Articles | Volume 18, issue 21
https://doi.org/10.5194/acp-18-15811-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/acp-18-15811-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Impacts of shipping emissions on PM2.5 pollution in China
Zhaofeng Lv
State Key Joint Laboratory of ESPC, School of the Environment,
Tsinghua University, Beijing 100084, China
State Environmental Protection Key Laboratory of Sources and Control
of Air Pollution Complex, Beijing 100084, China
State Key Joint Laboratory of ESPC, School of the Environment,
Tsinghua University, Beijing 100084, China
State Environmental Protection Key Laboratory of Sources and Control
of Air Pollution Complex, Beijing 100084, China
Qi Ying
Zachry Department of Civil Engineering, Texas A&M University,
College Station, TX 77843, USA
Mingliang Fu
State Key Laboratory of environmental criteria and risk assessment
(SKLECRA), Chinese research academy of environmental sciences, Beijing 100012, China
Vehicle emission control center, Ministry of ecology and environment
of the people's republic of China, Beijing 100012, China
Zhihang Meng
State Key Joint Laboratory of ESPC, School of the Environment,
Tsinghua University, Beijing 100084, China
State Environmental Protection Key Laboratory of Sources and Control
of Air Pollution Complex, Beijing 100084, China
Yue Wang
State Key Joint Laboratory of ESPC, School of the Environment,
Tsinghua University, Beijing 100084, China
State Environmental Protection Key Laboratory of Sources and Control
of Air Pollution Complex, Beijing 100084, China
Wei Wei
Department of Environmental Science and Engineering, Beijing
University of Technology, Beijing 100124, China
Huiming Gong
National Laboratory of Automotive Performance & Emission Test,
Beijing Institute of Technology, Beijing 100081, China
Kebin He
State Key Joint Laboratory of ESPC, School of the Environment,
Tsinghua University, Beijing 100084, China
State Environmental Protection Key Laboratory of Sources and Control
of Air Pollution Complex, Beijing 100084, China
Related authors
Xiaotong Wang, Wen Yi, Zhaofeng Lv, Fanyuan Deng, Songxin Zheng, Hailian Xu, Junchao Zhao, Huan Liu, and Kebin He
Atmos. Chem. Phys., 21, 13835–13853, https://doi.org/10.5194/acp-21-13835-2021, https://doi.org/10.5194/acp-21-13835-2021, 2021
Short summary
Short summary
This study updates our previous Ship Emission Inventory Model to version 2.0 (SEIM v2.0) and develops high-spatiotemporal ship emission inventories of China’s inland rivers and a 200 nautical mile coastal zone in 2016–2019. The 4-year consecutive daily ship emissions and emission structure changes are analyzed from the national to port levels. The results of this study can provide high-quality datasets for air quality modeling and observation experiment verifications.
Yanni Zhang, Fanyuan Deng, Hanyang Man, Mingliang Fu, Zhaofeng Lv, Qian Xiao, Xinxin Jin, Shuai Liu, Kebin He, and Huan Liu
Atmos. Chem. Phys., 19, 4899–4916, https://doi.org/10.5194/acp-19-4899-2019, https://doi.org/10.5194/acp-19-4899-2019, 2019
Short summary
Short summary
This study reports the improvement of air quality in port areas following the implementation of a marine fuel quality regulation. We found that the monitoring of NOx and SO2 concentrations in ship plumes could indicate whether a ship had switched to low-sulphur fuel or not. Results showed that most ships complied with the fuel regulation, which reduced the SO2 emissions by 75 %. After regulation, vanadium, which was used as marker for shipping emissions, decreased significantly (by 97.1 %).
Liu Yan, Qiang Zhang, Bo Zheng, and Kebin He
Earth Syst. Sci. Data, 16, 4497–4509, https://doi.org/10.5194/essd-16-4497-2024, https://doi.org/10.5194/essd-16-4497-2024, 2024
Short summary
Short summary
A new database of fuel-, vehicle-type-, and age-specific CO2 emissions from global on-road vehicles from 1970 to 2020 is developed with the fleet turnover model built in this study. Based on this database, the evolution of the global vehicle stock over 50 years is analyzed, the dominant emission contributors by vehicle and fuel type are identified, and the age distribution of on-road CO2 emissions is characterized further.
Wen Yi, Xiaotong Wang, Tingkun He, Huan Liu, Zhenyu Luo, Zhaofeng Lv, and Kebin He
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-258, https://doi.org/10.5194/essd-2024-258, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
This study presents a detailed global dataset on ship emissions, covering the years 2013 and 2016–2021, using advanced modeling techniques. The dataset includes emissions data for 4 types of greenhouse gases and 5 types of air pollutants. The data, available for research, offers valuable insights into ship emission spatiotemporal patterns by vessel type and age, providing a solid data foundation for fine-scale scientific research and shipping emission mitigation.
Nana Wu, Guannan Geng, Ruochong Xu, Shigan Liu, Xiaodong Liu, Qinren Shi, Ying Zhou, Yu Zhao, Huan Liu, Yu Song, Junyu Zheng, Qiang Zhang, and Kebin He
Earth Syst. Sci. Data, 16, 2893–2915, https://doi.org/10.5194/essd-16-2893-2024, https://doi.org/10.5194/essd-16-2893-2024, 2024
Short summary
Short summary
The commonly used method for developing large-scale air pollutant emission datasets for China faces challenges due to limited availability of detailed parameter information. In this study, we develop an efficient integrated framework to gather such information by harmonizing seven heterogeneous inventories from five research institutions. Emission characterizations are analyzed and validated, demonstrating that the dataset provides more accurate emission magnitudes and spatiotemporal patterns.
Zhaojin An, Rujing Yin, Xinyan Zhao, Xiaoxiao Li, Yi Yuan, Junchen Guo, Yuyang Li, Xue Li, Dandan Li, Yaowei Li, Dongbin Wang, Chao Yan, Kebin He, Douglas R. Worsnop, Frank N. Keutsch, and Jingkun Jiang
EGUsphere, https://doi.org/10.5194/egusphere-2024-1325, https://doi.org/10.5194/egusphere-2024-1325, 2024
Short summary
Short summary
Online Vocus-PTR measurements show the compositions and seasonal variations of organic vapors in urban Beijing. With enhanced sensitivity and mass resolution, various sub-ppt level species and organics with multiple oxygens (≥3) were discovered. The fast photooxidation process in summer leads to an increase in both concentration and proportion of organics with multiple oxygens. While in other seasons, the variations of them could be influenced by primary emissions.
Qianqian Gao, Shengqiang Zhu, Kaili Zhou, Jinghao Zhai, Shaodong Chen, Qihuang Wang, Shurong Wang, Jin Han, Xiaohui Lu, Hong Chen, Liwu Zhang, Lin Wang, Zimeng Wang, Xin Yang, Qi Ying, Hongliang Zhang, Jianmin Chen, and Xiaofei Wang
Atmos. Chem. Phys., 23, 13049–13060, https://doi.org/10.5194/acp-23-13049-2023, https://doi.org/10.5194/acp-23-13049-2023, 2023
Short summary
Short summary
Dust is a major source of atmospheric aerosols. Its chemical composition is often assumed to be similar to the parent soil. However, this assumption has not been rigorously verified. Dust aerosols are mainly generated by wind erosion, which may have some chemical selectivity. Mn, Cd and Pb were found to be highly enriched in fine-dust (PM2.5) aerosols. In addition, estimation of heavy metal emissions from dust generation by air quality models may have errors without using proper dust profiles.
Xiaodong Xie, Jianlin Hu, Momei Qin, Song Guo, Min Hu, Dongsheng Ji, Hongli Wang, Shengrong Lou, Cheng Huang, Chong Liu, Hongliang Zhang, Qi Ying, Hong Liao, and Yuanhang Zhang
Atmos. Chem. Phys., 23, 10563–10578, https://doi.org/10.5194/acp-23-10563-2023, https://doi.org/10.5194/acp-23-10563-2023, 2023
Short summary
Short summary
The atmospheric age of particles reflects how long particles have been formed and suspended in the atmosphere, which is closely associated with the evolution processes of particles. An analysis of the atmospheric age of PM2.5 provides a unique perspective on the evolution processes of different PM2.5 components. The results also shed lights on how to design effective emission control actions under unfavorable meteorological conditions.
Jingyu An, Cheng Huang, Dandan Huang, Momei Qin, Huan Liu, Rusha Yan, Liping Qiao, Min Zhou, Yingjie Li, Shuhui Zhu, Qian Wang, and Hongli Wang
Atmos. Chem. Phys., 23, 323–344, https://doi.org/10.5194/acp-23-323-2023, https://doi.org/10.5194/acp-23-323-2023, 2023
Short summary
Short summary
This paper aims to build up an approach to establish a high-resolution emission inventory of intermediate-volatility and semi-volatile organic compounds in city-scale and detailed source categories and incorporate it into the CMAQ model. We believe this approach can be widely applied to improve the simulation of secondary organic aerosol and its source contributions.
Zhaofeng Lv, Zhenyu Luo, Fanyuan Deng, Xiaotong Wang, Junchao Zhao, Lucheng Xu, Tingkun He, Yingzhi Zhang, Huan Liu, and Kebin He
Atmos. Chem. Phys., 22, 15685–15702, https://doi.org/10.5194/acp-22-15685-2022, https://doi.org/10.5194/acp-22-15685-2022, 2022
Short summary
Short summary
This study developed a hybrid model, CMAQ-RLINE_URBAN, to predict the urban NO2 concentrations at a high spatial resolution. To estimate the influence of various street canyons on the dispersion of air pollutants, a new parameterization scheme was established based on computational fluid dynamics and machine learning methods. This work created a new method to identify the characteristics of vehicle-related air pollution at both city and street scales simultaneously and accurately.
Yawen Kong, Bo Zheng, Qiang Zhang, and Kebin He
Atmos. Chem. Phys., 22, 10769–10788, https://doi.org/10.5194/acp-22-10769-2022, https://doi.org/10.5194/acp-22-10769-2022, 2022
Short summary
Short summary
We developed a Bayesian atmospheric inversion system based on the 4D local ensemble transform Kalman filter (4D-LETKF) algorithm coupled with GEOS-Chem from the latest Orbiting Carbon Observatory-2 (OCO-2) V10r XCO2 retrievals. This is the first adaptation of 4D-LETKF to an OCO-2-based global carbon inversion system. We inferred global gridded carbon fluxes and investigated their magnitudes, variations, and partitioning schemes to understand the global and regional carbon budgets for 2015–2020.
Xiaotong Wang, Wen Yi, Zhaofeng Lv, Fanyuan Deng, Songxin Zheng, Hailian Xu, Junchao Zhao, Huan Liu, and Kebin He
Atmos. Chem. Phys., 21, 13835–13853, https://doi.org/10.5194/acp-21-13835-2021, https://doi.org/10.5194/acp-21-13835-2021, 2021
Short summary
Short summary
This study updates our previous Ship Emission Inventory Model to version 2.0 (SEIM v2.0) and develops high-spatiotemporal ship emission inventories of China’s inland rivers and a 200 nautical mile coastal zone in 2016–2019. The 4-year consecutive daily ship emissions and emission structure changes are analyzed from the national to port levels. The results of this study can provide high-quality datasets for air quality modeling and observation experiment verifications.
Qingyang Xiao, Yixuan Zheng, Guannan Geng, Cuihong Chen, Xiaomeng Huang, Huizheng Che, Xiaoye Zhang, Kebin He, and Qiang Zhang
Atmos. Chem. Phys., 21, 9475–9496, https://doi.org/10.5194/acp-21-9475-2021, https://doi.org/10.5194/acp-21-9475-2021, 2021
Short summary
Short summary
We used both statistical methods and a chemical transport model to assess the contribution of meteorology and emissions to PM2.5 during 2000–2018. Both methods revealed that emissions dominated the long-term PM2.5 trend with notable meteorological effects ranged up to 37.9 % of regional annual average PM2.5. The meteorological contribution became more beneficial to PM2.5 control in southern China but more unfavorable in northern China during the studied period.
Shaojie Song, Tao Ma, Yuzhong Zhang, Lu Shen, Pengfei Liu, Ke Li, Shixian Zhai, Haotian Zheng, Meng Gao, Jonathan M. Moch, Fengkui Duan, Kebin He, and Michael B. McElroy
Atmos. Chem. Phys., 21, 457–481, https://doi.org/10.5194/acp-21-457-2021, https://doi.org/10.5194/acp-21-457-2021, 2021
Short summary
Short summary
We simulate the atmospheric chemical processes of an important sulfur-containing organic aerosol species, which is produced by the reaction between sulfur dioxide and formaldehyde. We can predict its distribution on a global scale. We find it is particularly rich in East Asia. This aerosol species is more abundant in the colder season partly because of weaker sunlight.
Zhihao Shi, Lin Huang, Jingyi Li, Qi Ying, Hongliang Zhang, and Jianlin Hu
Atmos. Chem. Phys., 20, 13455–13466, https://doi.org/10.5194/acp-20-13455-2020, https://doi.org/10.5194/acp-20-13455-2020, 2020
Short summary
Short summary
Meteorological conditions play important roles in the formation of O3 and PM2.5 pollution in China. O3 is most sensitive to temperature and the sensitivity is dependent on the O3 chemistry formation or loss regime. PM2.5 is negatively sensitive to temperature, wind speed, and planetary boundary layer height and positively sensitive to humidity. The results imply that air quality in certain regions of China is sensitive to climate changes.
Yang Chen, Jing Cai, Zhichao Wang, Chao Peng, Xiaojiang Yao, Mi Tian, Yiqun Han, Guangming Shi, Zongbo Shi, Yue Liu, Xi Yang, Mei Zheng, Tong Zhu, Kebin He, Qiang Zhang, and Fumo Yang
Atmos. Chem. Phys., 20, 9231–9247, https://doi.org/10.5194/acp-20-9231-2020, https://doi.org/10.5194/acp-20-9231-2020, 2020
Short summary
Short summary
Patterns of particle transport, accumulation, and evolution in both urban and rural areas of Beijing are investigated. The two sites shared 17 common particle types in different stages of atmospheric processing.
Yang Chen, Guangming Shi, Jing Cai, Zongbo Shi, Zhichao Wang, Xiaojiang Yao, Mi Tian, Chao Peng, Yiqun Han, Tong Zhu, Yue Liu, Xi Yang, Mei Zheng, Fumo Yang, Qiang Zhang, and Kebin He
Atmos. Chem. Phys., 20, 9249–9263, https://doi.org/10.5194/acp-20-9249-2020, https://doi.org/10.5194/acp-20-9249-2020, 2020
Short summary
Short summary
Individual particles were observed in two field studies during winter 2016 in the urban and rural areas of Beijing. An online single-particle chemical composition analysis was used as a tracing system to investigate the impact of heating activities and the formation of haze events. During the pollution events, a pattern of transport and accumulation was found with evidence of single particles. The transport from Pinggu to Peking University was significant but PKU to PG occurred occasionally.
Jun Liu, Yixuan Zheng, Guannan Geng, Chaopeng Hong, Meng Li, Xin Li, Fei Liu, Dan Tong, Ruili Wu, Bo Zheng, Kebin He, and Qiang Zhang
Atmos. Chem. Phys., 20, 7783–7799, https://doi.org/10.5194/acp-20-7783-2020, https://doi.org/10.5194/acp-20-7783-2020, 2020
Short summary
Short summary
Ambient PM2.5 pollution contributed substantially to premature mortality in China. The contributions of various sectors to anthropogenic PM2.5-related premature mortality have changed substantially during 1990–2015. In 1990, the residential sector was the leading source, followed by industry, power, agriculture, and transportation, whereas in 2015, the industrial sector became the largest contributor, followed by the residential sector, agriculture, transportation, and power.
Jingyi Li, Haowen Zhang, Qi Ying, Zhijun Wu, Yanli Zhang, Xinming Wang, Xinghua Li, Yele Sun, Min Hu, Yuanhang Zhang, and Jianlin Hu
Atmos. Chem. Phys., 20, 7291–7306, https://doi.org/10.5194/acp-20-7291-2020, https://doi.org/10.5194/acp-20-7291-2020, 2020
Short summary
Short summary
Large gaps still exist in modeled and observed secondary organic aerosol (SOA) mass loading and properties. Here we investigated the impacts of water partitioning into organic aerosol and nonideality of the organic–water mixture on SOA over eastern China using a regional 3D model. SOA is increased more significantly in humid and hot environments. Increases in SOA further cause an enhancement of the cooling effects of aerosols. It is crucial to consider the above processes in modeling SOA.
Tao Ma, Hiroshi Furutani, Fengkui Duan, Takashi Kimoto, Jingkun Jiang, Qiang Zhang, Xiaobin Xu, Ying Wang, Jian Gao, Guannan Geng, Meng Li, Shaojie Song, Yongliang Ma, Fei Che, Jie Wang, Lidan Zhu, Tao Huang, Michisato Toyoda, and Kebin He
Atmos. Chem. Phys., 20, 5887–5897, https://doi.org/10.5194/acp-20-5887-2020, https://doi.org/10.5194/acp-20-5887-2020, 2020
Short summary
Short summary
The formation mechanisms of organic matter and sulfate in winter haze in the North China Plain remain unclear. This paper presents the identification and quantification of hydroxymethanesulfonate (HMS) in PM2.5 in Beijing winter and elucidates the heterogeneous HMS chemistry in favorable winter haze conditions. We show that the HMS not only contributes a substantial mass of organic matter, but also leads to an overestimation of sulfate in conventional measurements.
Haixu Zhang, Chunrong Chen, Weijia Yan, Nana Wu, Yu Bo, Qiang Zhang, and Kebin He
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-280, https://doi.org/10.5194/acp-2020-280, 2020
Revised manuscript not accepted
Short summary
Short summary
In this work, we provide first-hand information on VOC characters in a central Chinese city. Although benzenoids has the largest SOA formation potential, their weight decline with the aggravation of pollution, while the role of VOCs as oxidant producers of SOA formation is critical, especially in hazy periods. Furthermore, solvent evaporation is estimated as the top source for SOA formation considering the above dual roles of VOCs, which would assist to mitigate pollution in China.
Meng Gao, Jinhui Gao, Bin Zhu, Rajesh Kumar, Xiao Lu, Shaojie Song, Yuzhong Zhang, Beixi Jia, Peng Wang, Gufran Beig, Jianlin Hu, Qi Ying, Hongliang Zhang, Peter Sherman, and Michael B. McElroy
Atmos. Chem. Phys., 20, 4399–4414, https://doi.org/10.5194/acp-20-4399-2020, https://doi.org/10.5194/acp-20-4399-2020, 2020
Short summary
Short summary
A regional fully coupled meteorology–chemistry model, Weather Research and Forecasting model with Chemistry (WRF-Chem), was employed to study the seasonality of ozone (O3) pollution and its sources in both China and India.
Haiyan Li, Jing Cheng, Qiang Zhang, Bo Zheng, Yuxuan Zhang, Guangjie Zheng, and Kebin He
Atmos. Chem. Phys., 19, 11485–11499, https://doi.org/10.5194/acp-19-11485-2019, https://doi.org/10.5194/acp-19-11485-2019, 2019
Short summary
Short summary
We combined the online observations of aerosol components and a regional chemical transport model to investigate the response of aerosol chemistry to the stringent clean air actions in Beijing. We found a rapid transition in winter aerosol composition from 2014 to 2017 with decreased sulfate contribution and increased nitrate fraction and evaluated the underlying drivers. The anthropogenic emission reductions in Beijing and its surrounding regions are identified to play a major role.
Tuan V. Vu, Zongbo Shi, Jing Cheng, Qiang Zhang, Kebin He, Shuxiao Wang, and Roy M. Harrison
Atmos. Chem. Phys., 19, 11303–11314, https://doi.org/10.5194/acp-19-11303-2019, https://doi.org/10.5194/acp-19-11303-2019, 2019
Short summary
Short summary
A 5-year Clean Air Action Plan was implemented in 2013 to improve ambient air quality in Beijing. Here, we applied a novel machine-learning-based model to determine the real trend in air quality from 2013 to 2017 in Beijing to assess the efficacy of the plan. We showed that the action plan led to a major reduction in primary emissions and significant improvement in air quality. The marked decrease in PM2.5 and SO2 is largely attributable to a reduction in coal combustion.
Meng Li, Qiang Zhang, Bo Zheng, Dan Tong, Yu Lei, Fei Liu, Chaopeng Hong, Sicong Kang, Liu Yan, Yuxuan Zhang, Yu Bo, Hang Su, Yafang Cheng, and Kebin He
Atmos. Chem. Phys., 19, 8897–8913, https://doi.org/10.5194/acp-19-8897-2019, https://doi.org/10.5194/acp-19-8897-2019, 2019
Short summary
Short summary
A long-term non-methane volatile organic compound (NMVOC) emission inventory is crucial for air quality management but still absent in China. We estimated China’s NMVOCs during 1990–2017 with speciation based on updated databases and investigated the trend of ozone formation potential (OFP) for the same period. Persistent growth of emissions and OFP highlights the need of control measures for solvent use and industrial sources and the importance of designing multi-pollutant control strategies.
Zongbo Shi, Tuan Vu, Simone Kotthaus, Roy M. Harrison, Sue Grimmond, Siyao Yue, Tong Zhu, James Lee, Yiqun Han, Matthias Demuzere, Rachel E. Dunmore, Lujie Ren, Di Liu, Yuanlin Wang, Oliver Wild, James Allan, W. Joe Acton, Janet Barlow, Benjamin Barratt, David Beddows, William J. Bloss, Giulia Calzolai, David Carruthers, David C. Carslaw, Queenie Chan, Lia Chatzidiakou, Yang Chen, Leigh Crilley, Hugh Coe, Tie Dai, Ruth Doherty, Fengkui Duan, Pingqing Fu, Baozhu Ge, Maofa Ge, Daobo Guan, Jacqueline F. Hamilton, Kebin He, Mathew Heal, Dwayne Heard, C. Nicholas Hewitt, Michael Hollaway, Min Hu, Dongsheng Ji, Xujiang Jiang, Rod Jones, Markus Kalberer, Frank J. Kelly, Louisa Kramer, Ben Langford, Chun Lin, Alastair C. Lewis, Jie Li, Weijun Li, Huan Liu, Junfeng Liu, Miranda Loh, Keding Lu, Franco Lucarelli, Graham Mann, Gordon McFiggans, Mark R. Miller, Graham Mills, Paul Monk, Eiko Nemitz, Fionna O'Connor, Bin Ouyang, Paul I. Palmer, Carl Percival, Olalekan Popoola, Claire Reeves, Andrew R. Rickard, Longyi Shao, Guangyu Shi, Dominick Spracklen, David Stevenson, Yele Sun, Zhiwei Sun, Shu Tao, Shengrui Tong, Qingqing Wang, Wenhua Wang, Xinming Wang, Xuejun Wang, Zifang Wang, Lianfang Wei, Lisa Whalley, Xuefang Wu, Zhijun Wu, Pinhua Xie, Fumo Yang, Qiang Zhang, Yanli Zhang, Yuanhang Zhang, and Mei Zheng
Atmos. Chem. Phys., 19, 7519–7546, https://doi.org/10.5194/acp-19-7519-2019, https://doi.org/10.5194/acp-19-7519-2019, 2019
Short summary
Short summary
APHH-Beijing is a collaborative international research programme to study the sources, processes and health effects of air pollution in Beijing. This introduction to the special issue provides an overview of (i) the APHH-Beijing programme, (ii) the measurement and modelling activities performed as part of it and (iii) the air quality and meteorological conditions during joint intensive field campaigns as a core activity within APHH-Beijing.
Xionghui Qiu, Qi Ying, Shuxiao Wang, Lei Duan, Jian Zhao, Jia Xing, Dian Ding, Yele Sun, Baoxian Liu, Aijun Shi, Xiao Yan, Qingcheng Xu, and Jiming Hao
Atmos. Chem. Phys., 19, 6737–6747, https://doi.org/10.5194/acp-19-6737-2019, https://doi.org/10.5194/acp-19-6737-2019, 2019
Short summary
Short summary
Current chemical transport models cannot capture the diurnal and nocturnal variation in atmospheric nitrate, which may be relative to the missing atmospheric chlorine chemistry. In this work, the Community Multiscale Air Quality (CMAQ) model with improved chlorine heterogeneous chemistry is applied to simulate the impact of chlorine chemistry on summer nitrate concentrations in Beijing. The results of this work can improve our understanding of nitrate formation.
Yue Liu, Mei Zheng, Mingyuan Yu, Xuhui Cai, Huiyun Du, Jie Li, Tian Zhou, Caiqing Yan, Xuesong Wang, Zongbo Shi, Roy M. Harrison, Qiang Zhang, and Kebin He
Atmos. Chem. Phys., 19, 6595–6609, https://doi.org/10.5194/acp-19-6595-2019, https://doi.org/10.5194/acp-19-6595-2019, 2019
Short summary
Short summary
This study is part of the UK–China APHH campaign. To identify both source types and source regions at the same time, this study developed a combined method including receptor model, footprint model, and air quality model for the first time to investigate sources of PM2.5 during haze episodes in Beijing. It is an expansion of the application of the receptor model and is helpful for formulating effective control strategies to improve air quality in this region.
Jing Cheng, Jingping Su, Tong Cui, Xiang Li, Xin Dong, Feng Sun, Yanyan Yang, Dan Tong, Yixuan Zheng, Yanshun Li, Jinxiang Li, Qiang Zhang, and Kebin He
Atmos. Chem. Phys., 19, 6125–6146, https://doi.org/10.5194/acp-19-6125-2019, https://doi.org/10.5194/acp-19-6125-2019, 2019
Short summary
Short summary
We attribute Beijing’s PM2.5 abatement in 2017 (compared to 2013) to the following factors: meteorology changes (3.8 μg m−3, 12.1 % of total), regional emission reduction (7.1 μg m−3, 22.5 %), and seven specific categories of control measures in Beijing (20.6 μg m−3, 65.4 %). Our study confirms the effectiveness of clean air actions in Beijing and its surrounding regions and reveals a new generation of control measures, and strengthened regional joint protection measures should be implemented.
Xue Qiao, Hao Guo, Ya Tang, Pengfei Wang, Wenye Deng, Xing Zhao, Jianlin Hu, Qi Ying, and Hongliang Zhang
Atmos. Chem. Phys., 19, 5791–5803, https://doi.org/10.5194/acp-19-5791-2019, https://doi.org/10.5194/acp-19-5791-2019, 2019
Short summary
Short summary
A source-oriented version of the CMAQ model was used to quantify contributions from nine regions to PM2.5 and its components in the 18 cities within Sichuan Basin. Nonlocal emissions contribute 39–66 % and 25–52 % to the citywide average PM2.5 concentrations of 45–126 and 14–31 µg m3 in the winter and summer, respectively. This study demonstrates the importance of joint emission control efforts among cities within the SCB and neighboring regions to the east.
Yanni Zhang, Fanyuan Deng, Hanyang Man, Mingliang Fu, Zhaofeng Lv, Qian Xiao, Xinxin Jin, Shuai Liu, Kebin He, and Huan Liu
Atmos. Chem. Phys., 19, 4899–4916, https://doi.org/10.5194/acp-19-4899-2019, https://doi.org/10.5194/acp-19-4899-2019, 2019
Short summary
Short summary
This study reports the improvement of air quality in port areas following the implementation of a marine fuel quality regulation. We found that the monitoring of NOx and SO2 concentrations in ship plumes could indicate whether a ship had switched to low-sulphur fuel or not. Results showed that most ships complied with the fuel regulation, which reduced the SO2 emissions by 75 %. After regulation, vanadium, which was used as marker for shipping emissions, decreased significantly (by 97.1 %).
Xinghua Li, Junzan Han, Philip K. Hopke, Jingnan Hu, Qi Shu, Qing Chang, and Qi Ying
Atmos. Chem. Phys., 19, 2327–2341, https://doi.org/10.5194/acp-19-2327-2019, https://doi.org/10.5194/acp-19-2327-2019, 2019
Short summary
Short summary
HULIS are widely distributed in atmospheric aerosol. Their sources are rarely studied quantitatively. Biomass burning is generally accepted as a major primary source with additional secondary material formed in the atmosphere. The present study provides direct evidence that residential coal burning is also a significant source of ambient HULIS in northern China based on source measurements, ambient sampling and analysis, and apportionment with source-oriented CMAQ modeling.
Junxi Zhang, Yang Gao, L. Ruby Leung, Kun Luo, Huan Liu, Jean-Francois Lamarque, Jianren Fan, Xiaohong Yao, Huiwang Gao, and Tatsuya Nagashima
Atmos. Chem. Phys., 19, 887–900, https://doi.org/10.5194/acp-19-887-2019, https://doi.org/10.5194/acp-19-887-2019, 2019
Short summary
Short summary
ACCMIP simulations were used to study NOy deposition over East Asia in the future. Both dry and wet NOy deposition show significant decreases in the 2100s under RCP4.5 and RCP8.5 due to large anthropogenic emission reduction. The changes in climate only significantly affect the wet deposition primarily linked to changes in precipitation. Over the coastal seas of China, weaker transport of NOy from land due to emission reduction infers a larger impact from shipping and lightning emissions.
Hao Guo, Sri Harsha Kota, Kaiyu Chen, Shovan Kumar Sahu, Jianlin Hu, Qi Ying, Yuan Wang, and Hongliang Zhang
Atmos. Chem. Phys., 18, 15219–15229, https://doi.org/10.5194/acp-18-15219-2018, https://doi.org/10.5194/acp-18-15219-2018, 2018
Short summary
Short summary
A total of 1.04 million premature mortalities and up to 2 years of life lost (YLL) per person were estimated in India in 2015 due to PM2.5. Premature mortality due to cerebrovascular disease (CEVD) was the highest (0.44 million), followed by ischaemic heart disease (IHD, 0.40 million). The residential sector was the largest contributor, followed by industry, agriculture and energy. Reducing PM2.5 concentrations would lead to a significant reduction in premature mortality and YLL.
Bo Zheng, Dan Tong, Meng Li, Fei Liu, Chaopeng Hong, Guannan Geng, Haiyan Li, Xin Li, Liqun Peng, Ji Qi, Liu Yan, Yuxuan Zhang, Hongyan Zhao, Yixuan Zheng, Kebin He, and Qiang Zhang
Atmos. Chem. Phys., 18, 14095–14111, https://doi.org/10.5194/acp-18-14095-2018, https://doi.org/10.5194/acp-18-14095-2018, 2018
Short summary
Short summary
To tackle the problem of severe air pollution, China has implemented active clean air policies in recent years. We quantified China’s anthropogenic emissions during 2010–2017 and identified the major driving forces of these trends by using a combination of bottom-up emission inventory and index decomposition analysis (IDA) approaches. The major air pollutants have reduced their emissions by 17–62 % during 2010–2017. The IDA results suggest that emission control measures are the main drivers.
Yuxuan Zhang, Xin Li, Meng Li, Yixuan Zheng, Guannan Geng, Chaopeng Hong, Haiyan Li, Dan Tong, Xin Zhang, Yafang Cheng, Hang Su, Kebin He, and Qiang Zhang
Atmos. Chem. Phys., 18, 10275–10287, https://doi.org/10.5194/acp-18-10275-2018, https://doi.org/10.5194/acp-18-10275-2018, 2018
Short summary
Short summary
When emission controls were implemented during APEC, we found that the reduction in BC light absorption was driven by simultaneously reducing the mass concentration and light-absorption capability of BC. The weakening of BC light-absorption capability could be attributed to less coating material on BC surfaces due to the decreased chemical production of secondary aerosols. Our results imply that a synergetic reduction in multiple-pollutant emissions could benefit both air quality and climate.
Yuxuan Zhang, Qiang Zhang, Yafang Cheng, Hang Su, Haiyan Li, Meng Li, Xin Zhang, Aijun Ding, and Kebin He
Atmos. Chem. Phys., 18, 9879–9896, https://doi.org/10.5194/acp-18-9879-2018, https://doi.org/10.5194/acp-18-9879-2018, 2018
Short summary
Short summary
The light absorption of BC-containing particles strongly depends on their aging process in the atmosphere. Whether and how the aging degree and light absorption capability of BC-containing particles will change with air pollution development is still unclear. Our results reveal that under a more polluted environment, the BC-containing particles are characterized not only by higher BC mass concentrations but also by more coating materials on BC surfaces and thus higher light absorption capacity.
Qian Xiao, Mei Li, Huan Liu, Mingliang Fu, Fanyuan Deng, Zhaofeng Lv, Hanyang Man, Xinxin Jin, Shuai Liu, and Kebin He
Atmos. Chem. Phys., 18, 9527–9545, https://doi.org/10.5194/acp-18-9527-2018, https://doi.org/10.5194/acp-18-9527-2018, 2018
Short summary
Short summary
This study emphasizes the importance of at-berth emissions to understanding the health impact of atmospheric pollutants. The chemical characteristics of both VOCs and PM from 20 container ship's at-berth exhaust emissions were examined using a gas chromatograph coupled to a mass spectrometer, and a single particle aerosol mass spectrometer. The profiles, based on massive samples from this study, complemented the insufficiency of relevant research in key port areas with high density populations.
Haiyan Li, Qiang Zhang, Bo Zheng, Chunrong Chen, Nana Wu, Hongyu Guo, Yuxuan Zhang, Yixuan Zheng, Xin Li, and Kebin He
Atmos. Chem. Phys., 18, 5293–5306, https://doi.org/10.5194/acp-18-5293-2018, https://doi.org/10.5194/acp-18-5293-2018, 2018
Short summary
Short summary
This study revealed the driving role of nitrate in urban haze development in the North China Plain (NCP) during summertime. Several factors favoring the rapid nitrate formation were investigated in detail. The higher concentration and, in particular, the higher contribution of nitrate in PM1 suggest an urgent need to initiate ammonia emission control measures and further reduce NOx emissions over the NCP region.
Meng Li, Zbigniew Klimont, Qiang Zhang, Randall V. Martin, Bo Zheng, Chris Heyes, Janusz Cofala, Yuxuan Zhang, and Kebin He
Atmos. Chem. Phys., 18, 3433–3456, https://doi.org/10.5194/acp-18-3433-2018, https://doi.org/10.5194/acp-18-3433-2018, 2018
Short summary
Short summary
In this paper, we conducted a comprehensive evaluation of two widely used anthropogenic emission inventories over China, ECLIPSE and MIX, to explore the potential sources of uncertainties and find clues to improving emission inventories. We found that SO2 emission estimates are consistent between the two inventories (with 1 % differences), while NOx emissions in ECLIPSE's estimates are 16 % lower than those in MIX. Discrepancies at the sector and provincial levels are much higher.
Hui Li, Fengkui Duan, Yongliang Ma, Kebin He, Lidan Zhu, Tao Ma, Siqi Ye, Shuo Yang, Tao Huang, and Takashi Kimoto
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-83, https://doi.org/10.5194/acp-2018-83, 2018
Preprint withdrawn
Short summary
Short summary
This study compares the characteristics of haze between winter and summer in Zibo, a highly industrialized city in the North China Plain. Sulfate is influenced by relative humidity in winter but photochemistry and SO2 in summer; nitrate is vulnerable to NO2 in winter while to temperature in summer; mixed layer height is more decisive on secondary organic carbon than photochemistry in winter, but a reversed situation occurred in summer. Obivious regional transport is also a cause to haze here.
Zhenli Sun, Fengkui Duan, Kebin He, Hui Li, Shuo Yang, Liu Yang, and Tao Ma
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2017-303, https://doi.org/10.5194/amt-2017-303, 2017
Preprint withdrawn
Jianlin Hu, Xun Li, Lin Huang, Qi Ying, Qiang Zhang, Bin Zhao, Shuxiao Wang, and Hongliang Zhang
Atmos. Chem. Phys., 17, 13103–13118, https://doi.org/10.5194/acp-17-13103-2017, https://doi.org/10.5194/acp-17-13103-2017, 2017
Short summary
Short summary
The model performance of CMAQ with WRF using four different emission inventories in China was validated and compared to obtain the best air pollutants prediction for health effect studies of severe air pollution. The differences in performance of chemical transport model were analyzed for different months and regions in the vast part of China and ensemble predictions were firstly obtained from different inventories for health analysis with minimized errors for pollutants including PM2.5 and O3.
Huan Liu, Hanyang Man, Hongyang Cui, Yanjun Wang, Fanyuan Deng, Yue Wang, Xiaofan Yang, Qian Xiao, Qiang Zhang, Yan Ding, and Kebin He
Atmos. Chem. Phys., 17, 12709–12724, https://doi.org/10.5194/acp-17-12709-2017, https://doi.org/10.5194/acp-17-12709-2017, 2017
Short summary
Short summary
The VOC emission inventory has large uncertainties. An updated VOC emission inventory of vehicles in China was developed based on a set of state-of-the-art methods and big data. Exhausts and evaporation were taken into account. Our results narrowed the gap between inventories and the real emissions. Detailed speciation reveals the chemical characteristics of emissions, which has the potential to improve the understanding of atmospheric chemical processes in polluted regions.
Hongyan Zhao, Xin Li, Qiang Zhang, Xujia Jiang, Jintai Lin, Glen P. Peters, Meng Li, Guannan Geng, Bo Zheng, Hong Huo, Lin Zhang, Haikun Wang, Steven J. Davis, and Kebin He
Atmos. Chem. Phys., 17, 10367–10381, https://doi.org/10.5194/acp-17-10367-2017, https://doi.org/10.5194/acp-17-10367-2017, 2017
Short summary
Short summary
Effective and efficient control of air pollution relies upon an understanding of the pollution sources. We conduct an interdisciplinary study and find that 33 % of China’s PM2.5-related premature mortality in 2010 were caused by production emission in other regions; 56 % of the mortality was related to consumption in other regions. Multilateral and multi-stage cooperation under a regional sustainable development framework is in urgent need to mitigate air pollution and related health impacts.
Fei Liu, Steffen Beirle, Qiang Zhang, Ronald J. van der A, Bo Zheng, Dan Tong, and Kebin He
Atmos. Chem. Phys., 17, 9261–9275, https://doi.org/10.5194/acp-17-9261-2017, https://doi.org/10.5194/acp-17-9261-2017, 2017
Short summary
Short summary
We assess NOx emission trends over Chinese cities based on satellite NO2 observations using a method independent of chemical transport models. NOx emissions over 48 Chinese cities have decreased significantly since 2011. Cities with different dominant emission sources (i.e. power, industrial, and transportation sectors) showed variable emission decline timelines that corresponded to the schedules for emission control in different sectors.
Guannan Geng, Qiang Zhang, Dan Tong, Meng Li, Yixuan Zheng, Siwen Wang, and Kebin He
Atmos. Chem. Phys., 17, 9187–9203, https://doi.org/10.5194/acp-17-9187-2017, https://doi.org/10.5194/acp-17-9187-2017, 2017
Short summary
Short summary
We presented the characteristics of PM2.5 chemical composition over China during 2005–2012 by synthesis of in situ measurement data and satellite-based estimates. We also investigated the driving forces behind the changes by examining the changes in precursor emissions. We found that the decrease in sulfate is partly offset by the increase in nitrate. The results indicate that the synchronized abatement of emissions for multipollutants is necessary for reducing ambient PM2.5 over China.
Chaopeng Hong, Qiang Zhang, Yang Zhang, Youhua Tang, Daniel Tong, and Kebin He
Geosci. Model Dev., 10, 2447–2470, https://doi.org/10.5194/gmd-10-2447-2017, https://doi.org/10.5194/gmd-10-2447-2017, 2017
Short summary
Short summary
A regional coupled climate–chemistry modeling system using the dynamical downscaling technique was established and evaluated. The modeling system performed well for both the climatological and the short-term air quality applications over east Asia. Regional models outperformed global models in regional climate and air quality predictions. The coupled modeling system improved the model performance, although some biases remained in the aerosol–cloud–radiation variables.
Chen Wang, Tiange Yuan, Stephen A. Wood, Kai-Uwe Goss, Jingyi Li, Qi Ying, and Frank Wania
Atmos. Chem. Phys., 17, 7529–7540, https://doi.org/10.5194/acp-17-7529-2017, https://doi.org/10.5194/acp-17-7529-2017, 2017
Short summary
Short summary
Three property prediction methods are used to predict equilibrium partitioning coefficients for a set of 3414 compounds implicated in secondary organic aerosol formation. Partitioning from the gas phase to water is found to be much more uncertain than estimates of partitioning into the organic matter of aerosol. This uncertainty matters, as phase distribution is very different depending on which prediction method is applied.
Jianlin Hu, Shantanu Jathar, Hongliang Zhang, Qi Ying, Shu-Hua Chen, Christopher D. Cappa, and Michael J. Kleeman
Atmos. Chem. Phys., 17, 5379–5391, https://doi.org/10.5194/acp-17-5379-2017, https://doi.org/10.5194/acp-17-5379-2017, 2017
Short summary
Short summary
Organic aerosol is a major constituent of ultrafine particulate matter (PM0.1). In this study, a source-oriented air quality model was used to simulate the concentrations and sources of primary and secondary organic aerosols in PM0.1 in California for a 9-year modeling period to provide useful information for epidemiological studies to further investigate the associations with health outcomes.
Yuxuan Zhang, Hang Su, Simonas Kecorius, Zhibin Wang, Min Hu, Tong Zhu, Kebin He, Alfred Wiedensohler, Qiang Zhang, and Yafang Cheng
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-222, https://doi.org/10.5194/acp-2017-222, 2017
Revised manuscript not accepted
Short summary
Short summary
The light absorption of black carbon (BC) strongly depends on their mixing state. By now, the BC mixing state in the atmosphere is still unclear. In this work, we have investigated the comprehensive characterization of BC mixing state at a polluted regional background site of the North China Plain (NCP) based on in site measurements. we found that BC aerosols of the NCP were fully aged, suggesting a strong optical and climate effect of BC on the regional scale in northern China.
Haiyan Li, Qi Zhang, Qiang Zhang, Chunrong Chen, Litao Wang, Zhe Wei, Shan Zhou, Caroline Parworth, Bo Zheng, Francesco Canonaco, André S. H. Prévôt, Ping Chen, Hongliang Zhang, Timothy J. Wallington, and Kebin He
Atmos. Chem. Phys., 17, 4751–4768, https://doi.org/10.5194/acp-17-4751-2017, https://doi.org/10.5194/acp-17-4751-2017, 2017
Short summary
Short summary
The sources and aerosol evolution processes of severe pollution episodes were investigated in Handan during wintertime using real-time measurements. An in-depth analysis of the data uncovered that primary emissions from coal combustion and biomass burning together with secondary formation of sulfate (mainly from SO2 emitted by coal combustion) are important driving factors for haze evolution. Our findings provide useful insights into air pollution control in heavily polluted regions.
Guannan Geng, Qiang Zhang, Randall V. Martin, Jintai Lin, Hong Huo, Bo Zheng, Siwen Wang, and Kebin He
Atmos. Chem. Phys., 17, 4131–4145, https://doi.org/10.5194/acp-17-4131-2017, https://doi.org/10.5194/acp-17-4131-2017, 2017
Short summary
Short summary
We investigated the impact of spatial proxies on the representation of gridded emissions by comparing six gridded NOx emission datasets over China developed from the same magnitude of emissions and different spatial proxies. GEOS-Chem-modeled NO2 columns from the six gridded emissions are compared with satellite-based columns from OMI. Results show that differences between modeled and satellite-based NO2 columns are sensitive to the spatial proxies used in the gridded emission inventories.
Chaopeng Hong, Qiang Zhang, Kebin He, Dabo Guan, Meng Li, Fei Liu, and Bo Zheng
Atmos. Chem. Phys., 17, 1227–1239, https://doi.org/10.5194/acp-17-1227-2017, https://doi.org/10.5194/acp-17-1227-2017, 2017
Short summary
Short summary
We found that the apparent uncertainties in China’s energy consumption increased from 2004 to 2012. SO2 emissions are most sensitive to energy uncertainties because of the high contributions from industrial coal combustion. The energy-induced emission uncertainties for some species are comparable to total uncertainties of emissions as estimated by previous studies, indicating variations in energy consumption could be an important source of China’s emission uncertainties.
Meng Li, Qiang Zhang, Jun-ichi Kurokawa, Jung-Hun Woo, Kebin He, Zifeng Lu, Toshimasa Ohara, Yu Song, David G. Streets, Gregory R. Carmichael, Yafang Cheng, Chaopeng Hong, Hong Huo, Xujia Jiang, Sicong Kang, Fei Liu, Hang Su, and Bo Zheng
Atmos. Chem. Phys., 17, 935–963, https://doi.org/10.5194/acp-17-935-2017, https://doi.org/10.5194/acp-17-935-2017, 2017
Short summary
Short summary
An anthropogenic emission inventory for Asia is developed for the years 2008 and 2010 to support the Model Inter-Comparison Study for Asia (MICS-Asia) and the Task Force on Hemispheric Transport of Air Pollution (TF HTAP) projects by a mosaic of up-to-date regional emission inventories. The total Asian emissions in 2010 are estimated as follows: 51.3 Tg SO2, 52.1 Tg NOx, 336.5 Tg CO, 67.0 Tg NMVOC, 28.7 Tg NH3, 31.7 Tg PM10, 22.7 Tg PM2.5, 3.5 Tg BC, 8.3 Tg OC, and 17.3 Pg CO2.
Bo Zheng, Qiang Zhang, Dan Tong, Chuchu Chen, Chaopeng Hong, Meng Li, Guannan Geng, Yu Lei, Hong Huo, and Kebin He
Atmos. Chem. Phys., 17, 921–933, https://doi.org/10.5194/acp-17-921-2017, https://doi.org/10.5194/acp-17-921-2017, 2017
Short summary
Short summary
The resolution dependence of uncertainties in proxy-based gridded inventories can be explained by the decoupling of emission facility locations from spatial proxies on fine scales. We conclude that proxy-based inventories are of sufficient quality to support regional and global models (larger than 0.25° in this case study); however, to support urban-scale models with accurate emission inputs, bottom-up inventories incorporating exact locations of emitting facilities have to be developed instead.
Jianlin Hu, Peng Wang, Qi Ying, Hongliang Zhang, Jianjun Chen, Xinlei Ge, Xinghua Li, Jingkun Jiang, Shuxiao Wang, Jie Zhang, Yu Zhao, and Yingyi Zhang
Atmos. Chem. Phys., 17, 77–92, https://doi.org/10.5194/acp-17-77-2017, https://doi.org/10.5194/acp-17-77-2017, 2017
Short summary
Short summary
An annual simulation of secondary organic aerosol (SOA) concentrations in China with updated SOA formation pathways reveals that SOA can be a significant contributor to PM2.5 in major urban areas. Summer SOA is dominated by emissions from biogenic sources, while winter SOA is dominated by anthropogenic emissions such as alkanes and aromatic compounds. Reactive surface uptake of dicarbonyls throughout the year and isoprene epoxides in summer is the most important contributor.
Jianlin Hu, Jianjun Chen, Qi Ying, and Hongliang Zhang
Atmos. Chem. Phys., 16, 10333–10350, https://doi.org/10.5194/acp-16-10333-2016, https://doi.org/10.5194/acp-16-10333-2016, 2016
Short summary
Short summary
A yearlong (2013) air-quality simulation was conducted to provide detailed temporal and spatial information of ozone, PM2.5 total and chemical components. The paper firstly compared the simulated air pollutants in China with country-wide public available observations for a whole year. It proves the ability of CMAQ in reproducing severe air pollution in China, shows directions that need to be improved, and benefits future source apportionment and human exposure studies.
Mi Tian, Huanbo Wang, Yang Chen, Fumo Yang, Xiaohua Zhang, Qiang Zou, Renquan Zhang, Yongliang Ma, and Kebin He
Atmos. Chem. Phys., 16, 7357–7371, https://doi.org/10.5194/acp-16-7357-2016, https://doi.org/10.5194/acp-16-7357-2016, 2016
Short summary
Short summary
The discussion was based on high time resolution data which could provide detailed insight into short haze periods. The dominant species in PM2.5 and which were responsible for the visibility reduction were identified in Suzhou.
The formation mechanisms of sulfate and nitrate were explored as high secondary aerosol contributions to particulate pollution during haze events. The impact of local and transport sources on the origin of aerosol pollution in Suzhou was discussed.
Fei Liu, Steffen Beirle, Qiang Zhang, Steffen Dörner, Kebin He, and Thomas Wagner
Atmos. Chem. Phys., 16, 5283–5298, https://doi.org/10.5194/acp-16-5283-2016, https://doi.org/10.5194/acp-16-5283-2016, 2016
Short summary
Short summary
We present a new method to quantify NOx emissions and corresponding atmospheric lifetimes from OMI NO2 observations together with ECMWF wind fields without further model input for sources located in polluted background. The derived NOx emissions show generally good agreement with bottom-up inventories for power plants and cities. Global inventory significantly underestimated NOx emissions in Chinese cities, most likely due to uncertainties associated with downscaling approaches.
Yuxuan Zhang, Qiang Zhang, Yafang Cheng, Hang Su, Simonas Kecorius, Zhibin Wang, Zhijun Wu, Min Hu, Tong Zhu, Alfred Wiedensohler, and Kebin He
Atmos. Meas. Tech., 9, 1833–1843, https://doi.org/10.5194/amt-9-1833-2016, https://doi.org/10.5194/amt-9-1833-2016, 2016
Short summary
Short summary
We develop a novel method in this work for in situ measurements of the morphology and effective density of ambient In-BC cores using a volatility tandem differential mobility analyzer and a single-particle soot photometer. We find that In-BC cores hardly transform the morphology of BC into a void-free sphere. Taking the morphology and density of ambient In-BC cores into account, our work provides a new insight into the enhancement of light absorption for In-BC particles in the atmosphere.
F. Liu, Q. Zhang, D. Tong, B. Zheng, M. Li, H. Huo, and K. B. He
Atmos. Chem. Phys., 15, 13299–13317, https://doi.org/10.5194/acp-15-13299-2015, https://doi.org/10.5194/acp-15-13299-2015, 2015
Short summary
Short summary
This is the first study in which emissions from China’s coal-fired power plants were estimated at unit level for a 20-year period. This new emission inventory is constructed from a unit-based database compiled in this work, named the China coal-fired Power plant Emissions Database (CPED), which includes detailed information on the technologies, activity data, operation situation, emission factors, and locations of individual units.
F. Liu, F. K. Duan, K. B. He, Y. L. Ma, K. A. Rahn, and Q. Zhang
Atmos. Meas. Tech., 8, 4851–4862, https://doi.org/10.5194/amt-8-4851-2015, https://doi.org/10.5194/amt-8-4851-2015, 2015
Short summary
Short summary
We have developed an enhanced solid-phase extraction pretreatment procedure to organic acids separated from methyl esters in fine aerosol. This procedure prevents the fatty acids and dimethyl phthalate from being overestimated. Furthermore, five polycyclic aromatic hydrocarbon acids were quantified, and correlations between the PAH-acids and tracer dicarboxylic and aromatic acids indicated that they came from primary or/and secondary emissions.
H. Y. Zhao, Q. Zhang, D. B. Guan, S. J. Davis, Z. Liu, H. Huo, J. T. Lin, W. D. Liu, and K. B. He
Atmos. Chem. Phys., 15, 5443–5456, https://doi.org/10.5194/acp-15-5443-2015, https://doi.org/10.5194/acp-15-5443-2015, 2015
J. Hu, H. Zhang, Q. Ying, S.-H. Chen, F. Vandenberghe, and M. J. Kleeman
Atmos. Chem. Phys., 15, 3445–3461, https://doi.org/10.5194/acp-15-3445-2015, https://doi.org/10.5194/acp-15-3445-2015, 2015
Short summary
Short summary
Air quality model simulations have been conducted for California from 2000 to 2009 with 4km spatial resolution to provide exposure data for health effect studies. Comprehensive analysis shows that predicted concentrations for many pollutants are in agreement with measurements at monitoring stations, building confidence that the fields may be useful at times and locations where measurements are not available. Data can be downloaded for free at http://faculty.engineering.ucdavis.edu/kleeman/.
G. J. Zheng, F. K. Duan, H. Su, Y. L. Ma, Y. Cheng, B. Zheng, Q. Zhang, T. Huang, T. Kimoto, D. Chang, U. Pöschl, Y. F. Cheng, and K. B. He
Atmos. Chem. Phys., 15, 2969–2983, https://doi.org/10.5194/acp-15-2969-2015, https://doi.org/10.5194/acp-15-2969-2015, 2015
X. F. Yang, H. Liu, H. Y. Man, and K. B. He
Atmos. Chem. Phys., 15, 2105–2118, https://doi.org/10.5194/acp-15-2105-2015, https://doi.org/10.5194/acp-15-2105-2015, 2015
B. Zheng, Q. Zhang, Y. Zhang, K. B. He, K. Wang, G. J. Zheng, F. K. Duan, Y. L. Ma, and T. Kimoto
Atmos. Chem. Phys., 15, 2031–2049, https://doi.org/10.5194/acp-15-2031-2015, https://doi.org/10.5194/acp-15-2031-2015, 2015
B. Zheng, H. Huo, Q. Zhang, Z. L. Yao, X. T. Wang, X. F. Yang, H. Liu, and K. B. He
Atmos. Chem. Phys., 14, 9787–9805, https://doi.org/10.5194/acp-14-9787-2014, https://doi.org/10.5194/acp-14-9787-2014, 2014
G. J. Zheng, Y. Cheng, K. B. He, F. K. Duan, and Y. L. Ma
Atmos. Meas. Tech., 7, 1969–1977, https://doi.org/10.5194/amt-7-1969-2014, https://doi.org/10.5194/amt-7-1969-2014, 2014
S. X. Wang, B. Zhao, S. Y. Cai, Z. Klimont, C. P. Nielsen, T. Morikawa, J. H. Woo, Y. Kim, X. Fu, J. Y. Xu, J. M. Hao, and K. B. He
Atmos. Chem. Phys., 14, 6571–6603, https://doi.org/10.5194/acp-14-6571-2014, https://doi.org/10.5194/acp-14-6571-2014, 2014
M. Li, Q. Zhang, D. G. Streets, K. B. He, Y. F. Cheng, L. K. Emmons, H. Huo, S. C. Kang, Z. Lu, M. Shao, H. Su, X. Yu, and Y. Zhang
Atmos. Chem. Phys., 14, 5617–5638, https://doi.org/10.5194/acp-14-5617-2014, https://doi.org/10.5194/acp-14-5617-2014, 2014
H. Liu, X. M. Wang, J. M. Pang, and K. B. He
Atmos. Chem. Phys., 13, 12013–12027, https://doi.org/10.5194/acp-13-12013-2013, https://doi.org/10.5194/acp-13-12013-2013, 2013
B. Zhao, S. X. Wang, H. Liu, J. Y. Xu, K. Fu, Z. Klimont, J. M. Hao, K. B. He, J. Cofala, and M. Amann
Atmos. Chem. Phys., 13, 9869–9897, https://doi.org/10.5194/acp-13-9869-2013, https://doi.org/10.5194/acp-13-9869-2013, 2013
Y. Cheng, G. Engling, K.-B. He, F.-K. Duan, Y.-L. Ma, Z.-Y. Du, J.-M. Liu, M. Zheng, and R. J. Weber
Atmos. Chem. Phys., 13, 7765–7781, https://doi.org/10.5194/acp-13-7765-2013, https://doi.org/10.5194/acp-13-7765-2013, 2013
Related subject area
Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Rapid oxidation of phenolic compounds by O3 and HO●: effects of the air–water interface and mineral dust in tropospheric chemical processes
Modeling the contribution of leads to sea spray aerosol in the high Arctic
Importance of aerosol composition and aerosol vertical profiles in global spatial variation in the relationship between PM2.5 and aerosol optical depth
The co-benefits of a low-carbon future for PM2.5 and O3 air pollution in Europe
Assessing the effectiveness of SO2, NOx, and NH3 emission reductions in mitigating winter PM2.5 in Taiwan using CMAQ
Modelling of atmospheric concentrations of fungal spores: a 2-year simulation over France using CHIMERE
Cluster-dynamics-based parameterization for sulfuric acid–dimethylamine nucleation: comparison and selection through box and three-dimensional modeling
Observed and CMIP6-model-simulated organic aerosol response to drought in the contiguous United States during summertime
Cooling radiative forcing effect enhancement of atmospheric amines and mineral particles caused by heterogeneous uptake and oxidation
Exploring the processes controlling secondary inorganic aerosol: Evaluating the global GEOS-Chem simulation using a suite of aircraft campaigns
Source-resolved atmospheric metal emissions, concentrations, and deposition fluxes into the East Asian seas
Predicted impacts of heterogeneous chemical pathways on particulate sulfur over Fairbanks, Alaska, the N. Hemisphere, and the Contiguous United States
Quantifying the impact of global nitrate aerosol on tropospheric composition fields and its production from lightning NOx
Land use change influence on atmospheric organic gases, aerosols, and radiative effects
Analysis of secondary inorganic aerosols over the greater Athens area using the EPISODE–CityChem source dispersion and photochemistry model
Global estimates of ambient reactive nitrogen components during 2000–2100 based on the multi-stage model
Quantifying the Impacts of Marine Aerosols over the Southeast Atlantic Ocean using a chemical transport model: Implications for aerosol-cloud interactions
The role of naphthalene and its derivatives in the formation of secondary organic aerosol in the Yangtze River Delta region, China
Unveiling the optimal regression model for source apportionment of the oxidative potential of PM10
Investigating the contribution of grown new particles to cloud condensation nuclei with largely varying preexisting particles – Part 2: Modeling chemical drivers and 3-D new particle formation occurrence
Technical note: Influence of different averaging metrics and temporal resolutions on the aerosol pH calculated by thermodynamic modeling
Dual roles of the inorganic aqueous phase on secondary organic aerosol growth from benzene and phenol
Global source apportionment of aerosols into major emission regions and sectors over 1850–2017
Modeling atmospheric brown carbon in the GISS ModelE Earth system model
Observation-constrained kinetic modeling of isoprene SOA formation in the atmosphere
Significant impact of urban tree biogenic emissions on air quality estimated by a bottom-up inventory and chemistry transport modeling
Secondary organic aerosols derived from intermediate-volatility n-alkanes adopt low-viscous phase state
Modeling the drivers of fine PM pollution over Central Europe: impacts and contributions of emissions from different sources
Reaction of SO3 with H2SO4 and its implications for aerosol particle formation in the gas phase and at the air–water interface
Weakened aerosol–radiation interaction exacerbating ozone pollution in eastern China since China's clean air actions
Uncertainties from biomass burning aerosols in air quality models obscure public health impacts in Southeast Asia
Oxidative potential apportionment of atmospheric PM1: a new approach combining high-sensitive online analysers for chemical composition and offline OP measurement technique
Aqueous-phase chemistry of glyoxal with multifunctional reduced nitrogen compounds: a potential missing route for secondary brown carbon
An updated modeling framework to simulate Los Angeles air quality – Part 1: Model development, evaluation, and source apportionment
Frequent haze events associated with transport and stagnation over the corridor between the North China Plain and Yangtze River Delta
Evaluation of WRF-Chem-simulated meteorology and aerosols over northern India during the severe pollution episode of 2016
How well are aerosol–cloud interactions represented in climate models? – Part 1: Understanding the sulfate aerosol production from the 2014–15 Holuhraun eruption
pH regulates the formation of organosulfates and inorganic sulfate from organic peroxide reaction with dissolved SO2 in aquatic media
Technical note: Accurate, reliable, and high-resolution air quality predictions by improving the Copernicus Atmosphere Monitoring Service using a novel statistical post-processing method
Contribution of intermediate-volatility organic compounds from on-road transport to secondary organic aerosol levels in Europe
Development of an integrated model framework for multi-air-pollutant exposure assessments in high-density cities
CAMx–UNIPAR simulation of secondary organic aerosol mass formed from multiphase reactions of hydrocarbons under the Central Valley urban atmospheres of California
Impact of urbanization on fine particulate matter concentrations over central Europe
Measurement report: Assessing the impacts of emission uncertainty on aerosol optical properties and radiative forcing from biomass burning in peninsular Southeast Asia
The Emissions Model Intercomparison Project (Emissions-MIP): quantifying model sensitivity to emission characteristics
Dynamics-based estimates of decline trend with fine temporal variations in China's PM2.5 emissions
Effects of simulated secondary organic aerosol water on PM1 levels and composition over the US
Reactive organic carbon air emissions from mobile sources in the United States
Development and evaluation of processes affecting simulation of diel fine particulate matter variation in the GEOS-Chem model
Substantially positive contributions of new particle formation to cloud condensation nuclei under low supersaturation in China based on numerical model improvements
Yanru Huo, Mingxue Li, Xueyu Wang, Jianfei Sun, Yuxin Zhou, Yuhui Ma, and Maoxia He
Atmos. Chem. Phys., 24, 12409–12423, https://doi.org/10.5194/acp-24-12409-2024, https://doi.org/10.5194/acp-24-12409-2024, 2024
Short summary
Short summary
This work found that the air–water (A–W) interface and TiO2 clusters promote the oxidation of phenolic compounds (PhCs) to varying degrees compared with the gas phase and bulk water. Some byproducts are more harmful than their parent compounds. This work provides important evidence for the rapid oxidation observed in O3/HO• + PhC experiments at the A–W interface and in mineral dust.
Rémy Lapere, Louis Marelle, Pierre Rampal, Laurent Brodeau, Christian Melsheimer, Gunnar Spreen, and Jennie L. Thomas
Atmos. Chem. Phys., 24, 12107–12132, https://doi.org/10.5194/acp-24-12107-2024, https://doi.org/10.5194/acp-24-12107-2024, 2024
Short summary
Short summary
Elongated open-water areas in sea ice, called leads, can release marine aerosols into the atmosphere. In the Arctic, this source of atmospheric particles could play an important role for climate. However, the amount, seasonality and spatial distribution of such emissions are all mostly unknown. Here, we propose a first parameterization for sea spray aerosols emitted through leads in sea ice and quantify their impact on aerosol populations in the high Arctic.
Haihui Zhu, Randall V. Martin, Aaron van Donkelaar, Melanie S. Hammer, Chi Li, Jun Meng, Christopher R. Oxford, Xuan Liu, Yanshun Li, Dandan Zhang, Inderjeet Singh, and Alexei Lyapustin
Atmos. Chem. Phys., 24, 11565–11584, https://doi.org/10.5194/acp-24-11565-2024, https://doi.org/10.5194/acp-24-11565-2024, 2024
Short summary
Short summary
Ambient fine particulate matter (PM2.5) contributes to 4 million deaths globally each year. Satellite remote sensing of aerosol optical depth (AOD), coupled with a simulated PM2.5–AOD relationship (η), can provide global PM2.5 estimations. This study aims to understand the spatial patterns and driving factors of η to guide future measurement and modeling efforts. We quantified η globally and regionally and found that its spatial variation is strongly influenced by aerosol composition.
Connor J. Clayton, Daniel R. Marsh, Steven T. Turnock, Ailish M. Graham, Kirsty J. Pringle, Carly L. Reddington, Rajesh Kumar, and James B. McQuaid
Atmos. Chem. Phys., 24, 10717–10740, https://doi.org/10.5194/acp-24-10717-2024, https://doi.org/10.5194/acp-24-10717-2024, 2024
Short summary
Short summary
We demonstrate that strong climate mitigation could improve air quality in Europe; however, less ambitious mitigation does not result in these co-benefits. We use a high-resolution atmospheric chemistry model. This allows us to demonstrate how this varies across European countries and analyse the underlying chemistry. This may help policy-facing researchers understand which sectors and regions need to be prioritised to achieve strong air quality co-benefits of climate mitigation.
Ping-Chieh Huang, Hui-Ming Hung, Hsin-Chih Lai, and Charles C.-K. Chou
Atmos. Chem. Phys., 24, 10759–10772, https://doi.org/10.5194/acp-24-10759-2024, https://doi.org/10.5194/acp-24-10759-2024, 2024
Short summary
Short summary
Models were used to study ways to reduce particulate matter (PM) pollution in Taiwan during winter. After considering various factors, such as physical processes and chemical reactions, we found that reducing NOx or NH3 emissions is more effective at mitigating PM2.5 than reducing SO2 emissions. When considering both efficiency and cost, reducing NH3 emissions seems to be a more suitable policy for the studied environment in Taiwan.
Matthieu Vida, Gilles Foret, Guillaume Siour, Florian Couvidat, Olivier Favez, Gaelle Uzu, Arineh Cholakian, Sébastien Conil, Matthias Beekmann, and Jean-Luc Jaffrezo
Atmos. Chem. Phys., 24, 10601–10615, https://doi.org/10.5194/acp-24-10601-2024, https://doi.org/10.5194/acp-24-10601-2024, 2024
Short summary
Short summary
We simulate 2 years of atmospheric fungal spores over France and use observations of polyols and primary biogenic factors from positive matrix factorisation. The representation of emissions taking into account a proxy for vegetation surface and specific humidity enables us to reproduce very accurately the seasonal cycle of fungal spores. Furthermore, we estimate that fungal spores can account for 20 % of PM10 and 40 % of the organic fraction of PM10 over vegetated areas in summer.
Jiewen Shen, Bin Zhao, Shuxiao Wang, An Ning, Yuyang Li, Runlong Cai, Da Gao, Biwu Chu, Yang Gao, Manish Shrivastava, Jingkun Jiang, Xiuhui Zhang, and Hong He
Atmos. Chem. Phys., 24, 10261–10278, https://doi.org/10.5194/acp-24-10261-2024, https://doi.org/10.5194/acp-24-10261-2024, 2024
Short summary
Short summary
We extensively compare various cluster-dynamics-based parameterizations for sulfuric acid–dimethylamine nucleation and identify a newly developed parameterization derived from Atmospheric Cluster Dynamic Code (ACDC) simulations as being the most reliable one. This study offers a valuable reference for developing parameterizations of other nucleation systems and is meaningful for the accurate quantification of the environmental and climate impacts of new particle formation.
Wei Li and Yuxuan Wang
Atmos. Chem. Phys., 24, 9339–9353, https://doi.org/10.5194/acp-24-9339-2024, https://doi.org/10.5194/acp-24-9339-2024, 2024
Short summary
Short summary
Droughts immensely increased organic aerosol (OA) in the contiguous United States in summer (1998–2019), notably in the Pacific Northwest (PNW) and Southeast (SEUS). The OA rise in the SEUS is driven by the enhanced formation of epoxydiol-derived secondary organic aerosol due to the increase in biogenic volatile organic compounds and sulfate, while in the PNW, it is caused by wildfires. A total of 10 climate models captured the OA increase in the PNW yet greatly underestimated it in the SEUS.
Weina Zhang, Jianhua Mai, Zhichao Fan, Yongpeng Ji, Yuemeng Ji, Guiying Li, Yanpeng Gao, and Taicheng An
Atmos. Chem. Phys., 24, 9019–9030, https://doi.org/10.5194/acp-24-9019-2024, https://doi.org/10.5194/acp-24-9019-2024, 2024
Short summary
Short summary
This study reveals heterogeneous oxidation causes further radiative forcing effect (RFE) enhancement of amine–mineral mixed particles. Note that RFE increment is higher under clean conditions than that under polluted conditions, which is contributed to high-oxygen-content products. The enhanced RFE of amine–mineral particles caused by heterogenous oxidation is expected to alleviate warming effects.
Olivia G. Norman, Colette L. Heald, Pedro Campuzano-Jost, Hugh Coe, Marc N. Fiddler, Jaime R. Green, Jose L. Jimenez, Katharina Kaiser, Jin Liao, Ann M. Middlebrook, Benjamin A. Nault, John B. Nowak, Johannes Schneider, and André Welti
EGUsphere, https://doi.org/10.5194/egusphere-2024-2296, https://doi.org/10.5194/egusphere-2024-2296, 2024
Short summary
Short summary
This study finds that one component of secondary inorganic aerosols, nitrate, is greatly overestimated by a global atmospheric chemistry model compared to observations from 11 flight campaigns. None of the loss and production pathways explored can explain the nitrate bias alone. The model’s inability to capture the variability in the observations remains and requires future investigation to avoid biases in policy-related studies (i.e., air quality, health, climate impacts of these aerosols).
Shenglan Jiang, Yan Zhang, Guangyuan Yu, Zimin Han, Junri Zhao, Tianle Zhang, and Mei Zheng
Atmos. Chem. Phys., 24, 8363–8381, https://doi.org/10.5194/acp-24-8363-2024, https://doi.org/10.5194/acp-24-8363-2024, 2024
Short summary
Short summary
This study aims to provide gridded data on sea-wide concentrations, deposition fluxes, and soluble deposition fluxes with detailed source categories of metals using the modified CMAQ model. We developed a monthly emission inventory of six metals – Fe, Al, V, Ni, Zn, and Cu – from terrestrial anthropogenic, ship, and dust sources in East Asia in 2017. Our results reveal the contribution of each source to the emissions, concentrations, and deposition fluxes of metals in the East Asian seas.
Sara Louise Farrell, Havala O. T. Pye, Robert Gilliam, George Pouliot, Deanna Huff, Golam Sarwar, William Vizuete, Nicole Briggs, and Kathleen Fahey
EGUsphere, https://doi.org/10.5194/egusphere-2024-1550, https://doi.org/10.5194/egusphere-2024-1550, 2024
Short summary
Short summary
In this work we implement heterogeneous sulfur chemistry into the Community Multiscale Air Quality (CMAQ) model. This new chemistry accounts for the formation of sulfate via aqueous oxidation of SO2 in aerosol liquid water and the formation of hydroxymethanesulfonate (HMS) – often confused by measurement techniques as sulfate. Model performance in predicting sulfur PM2.5 in Fairbanks, Alaska, and other places that experience dark and cold winters, is improved.
Ashok K. Luhar, Anthony C. Jones, and Jonathan M. Wilkinson
EGUsphere, https://doi.org/10.5194/egusphere-2024-1363, https://doi.org/10.5194/egusphere-2024-1363, 2024
Short summary
Short summary
Nitrate aerosol is often omitted in global chemistry-climate models due to the chemical complexity of its formation process. Using a global model, we demonstrate that including nitrate aerosol significantly impacts tropospheric composition fields, such as ozone, and radiation. Additionally, lightning-generated oxides of nitrogen influence both nitrate aerosol mass concentrations and aerosol size distribution, which has important implications for radiative fluxes and indirect aerosol effects.
Ryan Vella, Matthew Forrest, Andrea Pozzer, Alexandra P. Tsimpidi, Thomas Hickler, Jos Lelieveld, and Holger Tost
EGUsphere, https://doi.org/10.5194/egusphere-2024-2014, https://doi.org/10.5194/egusphere-2024-2014, 2024
Short summary
Short summary
This study examines how land cover changes influence biogenic volatile organic compound (BVOC) emissions and atmospheric states. Using a coupled chemistry-climate/vegetation model, we compare present-day land cover (deforested for crops and grazing) with natural vegetation, and an extreme reforestation scenario. We find that vegetation changes significantly impact global BVOC emissions and organic aerosols but have a relatively small effect on total aerosols, clouds, and radiative effects.
Stelios Myriokefalitakis, Matthias Karl, Kim A. Weiss, Dimitris Karagiannis, Eleni Athanasopoulou, Anastasia Kakouri, Aikaterini Bougiatioti, Eleni Liakakou, Iasonas Stavroulas, Georgios Papangelis, Georgios Grivas, Despina Paraskevopoulou, Orestis Speyer, Nikolaos Mihalopoulos, and Evangelos Gerasopoulos
Atmos. Chem. Phys., 24, 7815–7835, https://doi.org/10.5194/acp-24-7815-2024, https://doi.org/10.5194/acp-24-7815-2024, 2024
Short summary
Short summary
A state-of-the-art thermodynamic model has been coupled with the city-scale chemistry transport model EPISODE–CityChem to investigate the equilibrium between the inorganic gas and aerosol phases over the greater Athens area, Greece. The simulations indicate that the formation of nitrates in an urban environment is significantly affected by local nitrogen oxide emissions, as well as ambient temperature, relative humidity, photochemical activity, and the presence of non-volatile cations.
Rui Li, Yining Gao, Lijia Zhang, Yubing Shen, Tianzhao Xu, Wenwen Sun, and Gehui Wang
Atmos. Chem. Phys., 24, 7623–7636, https://doi.org/10.5194/acp-24-7623-2024, https://doi.org/10.5194/acp-24-7623-2024, 2024
Short summary
Short summary
A three-stage model was developed to obtain the global maps of reactive nitrogen components during 2000–2100. The results implied that cross-validation R2 values of four species showed satisfactory performance (R2 > 0.55). Most reactive nitrogen components, except NH3, in China showed increases during 2000–2013. In the future scenarios, SSP3-7.0 (traditional-energy scenario) and SSP1-2.6 (carbon neutrality scenario) showed the highest and lowest reactive nitrogen component concentrations.
Mashiat Hossain, Rebecca M. Garland, and Hannah M. Horowitz
EGUsphere, https://doi.org/10.5194/egusphere-2024-1948, https://doi.org/10.5194/egusphere-2024-1948, 2024
Short summary
Short summary
Our research examines aerosol dynamics over the southeast Atlantic, a region with significant uncertainties in aerosol radiative forcings. Using the GEOS-Chem model, we find that at cloud altitudes, organic aerosols dominate during the biomass burning season, while sulfate aerosols, driven by marine emissions, prevail during peak primary production. These findings highlight the need for accurate representation of marine aerosols in models to improve climate predictions and reduce uncertainties.
Fei Ye, Jingyi Li, Yaqin Gao, Hongli Wang, Jingyu An, Cheng Huang, Song Guo, Keding Lu, Kangjia Gong, Haowen Zhang, Momei Qin, and Jianlin Hu
Atmos. Chem. Phys., 24, 7467–7479, https://doi.org/10.5194/acp-24-7467-2024, https://doi.org/10.5194/acp-24-7467-2024, 2024
Short summary
Short summary
Naphthalene (Nap) and methylnaphthalene (MN) are key precursors of secondary organic aerosol (SOA), yet their sources and sinks are often inadequately represented in air quality models. In this study, we incorporated detailed emissions, gas-phase chemistry, and SOA parameterization of Nap and MN into CMAQ to address this issue. The findings revealed remarkably high SOA formation potentials for these compounds despite their low emissions in the Yangtze River Delta region during summer.
Vy Dinh Ngoc Thuy, Jean-Luc Jaffrezo, Ian Hough, Pamela A. Dominutti, Guillaume Salque Moreton, Grégory Gille, Florie Francony, Arabelle Patron-Anquez, Olivier Favez, and Gaëlle Uzu
Atmos. Chem. Phys., 24, 7261–7282, https://doi.org/10.5194/acp-24-7261-2024, https://doi.org/10.5194/acp-24-7261-2024, 2024
Short summary
Short summary
The capacity of particulate matter (PM) to generate reactive oxygen species in vivo is represented by oxidative potential (OP). This study focuses on finding the appropriate model to evaluate the oxidative character of PM sources in six sites using the PM sources and OP. Eight regression techniques are introduced to assess the OP of PM. The study highlights the importance of selecting a model according to the input data characteristics and establishes some recommendations for the procedure.
Ming Chu, Xing Wei, Shangfei Hai, Yang Gao, Huiwang Gao, Yujiao Zhu, Biwu Chu, Nan Ma, Juan Hong, Yele Sun, and Xiaohong Yao
Atmos. Chem. Phys., 24, 6769–6786, https://doi.org/10.5194/acp-24-6769-2024, https://doi.org/10.5194/acp-24-6769-2024, 2024
Short summary
Short summary
We used a 20-bin WRF-Chem model to simulate NPF events in the NCP during a three-week observational period in the summer of 2019. The model was able to reproduce the observations during June 29–July 6, which was characterized by a high frequency of NPF occurrence.
Haoqi Wang, Xiao Tian, Wanting Zhao, Jiacheng Li, Haoyu Yu, Yinchang Feng, and Shaojie Song
Atmos. Chem. Phys., 24, 6583–6592, https://doi.org/10.5194/acp-24-6583-2024, https://doi.org/10.5194/acp-24-6583-2024, 2024
Short summary
Short summary
pH is a key property of ambient aerosols, which affect many atmospheric processes. As aerosol pH is a non-conservative parameter, diverse averaging metrics and temporal resolutions may influence the pH values calculated by thermodynamic models. This technical note seeks to quantitatively evaluate the average pH using varied metrics and resolutions. The ultimate goal is to establish standardized reporting practices in future research endeavors.
Jiwon Choi, Myoseon Jang, and Spencer Blau
Atmos. Chem. Phys., 24, 6567–6582, https://doi.org/10.5194/acp-24-6567-2024, https://doi.org/10.5194/acp-24-6567-2024, 2024
Short summary
Short summary
Persistent phenoxy radical (PPR), formed by phenol gas oxidation and its aqueous reaction, catalytically destroys O3 and retards secondary organic aerosol (SOA) growth. Explicit gas mechanisms including the formation of PPR and low-volatility products from the oxidation of phenol or benzene are applied to the UNIPAR model to predict SOA mass via multiphase reactions of precursors. Aqueous reactions of reactive organics increase SOA mass but retard SOA growth via heterogeneously formed PPR.
Yang Yang, Shaoxuan Mou, Hailong Wang, Pinya Wang, Baojie Li, and Hong Liao
Atmos. Chem. Phys., 24, 6509–6523, https://doi.org/10.5194/acp-24-6509-2024, https://doi.org/10.5194/acp-24-6509-2024, 2024
Short summary
Short summary
The variations in anthropogenic aerosol concentrations and source contributions and their subsequent radiative impact in major emission regions during historical periods are quantified based on an aerosol-tagging system in E3SMv1. Due to the industrial development and implementation of economic policies, sources of anthropogenic aerosols show different variations, which has important implications for pollution prevention and control measures and decision-making for global collaboration.
Maegan A. DeLessio, Kostas Tsigaridis, Susanne E. Bauer, Jacek Chowdhary, and Gregory L. Schuster
Atmos. Chem. Phys., 24, 6275–6304, https://doi.org/10.5194/acp-24-6275-2024, https://doi.org/10.5194/acp-24-6275-2024, 2024
Short summary
Short summary
This study presents the first explicit representation of brown carbon aerosols in the GISS ModelE Earth system model (ESM). Model sensitivity to a range of brown carbon parameters and model performance compared to AERONET and MODIS retrievals of total aerosol properties were assessed. A summary of best practices for incorporating brown carbon into ModelE is also included.
Chuanyang Shen, Xiaoyan Yang, Joel Thornton, John Shilling, Chenyang Bi, Gabriel Isaacman-VanWertz, and Haofei Zhang
Atmos. Chem. Phys., 24, 6153–6175, https://doi.org/10.5194/acp-24-6153-2024, https://doi.org/10.5194/acp-24-6153-2024, 2024
Short summary
Short summary
In this work, a condensed multiphase isoprene oxidation mechanism was developed to simulate isoprene SOA formation from chamber and field studies. Our results show that the measured isoprene SOA mass concentrations can be reasonably reproduced. The simulation results indicate that multifunctional low-volatility products contribute significantly to total isoprene SOA. Our findings emphasize that the pathways to produce these low-volatility species should be considered in models.
Alice Maison, Lya Lugon, Soo-Jin Park, Alexia Baudic, Christopher Cantrell, Florian Couvidat, Barbara D'Anna, Claudia Di Biagio, Aline Gratien, Valérie Gros, Carmen Kalalian, Julien Kammer, Vincent Michoud, Jean-Eudes Petit, Marwa Shahin, Leila Simon, Myrto Valari, Jérémy Vigneron, Andrée Tuzet, and Karine Sartelet
Atmos. Chem. Phys., 24, 6011–6046, https://doi.org/10.5194/acp-24-6011-2024, https://doi.org/10.5194/acp-24-6011-2024, 2024
Short summary
Short summary
This study presents the development of a bottom-up inventory of urban tree biogenic emissions. Emissions are computed for each tree based on their location and characteristics and are integrated in the regional air quality model WRF-CHIMERE. The impact of these biogenic emissions on air quality is quantified for June–July 2022. Over Paris city, urban trees increase the concentrations of particulate organic matter by 4.6 %, of PM2.5 by 0.6 %, and of ozone by 1.0 % on average over 2 months.
Tommaso Galeazzo, Bernard Aumont, Marie Camredon, Richard Valorso, Yong B. Lim, Paul J. Ziemann, and Manabu Shiraiwa
Atmos. Chem. Phys., 24, 5549–5565, https://doi.org/10.5194/acp-24-5549-2024, https://doi.org/10.5194/acp-24-5549-2024, 2024
Short summary
Short summary
Secondary organic aerosol (SOA) derived from n-alkanes is a major component of anthropogenic particulate matter. We provide an analysis of n-alkane SOA by chemistry modeling, machine learning, and laboratory experiments, showing that n-alkane SOA adopts low-viscous semi-solid or liquid states. Our results indicate few kinetic limitations of mass accommodation in SOA formation, supporting the application of equilibrium partitioning for simulating n-alkane SOA in large-scale atmospheric models.
Lukáš Bartík, Peter Huszár, Jan Karlický, Ondřej Vlček, and Kryštof Eben
Atmos. Chem. Phys., 24, 4347–4387, https://doi.org/10.5194/acp-24-4347-2024, https://doi.org/10.5194/acp-24-4347-2024, 2024
Short summary
Short summary
The presented study deals with the attribution of fine particulate matter (PM2.5) concentrations to anthropogenic emissions over Central Europe using regional-scale models. It calculates the present-day contributions of different emissions sectors to concentrations of PM2.5 and its secondary components. Moreover, the study investigates the effect of chemical nonlinearities by using multiple source attribution methods and secondary organic aerosol calculation methods.
Rui Wang, Yang Cheng, Shasha Chen, Rongrong Li, Yue Hu, Xiaokai Guo, Tianlei Zhang, Fengmin Song, and Hao Li
Atmos. Chem. Phys., 24, 4029–4046, https://doi.org/10.5194/acp-24-4029-2024, https://doi.org/10.5194/acp-24-4029-2024, 2024
Short summary
Short summary
We used quantum chemical calculations, Born–Oppenheimer molecular dynamics simulations, and the ACDC kinetic model to characterize SO3–H2SO4 interaction in the gas phase and at the air–water interface and to study the effect of H2S2O7 on H2SO4–NH3-based clusters. The work expands our understanding of new pathways for the loss of SO3 in acidic polluted areas and helps reveal some missing sources of NPF in metropolitan industrial regions and understand the atmospheric organic–sulfur cycle better.
Hao Yang, Lei Chen, Hong Liao, Jia Zhu, Wenjie Wang, and Xin Li
Atmos. Chem. Phys., 24, 4001–4015, https://doi.org/10.5194/acp-24-4001-2024, https://doi.org/10.5194/acp-24-4001-2024, 2024
Short summary
Short summary
The present study quantifies the response of aerosol–radiation interaction (ARI) to anthropogenic emission reduction from 2013 to 2017, with the main focus on the contribution to changed O3 concentrations over eastern China both in summer and winter using the WRF-Chem model. The weakened ARI due to decreased anthropogenic emission aggravates the summer (winter) O3 pollution by +0.81 ppb (+0.63 ppb), averaged over eastern China.
Margaret R. Marvin, Paul I. Palmer, Fei Yao, Mohd Talib Latif, and Md Firoz Khan
Atmos. Chem. Phys., 24, 3699–3715, https://doi.org/10.5194/acp-24-3699-2024, https://doi.org/10.5194/acp-24-3699-2024, 2024
Short summary
Short summary
We use an atmospheric chemistry model to investigate aerosols emitted from fire activity across Southeast Asia. We find that the limited nature of measurements in this region leads to large uncertainties that significantly hinder the model representation of these aerosols and their impacts on air quality. As a result, the number of monthly attributable deaths is underestimated by as many as 4500, particularly in March at the peak of the mainland burning season.
Julie Camman, Benjamin Chazeau, Nicolas Marchand, Amandine Durand, Grégory Gille, Ludovic Lanzi, Jean-Luc Jaffrezo, Henri Wortham, and Gaëlle Uzu
Atmos. Chem. Phys., 24, 3257–3278, https://doi.org/10.5194/acp-24-3257-2024, https://doi.org/10.5194/acp-24-3257-2024, 2024
Short summary
Short summary
Fine particle (PM1) pollution is a major health issue in the city of Marseille, which is subject to numerous pollution sources. Sampling carried out during the summer enabled a fine characterization of the PM1 sources and their oxidative potential, a promising new metric as a proxy for health impact. PM1 came mainly from combustion sources, secondary ammonium sulfate, and organic nitrate, while the oxidative potential of PM1 came from these sources and from resuspended dust in the atmosphere.
Yuemeng Ji, Zhang Shi, Wenjian Li, Jiaxin Wang, Qiuju Shi, Yixin Li, Lei Gao, Ruize Ma, Weijun Lu, Lulu Xu, Yanpeng Gao, Guiying Li, and Taicheng An
Atmos. Chem. Phys., 24, 3079–3091, https://doi.org/10.5194/acp-24-3079-2024, https://doi.org/10.5194/acp-24-3079-2024, 2024
Short summary
Short summary
The formation mechanisms for secondary brown carbon (SBrC) contributed by multifunctional reduced nitrogen compounds (RNCs) remain unclear. Hence, from combined laboratory experiments and quantum chemical calculations, we investigated the heterogeneous reactions of glyoxal (GL) with multifunctional RNCs, which are driven by four-step indirect nucleophilic addition reactions. Our results show a possible missing source for SBrC formation on urban, regional, and global scales.
Elyse A. Pennington, Yuan Wang, Benjamin C. Schulze, Karl M. Seltzer, Jiani Yang, Bin Zhao, Zhe Jiang, Hongru Shi, Melissa Venecek, Daniel Chau, Benjamin N. Murphy, Christopher M. Kenseth, Ryan X. Ward, Havala O. T. Pye, and John H. Seinfeld
Atmos. Chem. Phys., 24, 2345–2363, https://doi.org/10.5194/acp-24-2345-2024, https://doi.org/10.5194/acp-24-2345-2024, 2024
Short summary
Short summary
To assess the air quality in Los Angeles (LA), we improved the CMAQ model by using dynamic traffic emissions and new secondary organic aerosol schemes to represent volatile chemical products. Source apportionment demonstrates that the urban areas of the LA Basin and vicinity are NOx-saturated, with the largest sensitivity of O3 to changes in volatile organic compounds in the urban core. The improvement and remaining issues shed light on the future direction of the model development.
Feifan Yan, Hang Su, Yafang Cheng, Rujin Huang, Hong Liao, Ting Yang, Yuanyuan Zhu, Shaoqing Zhang, Lifang Sheng, Wenbin Kou, Xinran Zeng, Shengnan Xiang, Xiaohong Yao, Huiwang Gao, and Yang Gao
Atmos. Chem. Phys., 24, 2365–2376, https://doi.org/10.5194/acp-24-2365-2024, https://doi.org/10.5194/acp-24-2365-2024, 2024
Short summary
Short summary
PM2.5 pollution is a major air quality issue deteriorating human health, and previous studies mostly focus on regions like the North China Plain and Yangtze River Delta. However, the characteristics of PM2.5 concentrations between these two regions are studied less often. Focusing on the transport corridor region, we identify an interesting seesaw transport phenomenon with stagnant weather conditions, conducive to PM2.5 accumulation over this region, resulting in large health effects.
Prerita Agarwal, David S. Stevenson, and Mathew R. Heal
Atmos. Chem. Phys., 24, 2239–2266, https://doi.org/10.5194/acp-24-2239-2024, https://doi.org/10.5194/acp-24-2239-2024, 2024
Short summary
Short summary
Air pollution levels across northern India are amongst some of the worst in the world, with episodic and hazardous haze events. Here, the ability of the WRF-Chem model to predict air quality over northern India is assessed against several datasets. Whilst surface wind speed and particle pollution peaks are over- and underestimated, respectively, meteorology and aerosol trends are adequately captured, and we conclude it is suitable for investigating severe particle pollution events.
George Jordan, Florent Malavelle, Ying Chen, Amy Peace, Eliza Duncan, Daniel G. Partridge, Paul Kim, Duncan Watson-Parris, Toshihiko Takemura, David Neubauer, Gunnar Myhre, Ragnhild Skeie, Anton Laakso, and James Haywood
Atmos. Chem. Phys., 24, 1939–1960, https://doi.org/10.5194/acp-24-1939-2024, https://doi.org/10.5194/acp-24-1939-2024, 2024
Short summary
Short summary
The 2014–15 Holuhraun eruption caused a huge aerosol plume in an otherwise unpolluted region, providing a chance to study how aerosol alters cloud properties. This two-part study uses observations and models to quantify this relationship’s impact on the Earth’s energy budget. Part 1 suggests the models capture the observed spatial and chemical evolution of the plume, yet no model plume is exact. Understanding these differences is key for Part 2, where changes to cloud properties are explored.
Lin Du, Xiaofan Lv, Makroni Lily, Kun Li, and Narcisse Tsona Tchinda
Atmos. Chem. Phys., 24, 1841–1853, https://doi.org/10.5194/acp-24-1841-2024, https://doi.org/10.5194/acp-24-1841-2024, 2024
Short summary
Short summary
This study explores the pH effect on the reaction of dissolved SO2 with selected organic peroxides. Results show that the formation of organic and/or inorganic sulfate from these peroxides strongly depends on their electronic structures, and these processes are likely to alter the chemical composition of dissolved organic matter in different ways. The rate constants of these reactions exhibit positive pH and temperature dependencies within pH 1–10 and 240–340 K ranges.
Angelo Riccio and Elena Chianese
Atmos. Chem. Phys., 24, 1673–1689, https://doi.org/10.5194/acp-24-1673-2024, https://doi.org/10.5194/acp-24-1673-2024, 2024
Short summary
Short summary
Starting from the Copernicus Atmosphere Monitoring Service (CAMS), we provided a novel ensemble statistical post-processing approach to improve their air quality predictions. Our approach is able to provide reliable short-term forecasts of pollutant concentrations, which is a key challenge in supporting national authorities in their tasks related to EU Air Quality Directives, such as planning and reporting the state of air quality to the citizens.
Stella E. I. Manavi and Spyros N. Pandis
Atmos. Chem. Phys., 24, 891–909, https://doi.org/10.5194/acp-24-891-2024, https://doi.org/10.5194/acp-24-891-2024, 2024
Short summary
Short summary
Organic vapors of intermediate volatility have often been neglected as sources of atmospheric organic aerosol. In this work we use a new approach for their simulation and quantify the contribution of these compounds emitted by transportation sources (gasoline and diesel vehicles) to particulate matter over Europe. The estimated secondary organic aerosol levels are on average 60 % higher than predicted by previous approaches. However, these estimates are probably lower limits.
Zhiyuan Li, Kin-Fai Ho, Harry Fung Lee, and Steve Hung Lam Yim
Atmos. Chem. Phys., 24, 649–661, https://doi.org/10.5194/acp-24-649-2024, https://doi.org/10.5194/acp-24-649-2024, 2024
Short summary
Short summary
This study developed an integrated model framework for accurate multi-air-pollutant exposure assessments in high-density and high-rise cities. Following the proposed integrated model framework, we established multi-air-pollutant exposure models for four major PM10 chemical species as well as four criteria air pollutants with R2 values ranging from 0.73 to 0.93. The proposed framework serves as an important tool for combined exposure assessment in epidemiological studies.
Yujin Jo, Myoseon Jang, Sanghee Han, Azad Madhu, Bonyoung Koo, Yiqin Jia, Zechen Yu, Soontae Kim, and Jinsoo Park
Atmos. Chem. Phys., 24, 487–508, https://doi.org/10.5194/acp-24-487-2024, https://doi.org/10.5194/acp-24-487-2024, 2024
Short summary
Short summary
The CAMx–UNIPAR model simulated the SOA budget formed via multiphase reactions of hydrocarbons and the impact of emissions and climate on SOA characteristics under California’s urban environments during winter 2018. SOA growth was dominated by daytime oxidation of long-chain alkanes and nighttime terpene oxidation with O3 and NO−3 radicals. The spatial distributions of anthropogenic SOA were affected by the northwesterly wind, whereas those of biogenic SOA were insensitive to wind directions.
Peter Huszar, Alvaro Patricio Prieto Perez, Lukáš Bartík, Jan Karlický, and Anahi Villalba-Pradas
Atmos. Chem. Phys., 24, 397–425, https://doi.org/10.5194/acp-24-397-2024, https://doi.org/10.5194/acp-24-397-2024, 2024
Short summary
Short summary
Urbanization transforms rural land into artificial land, while due to human activities, it also introduces a great quantity of emissions. We quantify the impact of urbanization on the final particulate matter pollutant levels by looking not only at these emissions, but also at the way urban land cover influences meteorological conditions, how the removal of pollutants changes due to urban land cover, and how biogenic emissions from vegetation change due to less vegetation in urban areas.
Yinbao Jin, Yiming Liu, Xiao Lu, Xiaoyang Chen, Ao Shen, Haofan Wang, Yinping Cui, Yifei Xu, Siting Li, Jian Liu, Ming Zhang, Yingying Ma, and Qi Fan
Atmos. Chem. Phys., 24, 367–395, https://doi.org/10.5194/acp-24-367-2024, https://doi.org/10.5194/acp-24-367-2024, 2024
Short summary
Short summary
This study aims to address these issues by evaluating eight independent biomass burning (BB) emission inventories (GFED, FINN1.5, FINN2.5 MOS, FINN2.5 MOSVIS, GFAS, FEER, QFED, and IS4FIRES) using the WRF-Chem model and analyzing their impact on aerosol optical properties (AOPs) and direct radiative forcing (DRF) during wildfire events in peninsular Southeast Asia (PSEA) that occurred in March 2019.
Hamza Ahsan, Hailong Wang, Jingbo Wu, Mingxuan Wu, Steven J. Smith, Susanne Bauer, Harrison Suchyta, Dirk Olivié, Gunnar Myhre, Hitoshi Matsui, Huisheng Bian, Jean-François Lamarque, Ken Carslaw, Larry Horowitz, Leighton Regayre, Mian Chin, Michael Schulz, Ragnhild Bieltvedt Skeie, Toshihiko Takemura, and Vaishali Naik
Atmos. Chem. Phys., 23, 14779–14799, https://doi.org/10.5194/acp-23-14779-2023, https://doi.org/10.5194/acp-23-14779-2023, 2023
Short summary
Short summary
We examine the impact of the assumed effective height of SO2 injection, SO2 and BC emission seasonality, and the assumed fraction of SO2 emissions injected as SO4 on climate and chemistry model results. We find that the SO2 injection height has a large impact on surface SO2 concentrations and, in some models, radiative flux. These assumptions are a
hiddensource of inter-model variability and may be leading to bias in some climate model results.
Zhen Peng, Lili Lei, Zhe-Min Tan, Meigen Zhang, Aijun Ding, and Xingxia Kou
Atmos. Chem. Phys., 23, 14505–14520, https://doi.org/10.5194/acp-23-14505-2023, https://doi.org/10.5194/acp-23-14505-2023, 2023
Short summary
Short summary
Annual PM2.5 emissions in China consistently decreased by about 3% to 5% from 2017 to 2020 with spatial variations and seasonal dependencies. High-temporal-resolution and dynamics-based PM2.5 emission estimates provide quantitative diurnal variations for each season. Significant reductions in PM2.5 emissions in the North China Plain and northeast of China in 2020 were caused by COVID-19.
Stylianos Kakavas, Spyros N. Pandis, and Athanasios Nenes
Atmos. Chem. Phys., 23, 13555–13564, https://doi.org/10.5194/acp-23-13555-2023, https://doi.org/10.5194/acp-23-13555-2023, 2023
Short summary
Short summary
Water uptake from organic species in aerosol can affect the partitioning of semi-volatile inorganic compounds but are not considered in global and chemical transport models. We address this with a version of the PM-CAMx model that considers such organic water effects and use it to carry out 1-year aerosol simulations over the continental US. We show that such organic water impacts can increase dry PM1 levels by up to 2 μg m-3 when RH levels and PM1 concentrations are high.
Benjamin N. Murphy, Darrell Sonntag, Karl M. Seltzer, Havala O. T. Pye, Christine Allen, Evan Murray, Claudia Toro, Drew R. Gentner, Cheng Huang, Shantanu Jathar, Li Li, Andrew A. May, and Allen L. Robinson
Atmos. Chem. Phys., 23, 13469–13483, https://doi.org/10.5194/acp-23-13469-2023, https://doi.org/10.5194/acp-23-13469-2023, 2023
Short summary
Short summary
We update methods for calculating organic particle and vapor emissions from mobile sources in the USA. Conventionally, particulate matter (PM) and volatile organic carbon (VOC) are speciated without consideration of primary semivolatile emissions. Our methods integrate state-of-the-science speciation profiles and correct for common artifacts when sampling emissions in a laboratory. We quantify impacts of the emission updates on ambient pollution with the Community Multiscale Air Quality model.
Yanshun Li, Randall V. Martin, Chi Li, Brian L. Boys, Aaron van Donkelaar, Jun Meng, and Jeffrey R. Pierce
Atmos. Chem. Phys., 23, 12525–12543, https://doi.org/10.5194/acp-23-12525-2023, https://doi.org/10.5194/acp-23-12525-2023, 2023
Short summary
Short summary
We developed and evaluated processes affecting within-day (diel) variability in PM2.5 concentrations in a chemical transport model over the contiguous US. Diel variability in PM2.5 for the contiguous US is driven by early-morning accumulation into a shallow mixed layer, decreases from mid-morning through afternoon with mixed-layer growth, increases from mid-afternoon through evening as the mixed-layer collapses, and decreases overnight as emissions decrease.
Chupeng Zhang, Shangfei Hai, Yang Gao, Yuhang Wang, Shaoqing Zhang, Lifang Sheng, Bin Zhao, Shuxiao Wang, Jingkun Jiang, Xin Huang, Xiaojing Shen, Junying Sun, Aura Lupascu, Manish Shrivastava, Jerome D. Fast, Wenxuan Cheng, Xiuwen Guo, Ming Chu, Nan Ma, Juan Hong, Qiaoqiao Wang, Xiaohong Yao, and Huiwang Gao
Atmos. Chem. Phys., 23, 10713–10730, https://doi.org/10.5194/acp-23-10713-2023, https://doi.org/10.5194/acp-23-10713-2023, 2023
Short summary
Short summary
New particle formation is an important source of atmospheric particles, exerting critical influences on global climate. Numerical models are vital tools to understanding atmospheric particle evolution, which, however, suffer from large biases in simulating particle numbers. Here we improve the model chemical processes governing particle sizes and compositions. The improved model reveals substantial contributions of newly formed particles to climate through effects on cloud condensation nuclei.
Cited articles
Aksoyoglu, S., Baltensperger, U., and Prévôt, A. S. H.: Contribution
of ship emissions to the concentration and deposition of air pollutants in
Europe, Atmos. Chem. Phys., 16, 1895–1906,
https://doi.org/10.5194/acp-16-1895-2016, 2016.
Boylan, J. W. and Russell, A. G.: PM and light extinction model performance
metrics, goals, and criteria for three-dimensional air quality models,
Atmos. Environ., 40, 4946–4959, https://doi.org/10.1016/j.atmosenv.2005.09.087,
2006.
Buhaug, Ø., Corbett, J. J., Endresen, Ø., Eyring, V., Faber, J.,
Hanayama, S., Lee, D. S., Lee, D., Lindstad, H., Markowska, A. Z., Mjelde,
A., Nelissen, D., Nilsen, J., Pålsson, C., Winebrake, J. J., Wu, W., and
Yoshida, K.: Second IMO GHG Study 2009, IMO, available at:
http://www.imo.org/en/OurWork/Environment/PollutionPrevention/AirPollution/Documents/SecondIMOGHGStudy2009.pdf
(last access: 25 October 2018), 2009.
Cai, S., Wang, Y., Zhao, B., Wang, S., Chang, X., and Hao, J.: The impact of
the “Air Pollution Prevention and Control Action Plan” on PM2.5
concentrations in Jing-Jin-Ji region during 2012–2020, Sci. Total. Environ.,
580, 197–209, https://doi.org/10.1016/j.scitotenv.2016.11.188, 2017.
Cames, M., Graichen, J., Siemons, A., and Cook, V.: Emission Reduction
Targets for International Aviation and Shipping, ENVI, available at:
http://www.europarl.europa.eu/RegData/etudes/STUD/2015/569964/IPOL_STU(2015)569964_EN.pdf
(last access: 25 October 2018), 2015.
Chen, D., Wang, X., Nelson, P., Li, Y., Zhao, N., Zhao, Y., Lang, J., Zhou,
Y., and Guo, X.: Ship emission inventory and its impact on the PM2.5 air
pollution in Qingdao Port, North China, Atmos. Environ., 166,
351–361, https://doi.org/10.1016/j.atmosenv.2017.07.021, 2017.
Corbett, J. J. and Fischbeck, P.: Emissions from Ships, Science, 278,
823–824, https://doi.org/10.1126/science.278.5339.823, 1997.
Corbett, J. J., Fischbeck, P. S., and Pandis, S. N.: Global nitrogen and
sulfur inventories for oceangoing ships, J. Geophys. Res.-Atmos., 104, 3457–3470, https://doi.org/10.1029/1998jd100040, 1999.
Emery, C., Tai, E., and Yarwood, G.: Enhanced Meteorological Modeling and
Performance Evaluation for Two Texas Ozone Episodes, Final Report, The Texas
Natural Resource Conservation Commission, 12118 Park 35 Circle Austin, Texas
78753, 2001.
Eyring, V.: Emissions from international shipping: 1. The last 50 years, J.
Geophys. Res., 110, D17305, https://doi.org/10.1029/2004jd005619, 2005.
Fan, Q., Zhang, Y., Ma, W., Ma, H., Feng, J., Yu, Q., Yang, X., Ng, S. K.,
Fu, Q., and Chen, L.: Spatial and Seasonal Dynamics of Ship Emissions over
the Yangtze River Delta and East China Sea and Their Potential Environmental
Influence, Environ. Sci. Technol., 50, 1322–1329, https://doi.org/10.1021/acs.est.5b03965,
2016.
Fu, H. and Chen, J.: Formation, features and controlling strategies of
severe haze-fog pollutions in China, Sci. Total Environ., 578, 121–138,
https://doi.org/10.1016/j.scitotenv.2016.10.201, 2017.
Fu, M., Liu, H., Jin, X., and He, K.: National- to port-level inventories of
shipping emissions in China, Environ. Res. Lett., 12, 114024, https://doi.org/10.1088/1748-9326/aa897a, 2017.
Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and Geron,
C.: Estimates of global terrestrial isoprene emissions using MEGAN (Model of
Emissions of Gases and Aerosols from Nature), Atmos. Chem. Phys., 6,
3181–3210, https://doi.org/10.5194/acp-6-3181-2006, 2006.
Hu, J., Wu, L., Zheng, B., Zhang, Q., He, K., Chang, Q., Li, X., Yang, F.,
Ying, Q., and Zhang, H.: Source contributions and regional transport of
primary particulate matter in China, Environ. Pollut., 207, 31–42,
https://doi.org/10.1016/j.envpol.2015.08.037, 2015.
Hu, J., Huang, L., Chen, M., Liao, H., Zhang, H., Wang, S., Zhang, Q., and
Ying, Q.: Premature Mortality Attributable to Particulate Matter in China:
Source Contributions and Responses to Reductions, Environ. Sci. Technol., 51,
9950–9959, https://doi.org/10.1021/acs.est.7b03193, 2017.
Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S.
A., and Collins, W. D.: Radiative forcing by long-lived greenhouse gases:
Calculations with the AER radiative transfer models, J. Geophys. Res., 113,
D13103, https://doi.org/10.1029/2008jd009944, 2008.
IMO: Emission Control Areas (ECAs) designated under MARPOL Annex VI, IMO,
available at:
http://www.imo.org/en/OurWork/Environment/Pollution
(last access: 25 October 2018), 2017.
Kain, J. S.: The Kain-Fritsch Convective Parameterization: An Update,
J. Appl. Meteorol., 43, 170–181, https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2, 2004.
Lang, J., Zhou, Y., Chen, D., Xing, X., Wei, L., Wang, X., Zhao, N., Zhang,
Y., Guo, X., Han, L., and Cheng, S.: Investigating the contribution of
shipping emissions to atmospheric PM2.5 using a combined source
apportionment approach, Environ. Pollut., 229, 557–566,
https://doi.org/10.1016/j.envpol.2017.06.087, 2017.
Li, C., Yuan, Z., Ou, J., Fan, X., Ye, S., Xiao, T., Shi, Y., Huang, Z., Ng,
S. K. W., Zhong, Z., and Zheng, J.: An AIS-based high-resolution ship
emission inventory and its uncertainty in Pearl River Delta region, China,
Sci. Total Environ., 573, 1–10, https://doi.org/10.1016/j.scitotenv.2016.07.219, 2016.
Li, C., Borken-Kleefeld, J., Zheng, J., Yuan, Z., Ou, J., Li, Y., Wang, Y.,
and Xu, Y.: Decadal evolution of ship emissions in China from 2004 to 2013 by
using an integrated AIS-based approach and projection to 2040, Atmos. Chem.
Phys., 18, 6075–6093, https://doi.org/10.5194/acp-18-6075-2018, 2018.
Li, J., Cleveland, M., Ziemba, L. D., Griffin, R. J., Barsanti, K. C.,
Pankow, J. F., and Ying, Q.: Modeling regional secondary organic aerosol
using the Master Chemical Mechanism, Atmos. Environ., 102, 52–61,
https://doi.org/10.1016/j.atmosenv.2014.11.054, 2015.
Li, M., Zhang, Q., Kurokawa, J.-I., Woo, J.-H., He, K., Lu, Z., Ohara, T.,
Song, Y., Streets, D. G., Carmichael, G. R., Cheng, Y., Hong, C., Huo, H.,
Jiang, X., Kang, S., Liu, F., Su, H., and Zheng, B.: MIX: a mosaic Asian
anthropogenic emission inventory under the international collaboration
framework of the MICS-Asia and HTAP, Atmos. Chem. Phys., 17, 935–963,
https://doi.org/10.5194/acp-17-935-2017, 2017.
Liu, H., Fu, M., Jin, X., Shang, Y., Shindell, D., Faluvegi, G., Shindell,
C., and He, K.: Health and climate impacts of ocean-going vessels in East
Asia, Nat. Clim. Change, 6, 1037–1041, https://doi.org/10.1038/nclimate3083, 2016.
Liu, H., Man, H., Cui, H., Wang, Y., Deng, F., Wang, Y., Yang, X., Xiao, Q.,
Zhang, Q., Ding, Y., and He, K.: An updated emission inventory of vehicular
VOCs and IVOCs in China, Atmos. Chem. Phys., 17, 12709–12724,
https://doi.org/10.5194/acp-17-12709-2017, 2017a.
Liu, H., Jin, X., Wu, L., Wang, X., Fu, M., Lv, Z., Morawska, L., Huang, F.,
and He, K.: The impact of marine shipping and its DECA control on air
quality in the Pearl River Delta, China, Sci. Total Environ.,
625, 1476–1485, https://doi.org/10.1016/j.scitotenv.2018.01.033, 2018a.
Liu, H., Meng, Z. H., Shang, Y., Lv, Z. F., Jin, X. X., Fu, M. L., and He,
K. B.: Shipping emission forecasts and cost-benefit analysis of China ports
and key regions' control, Environ. Pollut., 236, 49–59,
https://doi.org/10.1016/j.envpol.2018.01.018, 2018b.
Liu, Z., Lu, X., Feng, J., Fan, Q., Zhang, Y., and Yang, X.: Influence of
Ship Emissions on Urban Air Quality: A Comprehensive Study Using Highly
Time-Resolved Online Measurements and Numerical Simulation in Shanghai,
Environ. Sci. Technol., 51, 202–211, https://doi.org/10.1021/acs.est.6b03834, 2017b.
Marelle, L., Thomas, J. L., Raut, J.-C., Law, K. S., Jalkanen, J.-P.,
Johansson, L., Roiger, A., Schlager, H., Kim, J., Reiter, A., and Weinzierl,
B.: Air quality and radiative impacts of Arctic shipping emissions in the
summertime in northern Norway: from the local to the regional scale, Atmos.
Chem. Phys., 16, 2359–2379, https://doi.org/10.5194/acp-16-2359-2016, 2016.
Morrison, H., Thompson, G., and Tatarskii, V.: Impact of Cloud Microphysics
on the Development of Trailing Stratiform Precipitation in a Simulated
Squall Line: Comparison of One- and Two-Moment Schemes, Mon. Weather Rev., 137, 991–1007, https://doi.org/10.1175/2008mwr2556.1, 2009.
Murphy, B. N., Woody, M. C., Jimenez, J. L., Carlton, A. M. G., Hayes, P. L.,
Liu, S., Ng, N. L., Russell, L. M., Setyan, A., Xu, L., Young, J., Zaveri, R.
A., Zhang, Q., and Pye, H. O. T.: Semivolatile POA and parameterized total
combustion SOA in CMAQv5.2: impacts on source strength and partitioning,
Atmos. Chem. Phys., 17, 11107–11133,
https://doi.org/10.5194/acp-17-11107-2017, 2017.
Olmer, N., Comer, B., Roy, B., Mao, X., and Rutherford, D.: Greenhouse gas
emissions from global shipping, 2013–2015, ICCT, available at:
https://www.theicct.org/sites/default/files/publications/Global-shipping-GHG-emissions-2013-2015_ICCT-Report_17102017_vF.pdf
(last access: 25 October 2018), 2017.
Pleim, J. E.: A Combined Local and Nonlocal Closure Model for the Atmospheric
Boundary Layer. Part I: Model Description and Testing, J. Appl. Meteorol.
Clim., 46, 1383–1395, https://doi.org/10.1175/jam2539.1, 2007.
Qiao, X., Ying, Q., Li, X., Zhang, H., Hu, J., Tang, Y., and Chen, X.:
Source apportionment of PM2.5 for 25 Chinese provincial capitals and
municipalities using a source-oriented Community Multiscale Air Quality
model, Sci. Total Environ., 612, 462–471, https://doi.org/10.1016/j.scitotenv.2017.08.272,
2018.
Shi, Z., Li, J., Huang, L., Wang, P., Wu, L., Ying, Q., Zhang, H., Lu, L.,
Liu, X., Liao, H., and Hu, J.: Source apportionment of fine particulate
matter in China in 2013 using a source-oriented chemical transport model,
Sci. Total Environ., 601–602, 1476–1487, https://doi.org/10.1016/j.scitotenv.2017.06.019,
2017.
Tao, J., Zhang, L., Cao, J., Zhong, L., Chen, D., Yang, Y., Chen, D., Chen,
L., Zhang, Z., Wu, Y., Xia, Y., Ye, S., and Zhang, R.: Source apportionment
of PM2.5 at urban and suburban areas of the Pearl River Delta region, south
China – With emphasis on ship emissions, Sci. Total Environ., 574, 1559–1570,
https://doi.org/10.1016/j.scitotenv.2016.08.175, 2017.
Viana, M., Amato, F., Alastuey, A., Querol, X., Moreno, T., García Dos
Santos, S., Herce, M. D., and Fernández-Patier, R.: Chemical Tracers of
Particulate Emissions from Commercial Shipping, Environ. Sci. Technol., 43, 7472–7477, https://doi.org/10.1021/es901558t, 2009.
Woody, M. C., Baker, K. R., Hayes, P. L., Jimenez, J. L., Koo, B., and Pye,
H. O. T.: Understanding sources of organic aerosol during CalNex-2010 using
the CMAQ-VBS, Atmos. Chem. Phys., 16, 4081–4100,
https://doi.org/10.5194/acp-16-4081-2016, 2016.
Xiao, Q., Li, M., Liu, H., Fu, M., Deng, F., Lv, Z., Man, H., Jin, X., Liu,
S., and He, K.: Characteristics of marine shipping emissions at berth:
profiles for particulate matter and volatile organic compounds, Atmos. Chem.
Phys., 18, 9527–9545, https://doi.org/10.5194/acp-18-9527-2018, 2018.
Xiu, A. and Pleim, J. E.: Development of a Land Surface Model. Part I:
Application in a Mesoscale Meteorological Model, J. Appl. Meteorol., 40,
192–209, https://doi.org/10.1175/1520-0450(2001)040<0192:DOALSM>2.0.CO;2, 2001.
Ying, Q. and Kleeman, M. J.: Source contributions to the regional
distribution of secondary particulate matter in California, Atmos. Environ.,
40, 736–752, https://doi.org/10.1016/j.atmosenv.2005.10.007, 2006.
Ying, Q., Lu, J., Allen, P., Livingstone, P., Kaduwela, A., and Kleeman, M.:
Modeling air quality during the California Regional PM10/PM2.5 Air Quality
Study (CRPAQS) using the UCD/CIT source-oriented air quality model – Part
I. Base case model results, Atmos. Environ., 42, 8954–8966,
https://doi.org/10.1016/j.atmosenv.2008.05.064, 2008.
Ying, Q., Cureño, I. V., Chen, G., Ali, S., Zhang, H., Malloy, M.,
Bravo, H. A., and Sosa, R.: Impacts of Stabilized Criegee Intermediates,
surface uptake processes and higher aromatic secondary organic aerosol
yields on predicted PM2.5 concentrations in the Mexico City Metropolitan
Zone, Atmos. Environ., 94, 438–447, https://doi.org/10.1016/j.atmosenv.2014.05.056,
2014a.
Ying, Q., Wu, L., and Zhang, H.: Local and inter-regional contributions to
PM2.5 nitrate and sulfate in China, Atmos. Environ., 94, 582–592,
https://doi.org/10.1016/j.atmosenv.2014.05.078, 2014b.
Ying, Q., Li, J., and Kota, S. H.: Significant Contributions of Isoprene to
Summertime Secondary Organic Aerosol in Eastern United States, Environ. Sci.
Technol., 49, 7834–7842, https://doi.org/10.1021/acs.est.5b02514, 2015.
Zhang, F., Chen, Y., Chen, Q., Feng, Y., Shang, Y., Yang, X., Gao, H., Tian,
C., Li, J., Zhang, G., Matthias, V., and Xie, Z.: Real-World Emission
Factors of Gaseous and Particulate Pollutants from Marine Fishing Boats and
Their Total Emissions in China, Environ. Sci. Technol., 52, 4910–4919,
https://doi.org/10.1021/acs.est.7b04002, 2018.
Zhang, H., Li, J., Ying, Q., Yu, J. Z., Wu, D., Cheng, Y., He, K., and
Jiang, J.: Source apportionment of PM2.5 nitrate and sulfate in China using
a source-oriented chemical transport model, Atmos. Environ., 62,
228–242, https://doi.org/10.1016/j.atmosenv.2012.08.014, 2012.
Zhang, Y. L. and Cao, F.: Fine particulate matter (PM2.5) in China at a
city level, Sci. Rep., 5, 14884, https://doi.org/10.1038/srep14884, 2015.
Short summary
This study comprehensively analyzed the impacts of the marine transport sector to the concentrations of PM2.5 and its components in eastern China on multiple temporal and spatial scales. Furthermore, a source-oriented CMAQ was used to identify the contributions of shipping emissions from different maritime areas to the inland air quality. This work supplemented the insufficiency of multi-scale researches on the influences of the shipping sector on the inland air quality.
This study comprehensively analyzed the impacts of the marine transport sector to the...
Altmetrics
Final-revised paper
Preprint