Articles | Volume 18, issue 8
Atmos. Chem. Phys., 18, 5549–5565, 2018
https://doi.org/10.5194/acp-18-5549-2018
Atmos. Chem. Phys., 18, 5549–5565, 2018
https://doi.org/10.5194/acp-18-5549-2018
Research article
 | Highlight paper
24 Apr 2018
Research article  | Highlight paper | 24 Apr 2018

Novel pathway of SO2 oxidation in the atmosphere: reactions with monoterpene ozonolysis intermediates and secondary organic aerosol

Jianhuai Ye et al.

Related authors

Measurement report: Source and mixing state of black carbon aerosol in the North China Plain: implications for radiative effect
Qiyuan Wang, Li Li, Jiamao Zhou, Jianhuai Ye, Wenting Dai, Huikun Liu, Yong Zhang, Renjian Zhang, Jie Tian, Yang Chen, Yunfei Wu, Weikang Ran, and Junji Cao
Atmos. Chem. Phys., 20, 15427–15442, https://doi.org/10.5194/acp-20-15427-2020,https://doi.org/10.5194/acp-20-15427-2020, 2020
Short summary
Characterization of submicron organic particles in Beijing during summertime: comparison between SP-AMS and HR-AMS
Junfeng Wang, Jianhuai Ye, Dantong Liu, Yangzhou Wu, Jian Zhao, Weiqi Xu, Conghui Xie, Fuzhen Shen, Jie Zhang, Paul E. Ohno, Yiming Qin, Xiuyong Zhao, Scot T. Martin, Alex K. Y. Lee, Pingqing Fu, Daniel J. Jacob, Qi Zhang, Yele Sun, Mindong Chen, and Xinlei Ge
Atmos. Chem. Phys., 20, 14091–14102, https://doi.org/10.5194/acp-20-14091-2020,https://doi.org/10.5194/acp-20-14091-2020, 2020
Short summary
A sampler for atmospheric volatile organic compounds by copter unmanned aerial vehicles
Karena A. McKinney, Daniel Wang, Jianhuai Ye, Jean-Baptiste de Fouchier, Patricia C. Guimarães, Carla E. Batista, Rodrigo A. F. Souza, Eliane G. Alves, Dasa Gu, Alex B. Guenther, and Scot T. Martin
Atmos. Meas. Tech., 12, 3123–3135, https://doi.org/10.5194/amt-12-3123-2019,https://doi.org/10.5194/amt-12-3123-2019, 2019
Short summary

Related subject area

Subject: Aerosols | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Isothermal evaporation of α-pinene secondary organic aerosol particles formed under low NOx and high NOx conditions
Zijun Li, Angela Buchholz, Luis M. F. Barreira, Arttu Ylisirniö, Liqing Hao, Iida Pullinen, Siegfried Schobesberger, and Annele Virtanen
Atmos. Chem. Phys., 23, 203–220, https://doi.org/10.5194/acp-23-203-2023,https://doi.org/10.5194/acp-23-203-2023, 2023
Short summary
Chemical characterization of organic compounds involved in iodine-initiated new particle formation from coastal macroalgal emission
Yibei Wan, Xiangpeng Huang, Chong Xing, Qiongqiong Wang, Xinlei Ge, and Huan Yu
Atmos. Chem. Phys., 22, 15413–15423, https://doi.org/10.5194/acp-22-15413-2022,https://doi.org/10.5194/acp-22-15413-2022, 2022
Short summary
The Urmia playa as a source of airborne dust and ice-nucleating particles – Part 2: Unraveling the relationship between soil dust composition and ice nucleation activity
Nikou Hamzehpour, Claudia Marcolli, Kristian Klumpp, Debora Thöny, and Thomas Peter
Atmos. Chem. Phys., 22, 14931–14956, https://doi.org/10.5194/acp-22-14931-2022,https://doi.org/10.5194/acp-22-14931-2022, 2022
Short summary
Winter brown carbon over six of China's megacities: light absorption, molecular characterization, and improved source apportionment revealed by multilayer perceptron neural network
Diwei Wang, Zhenxing Shen, Qian Zhang, Yali Lei, Tian Zhang, Shasha Huang, Jian Sun, Hongmei Xu, and Junji Cao
Atmos. Chem. Phys., 22, 14893–14904, https://doi.org/10.5194/acp-22-14893-2022,https://doi.org/10.5194/acp-22-14893-2022, 2022
Short summary
Chamber investigation of the formation and transformation of secondary organic aerosol in mixtures of biogenic and anthropogenic volatile organic compounds
Aristeidis Voliotis, Mao Du, Yu Wang, Yunqi Shao, M. Rami Alfarra, Thomas J. Bannan, Dawei Hu, Kelly L. Pereira, Jaqueline F. Hamilton, Mattias Hallquist, Thomas F. Mentel, and Gordon McFiggans
Atmos. Chem. Phys., 22, 14147–14175, https://doi.org/10.5194/acp-22-14147-2022,https://doi.org/10.5194/acp-22-14147-2022, 2022
Short summary

Cited articles

Adams, J. W., Rodriguez, D., and Cox, R. A.: The uptake of SO2 on Saharan dust: a flow tube study, Atmos. Chem. Phys., 5, 2679–2689, https://doi.org/10.5194/acp-5-2679-2005, 2005.
Atkinson, R., and Arey, J.: Atmospheric degradation of volatile organic compounds, Chem. Rev., 103, 4605–4638, https://doi.org/10.1021/cr0206420, 2003.
Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I – gas phase reactions of Ox, HOx, NOx and SOx species, Atmos. Chem. Phys., 4, 1461–1738, https://doi.org/10.5194/acp-4-1461-2004, 2004.
Berndt, T., Richters, S., Kaethner, R., Voigtländer, J., Stratmann, F., Sipilä, M., Kulmala, M., and Herrmann, H.: Gas-phase ozonolysis of cycloalkenes: formation of highly oxidized RO2 radicals and their reactions with NO, NO2, SO2, and other RO2 radicals, J. Phys. Chem. A, 119, 10336–10348, https://doi.org/10.1021/acs.jpca.5b07295, 2015.
Brock, C. A., Washenfelder, R. A., Trainer, M., Ryerson, T. B., Wilson, J. C., Reeves, J. M., Huey, L. G., Holloway, J. S., Parrish, D. D., Hübler, G., and Fehsenfeld, F. C.: Particle growth in the plumes of coal-fired power plants, J. Geophys. Res.-Atmos., 107, 1–14, https://doi.org/10.1029/2001JD001062, 2002.
Download
Short summary
Synergistic effects between SOA formation and SO2 oxidation through Criegee chemistry and reactive uptake by organic peroxides were observed. The relative importance of these two pathways (Criegee vs. peroxide) varies with relative humidity. The latter SO2 loss mechanism to organic peroxides in SOA has not previously been identified. Our results suggest a new pathway of atmospheric SO2 oxidation, which may contribute to the missing mechanisms of high-sulfate production in the polluted areas.
Altmetrics
Final-revised paper
Preprint