetic collection equation (KCE), governing the time evo-
lution of the average number of particles. The discrete form
of this equation can be written as follows (Pruppacher and
Klett, 1997):
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∂N(i, t)

∂t
=

1
2

i−1∑
j=1

K(i− j,j)N(i− j)N(j)

−N(i)

∞∑
j=1

K(i,j)N(j) , (1)

where N(i, t) is the average concentration of droplets with
mass xi at time t , and K(i,j) is the coagulation kernel re-
lated to the probability of coalescence of two drops of masses
xi and xj . In Eq. (1), the first term on the right-hand side de-
scribes the average rate of production of droplets of mass xi
due to coalescence between pairs of drops, whose masses add
up to mass xi , and the second term describes the average rate
of depletion of droplets with mass xi due to their collision
and coalescence with other droplets.

However, the KCE may have a serious limitation in some
cases (Lushnikov, 2004) and hence cannot accurately de-
scribe the coagulation process. The limitation essentially lies
in the fact that the coagulation equation inevitably creates
particles with infinite mass. For example, for a multiplicative
coagulation kernel (K(i,j)= Cxixj ), an attempt to calculate
the second moment of the droplet mass spectrum:

M2(t)=

∞∑
i=1

x2
i N(i, t), (2)

leads to the result

M2(t)=
M2(t0)

1−CM2(t0)t
, (3)

Tgel = [CM2(t0)]−1. (4)

Thus, after t = Tgel, the second moment may become un-
defined, and the total mass of the system starts to decrease
(see Appendix A for more details). This result applies to infi-
nite (with negligible fluctuations and correlations) coagulat-
ing systems in the thermodynamic limit, which is the limit for
a large number K of particles where the volume V is taken
to grow in proportion with the number of particles. Then, in
the limit K,V →∞,K/V →N <∞. The infinite system
interpretation of the sol–gel transition assumes the presence
of a gel phase (which is not predicted by the KCE equation)
and introduces an additional assumption as to whether or not
the gel interacts with the infinite size clusters that are not de-
scribed by the KCE equation.

The other scenario considers that coagulation takes place
in a system with a finite number of monomers in a finite vol-
ume. This approach is based on the scheme developed by
Markus (1968) and Bayewitz et al. (1974) and was studied
by Lushnikov (1978, 2004), Tanaka and Nakazawa (1993,
1994), and Matsoukas (2015) by using analytical tools
and more recently by Alfonso (2015) and Alfonso and
Raga (2017) numerically. Within this approach there is no

mass loss, and the phase transition is manifested in the emer-
gence of a giant particle that contains a finite fraction of the
total mass of the system. Solutions in the post-gel regime
were obtained analytically by Lushnikov (2004) and Mat-
soukas (2015) and numerically by Alfonso and Raga (2017).

The sol–gel transition has been observed experimentally.
For example, aerogels in aerosol physics (Lushnikov et al.,
1990) and in other theoretical models, such as that of per-
colation (Botet and Płoszajczak, 2005; Kolb and Axelos,
1990), where there is a close analogy between percolation
and droplet coagulation. In bond percolation, each lattice cor-
responds to a monomer, and a proportion p of active bonds
is set randomly between sites. Then clusters of size s are de-
fined as an ensemble of s-occupied sites connected by active
bonds. For a definite value of p = pc, a macroscopic cluster
appears, corresponding to the sol–gel transition.

Recent results in percolation theory show that the largest
cluster follows the Gumbel distribution for subcritical perco-
lation (Bazant, 2000) and, at the critical point, follows the
Kolmogorov–Smirnov (K-S) distribution (Botet and Płosza-
jczak, 2005). The K-S distribution is the distribution of the
maximum value of the deviation between the experimental
realization of a random process and its theoretical cumulative
distribution, and it has following the cumulative distribution:

K1(z)=

∞∑
k=−∞

(−1)ke−k
2π2z/6, (5a)

or the equivalent expression:

K1(z)=

√
6
πz

∞∑
k=−∞

e−3(2k+1)2/(2z). (5b)

Botet and Płoszajczak (2005) also found evidence (from nu-
merical solutions of the KCE equation) that, for multiplica-
tive coalescence (with a collection kernel proportional to the
product of the masses), the largest cluster follows the distri-
bution in Eqs. (5a) and (5b) at the time of the phase transi-
tion. At this point, a hypothesis is formed in which the re-
sults obtained in percolation are extrapolated in order to find
the probability distribution of the largest (runaway) droplet
at t = Tgel.

2.2 Some theoretical and experimental results for finite
systems in coagulation theory and nuclear physics

We will now consider some results obtained for finite sys-
tems in coagulation theory (Botet, 2011) and in nuclear
physics (Gruyer et al., 2013). Unlike those in infinite sys-
tems, fluctuations and correlations in a finite system are not
negligible.

We must emphasize that phase transitions cannot take
place in a finite system. This is due to the fact that a phase
transition is defined as a singularity in the free energy or
any thermodynamic property of a system. For finite-sized
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systems, the free energy is proportional to the logarithm of
a finite number of exponentials, which are always positive
(Bhattacharjee, 2001). Consequently, those singularities are
only possible within infinite systems by taking the thermo-
dynamic limit. Thus, for finite systems, the notion of pseudo-
critical region is introduced (which is the finite system equiv-
alent of a sol–gel transition time).

Some interesting simulation and experimental results were
obtained for these systems in Botet (2011) for the Smolu-
chowski model (1) and in Gruyer et al. (2013) for nuclear
multi-fragmentation. Botet et al. (2001) found, from stochas-
tic simulations of coagulation process with the product ker-
nel (for a system of N = 512 monomers), that the distribu-
tion of the largest cluster in the pseudo-critical region can
be described as a mixture of the well-known Gaussian and
Gumbel distributions:

f (x,θ,µ1,β,µ2,σ )= θ Gumbel(x,µ1,β)

+ (1− θ)Gauss(x,µ2,σ ). (6)

In Eq. (6), the coefficients θ and (1− θ ) are the mix-
ture weights (probabilities associated with each compo-
nent). The individual distributions Gumbel(x,µ1,β) and
Gauss(x,µ2,σ ) are the mixture components.

The Gumbel distribution is one of the asymptotic distribu-
tions from extreme value theory (EVT) and has the following
form:

Gumbel(x,µ,β)= e−e
−(x−µ)/β

, (7)

where µ is the position parameter and β the scale parameter.
The distribution in Eq. (6) has its origin in the fact that, for
finite systems in the pseudo-critical zone, the system experi-
ences large fluctuations and the gel distribution is a combina-
tion of both distributions, a Gumbel and a Gaussian (Gruyer
et al., 2013). A similar result was obtained by Botet (2011)
using synthetic data from stochastic simulations, for collision
probabilities proportional to the product of the masses.

The fundamental hypothesis of our work is that the gel
mass (largest drop) in the initial phase of precipitation for-
mation is distributed as a mixture of two asymptotic distribu-
tions: one Gumbel and one Gaussian, following the pseudo-
critical clustering scenario described in Gruyer et al. (2013).

3 Analysis of the largest droplet distribution obtained
from synthetic data

3.1 Results for the product kernel (K(i,j) = Cxixj )

For synthetic data analysis, the empirical distributions of the
largest droplet mass (Mmax) were obtained from Monte Carlo
simulations, following Botet (2011). The species-accounting
formulation (Laurenzi et al., 2002) of the stochastic simu-
lation algorithm (SSA) of Gillespie (1975), which rigorously
accounts for fluctuations and correlations in a coalescing sys-

tem, was used for the stochastic simulation in this work (see
Appendix B).

The main difference between the Gillespie’s SSA and
other Monte Carlo methods based on the simulation particles
(SIPs) approach (like the super droplet method developed by
Shima et al., 2009) is that the Gillespie’s SSA involved the
collision of only two physical particles (droplets in our case)
per MC cycle, while the approach based on SIP in each MC
cycle collides SIP (super droplets, for example), which rep-
resents multiple numbers of droplets with the same attributes
(radius r or mass in the simplest case) and position. However,
Gillespie’s SSA works perfectly for our purposes because,
due to the finiteness of our systems, our simulations are per-
formed for small volumes with a small number of droplets
(in the range 50–300 cm−3).

Our methodology of synthetic data analysis consists of
generating N -realizations (at each time step) using the algo-
rithm of Gillespie. For each realization, there is a certain dis-
tribution of droplets. The largest droplet mass obtained from
each distribution at each realization (for a fixed time step)
would be the distribution to be fitted to the distribution in
Eq. (6). Thus, the sample size would be equal to the number
of realizations of the Monte Carlo algorithm.

Simulations were performed for the product kernel
(K(i,j)= Cxixj ), with an initial mono-disperse distribu-
tion of 100 droplets of 14 µm in radius (droplet mass
1.15× 10−8 g) in a cloud volume of 1 cm3, with C = 5.49×
1010 cm3 s−1.

The product kernel is proportional to the product of the
masses of the colliding droplets. It is widely used because
analytical solutions of the KCE or Smoluchowski equation
(Eq. 1) have been obtained for this kernel by Golovin (1963),
Scott (1968), Drake (1972), and Drake and Wright (1972).
The value of the constant C (C = 5.49× 1010 cm3 g−2 s−1)
in the product kernel is the result of the polynomial approx-
imation K(x,y)= A+B(x+ y)+Cxy (Long, 1974) of the
hydrodynamic collection kernel (Eq. 11).

The empirical distribution of the maxima was obtained
for 1000 realizations of the stochastic algorithm. There is no
need for a larger number of realizations to get better statis-
tics, since the number of realizations in our Monte Carlo al-
gorithm must be equal to the sample size in the application
of the block maxima (BM) approach (see the next section for
more details). On the other hand, this number is not much
bigger than the number of blocks in the data for which the
largest droplet maxima was fitted to fog data.

Figure 1a–d present the largest droplet mass empirical dis-
tributions obtained at four different times. Note that Eq. (6)
provides a good fit for the distribution of the mass of the
largest droplet (Mmax) both around and far from the sol–gel
transition time (Tgel), which was calculated from Eq. (4) and
found to be equal to 1378 s.

Figure 2 presents the time evolution of the coefficient θ ,
which represents the mixing fraction in Eq. (6) for the time
interval [500 s, 2000 s]. Despite the noisy behavior of the co-
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Figure 1. Panels (a)–(d) (histograms) show the largest droplet mass distributions calculated from Monte Carlo simulations at four different
times, for a system with an initial mono-disperse distribution of 100 droplets of 14 µm in radius. The solid line shows the fit using Eq. (6).

efficient θ (due to the finiteness of the system), there is a de-
creasing trend with time, showing larger values of θ (∼ 0.65)
for times close to 500 s and values down to 0.2 at the end
of the time interval. This figure indicates that, although the
largest droplet distribution is adequately described by a mix-
ture of Gaussian and Gumbel distributions, it has a larger
Gumbel component (see Eq. 6) during the early stages of the
coagulation process. As time progresses, the Gaussian con-
tribution becomes more important (smaller values of θ ) in
providing a better fit to the largest droplet mass distribution.

These findings are in accordance with Gruyer et al. (2013)
and Botet (2011): at an early stage of coagulation de-
velopment, correlations are negligible, and, consequently,
the largest fragments can be considered independent ran-
dom variables. Therefore, the probability distribution of

the largest fragment is given by the limit theorem for ex-
tremal variables, which states that the maximum of sample-
independent and identically distributed random variables can
only converge in distribution in the form of one of three pos-
sible distributions: Gumbel, Fréchet or Weibull.

As the coagulation process continues, fluctuations and cor-
relations between droplets increase and the system reaches a
critical point (Alfonso and Raga, 2017). Where the largest
droplets are no longer independent random variables, the
limit theorem for extremal variables no longer applies, and
the largest droplet distribution is no longer described by a
Gumbel distribution. At later times, away from the pseudo-
critical region, the Gaussian contribution is the most impor-
tant part of the largest droplet mass distribution. This can be
explained by the additive nature of the process at this stage
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Figure 2. Time evolution of the coefficient θ in Eq. (6), obtained
for a simulation with the product kernel.

(Botet, 2011; Gruyer et al., 2013; Clusel and Bertoin, 2008),
and the central limit theorem applies.

In the intermediate zone (which can be defined as the
pseudo-critical zone), the distribution is well described by
a mixture of Gumbel and Gaussian distributions and the
weights associated with each distribution are comparable. It
is expected that it can be observed that θ = 0.5 at the infinite
system critical point, Tgel, found to be 1378 s from Eq. (4).
However, due to the finiteness of the system, the critical point
corresponds approximately to a value θ = 0.35 (see Fig. 2).

We can find whether or not a system is in the pseudo-
critical region by defining the following ratio (Botet, 2011;
Gruyer et al., 2013):

η =
wGaussian−wGumbel

wGaussian+wGumbel
, (8)

where wGumbel = θ and wGaussian = 1− θ are the relative
weights of the Gumbel and Gaussian distributions, respec-
tively (see Eq. 6). By definition, η =+1,−1 corresponds to
pure Gaussian and Gumbel distributions. If −1< η < 1, the
system is in the pseudo-critical domain.

Alternatively, Botet (2011) estimates the limits of the
pseudo-critical region as the times when the largest droplet
mass standard deviation σ(Mmax) calculated from Eq. (9) is
small.

σ(Mmax)=

√√√√ 1
Nr

Nr∑
i=1
(M i

max−〈Mmax〉)
2 (9)

In Eq. (9), Nr is the number of iterations of the stochastic
simulation algorithm of Gillespie (1975), Mmax the mass of
the largest particle and 〈Mmax〉 its ensemble mean over all
the realizations.

Even though the second moment of the distributionM2(τ )

diverges (see Eq. 3) for the infinite system, there is no di-

vergence of the second moment for a finite system (with no
critical behavior). For that case, the standard deviation for
the largest particle mass (σ(Mmax)) is expected to reach a
maximum in the vicinity of Tgel = [CM2(t0)]−1. Moreover,
computing the time evolution of the normalized standard de-
viation σ(Mmax)/ 〈Mmax〉 instead of σ(Mmax) yielded better
results in estimating Tgel in Inaba et al. (1999), Alfonso et
al. (2008, 2010, 2013), and Alfonso and Raga (2017).

Figure 3a shows the time evolution of σ(Mmax)/ 〈Mmax〉,
as an example for the system defined at the beginning of this
section. Note that the maximum occurs at T = 1315 s, close
to Tgel = 1378 s calculated from Eq. (4), and the time when
the maximum of σ(Mmax)/ 〈Mmax〉 occurs is a reliable es-
timate of the sol–gel transition time for the corresponding
infinite system.

Botet (2011) defines σ = 0.1σmax as the limits of the
pseudo-critical interval, which corresponds to tinf = 0.37Tgel
and tsup = 1.5Tgel (see Fig. 3b). While Eq. (8) could be used
to determine if a sample collected inside a cloud is in the
pseudo-critical region, Eq. (9) implies that the time evolu-
tion of σ(Mmax) is needed, and therefore a practical appli-
cation is only viable in the case of synthetic data obtained
from stochastic simulations or cloud droplet data collected
dynamically at different times or cloud levels.

3.2 Numerical results for turbulent conditions

In our simulations, turbulent effects were considered by im-
plementing the turbulence-induced collision enhancement
factor PTurb(xi,xj ) that is calculated in Pinsky et al. (2008)
for a cumulonimbus with dissipation rate ε = 0.1 m2 s−3 and
Reynolds number Reλ = 2× 104 and for cloud droplets with
radii≤ 21 µm. The turbulent collection kernel has the follow-
ing form:

KTurb(xi,xj )= PTurb(xi,xj )Kg(xi,xj ), (10)

where Kg(xi,xj ) is hydrodynamic kernel, which considers
collisions between droplets under pure gravity conditions
and has the following form:

Kg(xi,xj )= π(ri + rj )
2 ∣∣V (xi)−V (xj )∣∣E(ri, rj ). (11)

The hydrodynamic kernel takes into account the fact that
droplets with different masses (xi and xj and correspond-
ing radii, ri and rj ) have different terminal velocities V (xi),
which are functions of their masses. In Eq. (10), E(ri) and
E(rj ) are the collection efficiencies calculated according to
Hall (1980).

Monte Carlo simulations were performed with an initial
bi-modal distribution (200 droplets of 10 µm in radius and 50
droplets of 12.6 µm) for a cloud volume of 1 cm3.

As we want to perform simulations for small systems (with
a small number of particles) for which fluctuations and cor-
relations are relevant, the number of droplets per cubic cen-
timeter used in the simulations are small. They are of the
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Figure 3. For the finite system, the normalized standard deviation σ(Mmax)/ 〈Mmax〉 of the largest droplet mass versus time (a). The initial
number of droplets was set equal to N = 100 droplets of 14 µm in radius in a volume of 1 cm3. Simulations were performed with the product
kernel K(i,j)= Cxixj (with C = 5.49× 1010 cm3 g−2 s−1), and Nr = 1000 realizations of the stochastic algorithm were performed. The
maximum value of σ(Mmax)/ 〈Mmax〉 is found to be 1315 s (dashed vertical line) and is very close to the sol–gel transition time (contin-
uous vertical line) for the infinite system (1378 s). In panel (b) the small end of the pseudo-critical domain is estimated as the time where
σ(Mmax)= 0.1σmax.

same order of the droplet concentrations for each block ob-
tained from observations, which fluctuate between 0 and
392 cm−3, with an average of 146 cm−3 (see Fig. 6).

The empirical distribution for the largest droplet mass was
generated by extracting the maximum from the droplet dis-
tribution at each realization for a fixed time step. Addition-
ally, the ratio σ(Mmax)/ 〈Mmax〉 is evaluated from 1000 re-
alizations of the Monte Carlo algorithm (see Fig. 4), which
reaches its maximum at around 1815 s and serves as an es-
timate for the sol–gel transition time for the infinite sys-
tem. Four empirical probability distributions were fitted to
the combined distribution (Eq. 6) for times in the vicinity of
Tgel. The results are displayed in Fig. 5a–d. Note also that
for this case, the combined distribution (Eq. 6) provides a
good fit for the largest droplet mass. Moreover, the coeffi-
cient θ decreases in time (check Fig. 5), in concordance with
the scenario described in Sect. 3.1.

4 Analysis of the largest droplet (gel) radius
distribution from observations

In this section, the methodology of analysis described before
is applied to a dataset of cloud droplet size distribution (2–
50 µm) collected with a Droplet Measurement Technologies
fog monitor (FM-120) installed on a hilltop in Are, Swe-
den. The FM-120 is a single-particle optical spectrometer
(Spiegel et al., 2012) that derives size from light scattered
from individual droplets that pass through a focused laser
beam. The equivalent optical size ranges from 2 to 50 µm.
The fog monitor sample volume has a cross-sectional area of
0.25 mm2 and a flow speed of 14 m s−1. The raw data consist

Figure 4. Time evolution of the normalized standard deviation
σ(Mmax)/ 〈Mmax〉 of the largest droplet mass versus time estimated
from the Monte Carlo algorithm. The simulations were performed
for the turbulent hydrodynamic kernel with a bi-disperse initial con-
dition (200 droplets of 10 µm in radius and 50 droplets of 12.6 µm)
in a volume of 1 cm3.

of each droplet’s radius and inter-arrival time (elapsed time
since previous particle). More than 7 million droplets were
processed over a period of 4 h.

The block maxima (BM) approach in extreme value the-
ory (EVT) was applied, which requires dividing the obser-
vation period into nonoverlapping periods of equal size and
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Figure 5. Panels (a)–(d) (histograms) show the simulatedMmax distributions in a system with an initial bi-disperse distribution (200 droplets
of 10 µm in radius and 50 droplets of 12.6 µm) at four different times. The solid line shows the fit using Eq. (6). The simulations were
performed for the turbulent hydrodynamic kernel.

restricts attention to the maximum observation in each period
(see Gumbel, 1958).

Following the BM approach, considering the sectional
area and flow speed, the time series was divided into con-
secutive unit blocks of 1 cm3 in volume, corresponding to a
cloud length of approximately 400 cm (∼ 0.3 s interval in the
time series). The droplet distributions in each unit block are
equivalent to the distributions obtained for each realization
(for a fixed time) of the Monte Carlo algorithm described in
the previous section, and each block can be interpreted as an
independent realization of a stochastic process.

The maximum (radius of the largest droplet) is recorded
from each consecutive unit block in order to generate the dis-
tribution for comparison with the theoretical combined dis-

tribution described in Eq. (6). The sample size corresponds
to the number of consecutive blocks in which the time series
was divided, which in this case is 49 647 blocks, equivalent
to about 4 h of data. Figure 6 displays the number of droplets
in each block, which fluctuate between 0 and 392, with an
average of 146. Since each block is considered a realization
of a random process, the largest droplet radius series must be
fitted to the combined distribution in Eq. (6) for samples with
certain conditions of homogeneity.

The average sample size (number of unit blocks) for which
the largest droplet maxima can be fitted to the combined dis-
tribution in Eq. (6) is then estimated. This expected value can
be calculated from the following procedure.
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Figure 6. Time series of the number of droplets per block, sampled
at a hilltop in Are, Sweden.

The conditional probability P(Admixture |x ), where x is
the sample size, is calculated using Monte Carlo simulations.
This calculation uses a given number of consecutive blocks
with a mixture of distributions. The simulations are carried
out by randomly choosing Ntotal samples from the measure-
ments (that consist of consecutive blocks) of size x, fitting
the data to the distribution in Eq. (6), and determining if they
do or do not follow that distribution. The decision is based
on application of the Kolmogorov–Smirnov (K-S) goodness
of fit test for a confidence level α = 0.05. The experimen-
tal statistics for the K-S test can be obtained by arranging the
data in ascending order (x1,x2, . . .,xn) and deriving the max-
imum difference between the rank statistics (i−1)/n and the
theoretically calculated cumulative density function F(xi):

Dn = max
1≤i≤n

(
max

∣∣∣∣F(xi)− i− 1
n

∣∣∣∣ ,max
∣∣∣∣ in −F(xi)

∣∣∣∣) . (12)

If this value of Dn is smaller than a certain threshold value
Dαn , we accept that the data obey the probability distribution
under consideration, and the null hypothesisH0 cannot be re-
jected at a significance level α. The significance level α refers
to the probability of the assumed distribution pattern being
rejected. The limiting values of Dαn can be calculated from
the K-S cumulative distribution (see Eqs. 5a and 5b). Tables
with limiting values can be found in, e.g., Gnedenko (2017).

However, given that the parameters of the distribution
F(x) were estimated from the observed data, theoretical lim-
iting values provided by the K-S cannot be used. In this case,
the limiting values Dαn are smaller than the case with known
parameters and must be obtained via Monte Carlo simula-
tions (see Appendix C for more details). Thus, the condi-
tional probability can be calculated as follows:

P(Admixture |x )=N0/Ntotal, (13)

where N0 is the number of cases for which the null hypothe-
sis H0) at α = 0.05 cannot be rejected. However, what is re-
ally needed is the conditional probability P(x |Admixture ),
which is the probability that a sample has size x, given that
the data (viewed as a time series of maxima for each block)
in that sample follow a mixture of distributions. This proba-
bility can be calculated using Bayes’ theorem from the fol-
lowing expression:

P(x |Admixture)∝ P(Admixture |x )π(x). (14)

By writing this theorem in the form (14), we are assuming
that the marginal likelihood is considered a normalization
factor. Therefore, P(x |Admixture) can be computed using
expression (14) and then normalized under the requirement
that it is a probability mass function (pmf). In Eq. (14), the
prior probability π(x) is assumed to have a uniform distribu-
tion. Thus, the expected value 〈x〉 can be calculated from the
following expression:

〈x〉 =
∑

P(x |Admixture)x . (15)

Turning to a concrete example, Ntotal = 100 samples with
sizes x = 100,200, . . .,1000 were randomly selected from
the data, and the probability P(Admixture |x ) calcu-
lated following Eq. (13). The probability mass function
P(x |Admixture) (pmf) was obtained by applying the proce-
dure previously described and the expected value was found
to be 〈x〉 = 544 (about 163 s).

A thorough statistical analysis was conducted by fitting
Mmax to the combined distribution in Eq. (6) for 100 samples
with sizes at and below the average (100, 200, 300, . . . , 500)
that were randomly selected from the entire dataset (49 647
blocks). For each random sample three null (H0) hypotheses
were verified: (i) the sample comes from a mixture of distri-
butions (Eq. 6), (ii) the sample comes from a Gumbel distri-
bution or (iii) the sample comes from a Gaussian distribution.
The three hypotheses were examined by the K-S method with
limiting values calculated from Monte Carlo simulations (see
Table C1).

The results for sample sizes 100, 200, 300, 400 and 500
are shown in Table 1. As an example, for case 1 (sample size
100) the null hypothesis H0 at α = 0.05 was rejected for 13,
35 and 92 samples for the mixture, Gaussian and Gumbel
distributions, respectively. For case 2 (sample size 200), the
null hypothesis was rejected for 27, 58 and 96 samples. Us-
ing n= 500 for the mixture of distributions (Eq. 6), the null
hypothesis H0 was rejected for 50 samples. For the Gum-
bel distribution, the null hypothesis was rejected for all the
samples (100) and the null hypothesis for the Gaussian dis-
tributions was rejected for 83 samples.

The results shown in Table 1 confirm that, for all sample
sizes, the mixture of distributions provides a better fit than the
Gumbel and Gaussian distributions, confirming the correct-
ness of the choice of the mixture of distributions (Eq. 6) for
modeling the largest droplet radius. As an example, Fig. 7a–
d present, for a sample size of n= 500, the largest droplet
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Figure 7. For four random samples that are distributed following the admixture distribution (with sample size 500), observed (histogram)
and fitted (solid line) using Eq. (6). Also shown for each distribution are the p value of the goodness of fit test and the parameter θ indicating
the weight of the Gumbel component.

mass empirical distributions obtained for four different sam-
ples that are distributed following the mixture and the corre-
sponding fit of Eq. (6).

5 Discussion and conclusions

An infinite system has two possible evolutionary phases: the
ordered phase and the disordered or statistical phase. In the
disordered phase there is a continuous droplet distribution
and a near equality of the largest and second-largest mass.
After the sol–gel transition, there is an ordered phase charac-
terized by the existence of a giant macroscopic droplet (gel)
coexisting with an ensemble of microscopic particles.

A finite system can be in the ordered, disordered and
pseudo-critical phases, according to the scenario described
in Botet (2011) and Gruyer et al. (2013). The ratio η, defined
in Eq. (8), takes values between η =+1, −1, which corre-
spond to pure Gaussian and Gumbel distributions, and when
−1< η < 1 the system is in the pseudo-critical domain. In
the disordered phase, fluctuations and correlations are negli-
gible, there are only a few collision events, and Mmax is the
largest part of randomly distributed droplets. In that case, the
distribution of the mass of the largest droplets follow a Gum-
bel distribution. At later times in the evolution of the finite
system, there are many collision events and Mmax is the re-
sult of the coalescence of other droplets. There is an additive
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Table 1. For each sample size, the number of samples with the null
hypothesis H0 rejected at α = 0.05 for all the distributions.

Case Total Sample Fitted At α = 0.05
number size distributions reject H0

of random (number of
samples samples)

Mixture 13
1 100 100 Gumbel 92

Gaussian 35

Mixture 27
2 100 200 Gumbel 96

Gaussian 58

Mixture 35
3 100 300 Gumbel 98

Gaussian 70

Mixture 40
4 100 400 Gumbel 100

Gaussian 77

Mixture 50
5 100 500 Gumbel 100

Gaussian 83

process, the central limit theorem applies and the mass (or ra-
dius) of the largest droplets follows a Gaussian distribution.

In the pseudo-critical phase, the fluctuations and correla-
tions are no longer negligible and the distribution is of nei-
ther of the asymptotic forms (Gumbel or Gaussian). In this
case, the fit of the largest droplet mass (gel), is a mixture
of a Gumbel (disordered state) and Gaussian (ordered state)
distributions. As was demonstrated in the preceding section,
this combined distribution (Eq. 6) is a good approximation to
the largest droplet distribution (gel) in the pseudo-critical re-
gion. The fact that the mixture of distributions provides a bet-
ter fit than the Gumbel and Gaussian distributions shows that
the samples selected in our study are mainly in the pseudo-
critical phase. To confirm this fact, the ratio η was calculated
for 1000 samples of size n= 500 selected randomly from the
data. Figure 8 shows that for 90 % of the samples the ratio η
lies in the interval [−0.9, 0.9], clearly indicating that samples
are in the pseudo-critical region.

We could show that the gel radius (largest droplet) is de-
scribed as a mixture of the two asymptotic distributions be-
cause the effect of the collision–coalescence process was in
some way isolated for the orographic cloud data analyzed
in this report. A similar analysis could be performed for the
early stage of a convective cloud formation, before some
other processes, e.g., entrainment, mixing, turbulence or ice
formation, could obscure the finite system pseudo-critical
scenario, and the gel formation that is basically a conse-
quence of the collision–coalescence process could no longer
be observed.

Figure 8. Histogram of the ratio η = (wGaussian−wGumbel)/
(wGaussian+wGumbel), which measures the distance to the critical
point.

In this work, the early stage of formation of a warm cloud
is viewed in the context of critical phenomena theory and
can be thought of as being in ordered, disordered or pseudo-
critical phases. The disordered phase corresponds to a cloud
with a droplet spectrum formed mainly by the cloud con-
densation nuclei activation process, with an almost random
distribution of particles, and the distribution of the mass of
the largest droplets is Gumbel. In the pseudo-critical phase a
giant droplet (gel) locally coexists with a continuous ensem-
ble of small droplets. As the system considered is finite, there
is no sudden change from disordered to ordered phase (sol–
gel transition), but instead there is a pseudo-critical phase in
which fluctuations are important and the gel distributes ac-
cording to Eq. (6). The analysis presented here of the largest
droplet distribution provides useful insight into the early
stages of cloud development in warm clouds. In follow-up
studies, the analysis of cloud data at different times or dis-
tances from the cloud base would be helpful in identifying
the pseudo-critical phase and tracking the transition from the
disordered to the ordered phase dynamically.

Data availability. Access to the data used to produce the results
discussed in this paper are available from the first author upon re-
quest by email.
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Appendix A

The sol–gel transition time Tgel is defined as the time when
the second moment M2(t)=

M2(t0)
1−CM2(t0)t

becomes infinite,
then 1−CM2(t0)t = 0 and Tgel = [CM2(t0)]−1. The equa-
tion for M2(t) (moment of order 2 with respect to mass) can
be found from the general equation for moment evolution
that was obtained by Drake (1972) from the continuous form
of the kinetic collection Eq. (1). It has the following form:

dMn(t)

dt
=

1
2

∞∫
0

∞∫
0

[
(x+ y)n− xn− yn

]
K(x,y)

·N(x, t)N(y, t)dxdy . (A1)

In Eq. (7), K(x,y) is the collection kernel, N(x, t) is the
average droplet concentration and x is the droplet mass. If
we consider the product kernelK(x,y)= C(xy) in Eq. (A1),
then the equation for the second moment is

dM2(t)

dt
= C[M2(t)]

2, (A2)

with the solution being M2(t)=
M2(t0)

1−CM2(t0)t
.

After Tgel, a runaway droplet forms, and the kinetic col-
lection equation is no longer valid, since the assumption of a
continuous distribution breaks down. There is, in essence, a
phase transition in the system from a continuous distribution
to a continuous distribution plus a runaway droplet.

Appendix B: The Monte Carlo algorithm

In this study, the species accounting formulation (Laurenzi
et al., 2002) of the stochastic simulation algorithm (SSA) of
Gillespie (1975) was used for the stochastic simulation. The
steps below summarize the algorithm:

1. Initialization. Initialize the number of droplets in each
species (the species are defined as droplets of differ-
ent sizes). There is a unique index µ for each pair
of droplets i,j that may collide. For a system with
N species,

(
n1, n2, . . ., nN

)
µ ∈

N(N+1)
2 . The set {µ}

defines the total collision space and is equal to the total
number of possible interactions.

2. Monte Carlo step. Determine the next collision to occur
and the time to the next collision. The next collision µ
is calculated according to the distribution P (µ)= aµ

α
,

from the inequality:

µ−1∑
ν=1

aν < r2α ≤

µ∑
ν=1

aν, (B1)

where r2 is a uniformly distributed random number in
the interval (0,1). aµ is calculated from the following
probabilities:

– a(i,j)dt = V −1K(i,j)ninjdt ≡ Pr {two unlike
particles i and j with populations (number of par-
ticles) ni and nj will collide within the imminent
time interval},

– a(i, i)dt = V −1K(i, i)ni (ni−1)
2 dt ≡ Pr {two parti-

cles of the same species i with population (number
of particles) ni collide within the imminent time
interval},

– α =

N(N+1)
2∑

ν=1
aν .

As the time to the next collision is exponentially dis-
tributed with mean 1/α (Gillespie, 1975) and 1−r1 = r∗1
is a uniformly distributed random number in the interval
[0,1], the time τ to the next collision can be calculated
from the following expression:

τ =
1
α

ln
(

1
r∗1

)
. (B2)

3. Increase the time by the randomly generated time in
Step 2. Change the numbers of species to reflect the ex-
ecution of a collision.

4. If stopping criteria are not met, go to step 2.
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Appendix C: Procedure for estimating the limiting
values for the Kolmogorov–Smirnov goodness of fit test
for distributions with unknown parameters

When parameters of a distribution are estimated from the
data, the limiting values provided for the Kolmogorov–
Smirnov criterion cannot be used. In this case, approx-
imate limiting values and p values can be obtained via
Monte Carlo simulations. First, the parameter vector φ̂ =(
θ̂ , µ̂1, µ̂2, β̂, σ̂

)
is estimated for a given sample of size

n, and the test statistics (Eq. 12) are calculated assuming
that the sample is distributed according to F

(
x; φ̂

)
, return-

ing a value of Dn. Next, a sample of size nF
(
x; φ̂

)
vari-

ates is generated, and the parameter vector φ̂1 is estimated.
The test statistics are calculated again assuming that the sam-
ple is distributed according to F

(
x; φ̂1

)
. Such a calculation

was made for different sample sizes (n= 100,200, . . .,500)
1000 times, and the distribution pattern of Dn was derived
(see Table C1). Thus, 5 % (for α = 0.05) from the greater
side was taken as the estimated Dα=0.05

n limiting values. The
estimate of p value is calculated as the relative number of oc-
casions in which the test statistics are at least as large as Dn.
The numerically calculated K-S limiting values for the three
distributions under analysis (mixture, Gumbel and Gaussian)
for α = 0.05 are shown in Table C1. As can be checked,
the values are smaller than the case with known parameters,
which can be estimated (for α = 0.05) as 1.36/

√
n.

Table C1. Estimated limiting values (for α = 0.05) for the
Kolmogorov–Smirnov goodness of fit test for the three distribu-
tions.

Sample size K-S (estimated) limiting values
(Dn) for α = 0.05

Mixture Gaussian Gumbel

100 0.0725 0.0873 0.0853
200 0.0494 0.0624 0.0630
300 0.0432 0.0517 0.0487
400 0.0369 0.0461 0.0419
500 0.0324 0.0414 0.0396
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