Articles | Volume 18, issue 20
https://doi.org/10.5194/acp-18-15105-2018
https://doi.org/10.5194/acp-18-15105-2018
Research article
 | 
19 Oct 2018
Research article |  | 19 Oct 2018

The oxidation regime and SOA composition in limonene ozonolysis: roles of different double bonds, radicals, and water

Yiwei Gong, Zhongming Chen, and Huan Li

Related authors

Quantification of the role of stabilized Criegee intermediates in the formation of aerosols in limonene ozonolysis
Yiwei Gong and Zhongming Chen
Atmos. Chem. Phys., 21, 813–829, https://doi.org/10.5194/acp-21-813-2021,https://doi.org/10.5194/acp-21-813-2021, 2021
Short summary
Partitioning of hydrogen peroxide in gas-liquid and gas-aerosol phases
Xiaoning Xuan, Zhongming Chen, Yiwei Gong, Hengqing Shen, and Shiyi Chen
Atmos. Chem. Phys., 20, 5513–5526, https://doi.org/10.5194/acp-20-5513-2020,https://doi.org/10.5194/acp-20-5513-2020, 2020
Short summary

Related subject area

Subject: Aerosols | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Yields and molecular composition of gas-phase and secondary organic aerosol from the photooxidation of the volatile consumer product benzyl alcohol: formation of highly oxygenated and hydroxy nitro-aromatic compounds
Mohammed Jaoui, Kenneth S. Docherty, Michael Lewandowski, and Tadeusz E. Kleindienst
Atmos. Chem. Phys., 23, 4637–4661, https://doi.org/10.5194/acp-23-4637-2023,https://doi.org/10.5194/acp-23-4637-2023, 2023
Short summary
A combined gas- and particle-phase analysis of highly oxygenated organic molecules (HOMs) from α-pinene ozonolysis
Jian Zhao, Ella Häkkinen, Frans Graeffe, Jordan E. Krechmer, Manjula R. Canagaratna, Douglas R. Worsnop, Juha Kangasluoma, and Mikael Ehn
Atmos. Chem. Phys., 23, 3707–3730, https://doi.org/10.5194/acp-23-3707-2023,https://doi.org/10.5194/acp-23-3707-2023, 2023
Short summary
Comparison of aqueous secondary organic aerosol (aqSOA) product distributions from guaiacol oxidation by non-phenolic and phenolic methoxybenzaldehydes as photosensitizers in the absence and presence of ammonium nitrate
Beatrix Rosette Go Mabato, Yong Jie Li, Dan Dan Huang, Yalin Wang, and Chak K. Chan
Atmos. Chem. Phys., 23, 2859–2875, https://doi.org/10.5194/acp-23-2859-2023,https://doi.org/10.5194/acp-23-2859-2023, 2023
Short summary
Technical note: Chemical composition and source identification of fluorescent components in atmospheric water-soluble brown carbon by excitation–emission matrix spectroscopy with parallel factor analysis – potential limitations and applications
Tao Cao, Meiju Li, Cuncun Xu, Jianzhong Song, Xingjun Fan, Jun Li, Wanglu Jia, and Ping'an Peng
Atmos. Chem. Phys., 23, 2613–2625, https://doi.org/10.5194/acp-23-2613-2023,https://doi.org/10.5194/acp-23-2613-2023, 2023
Short summary
Insoluble lipid film mediates transfer of soluble saccharides from the sea to the atmosphere: the role of hydrogen bonding
Minglan Xu, Narcisse Tsona Tchinda, Jianlong Li, and Lin Du
Atmos. Chem. Phys., 23, 2235–2249, https://doi.org/10.5194/acp-23-2235-2023,https://doi.org/10.5194/acp-23-2235-2023, 2023
Short summary

Cited articles

Ahmad, W., Coeur, C., Cuisset, A., Coddeville, P., and Tomas, A.: Effects of scavengers of Criegee intermediates and OH radicals on the formation of secondary organic aerosol in the ozonolysis of limonene, J. Aerosol. Sci., 110, 70–83, https://doi.org/10.1016/j.jaerosci.2017.05.010, 2017. 
Andersson-Sköld, Y. and Simpson, D.: Secondary organic aerosol formation in northern Europe: A model study, J. Geophys. Res., 106, 7357–7374, https://doi.org/10.1029/2000JD900656, 2001. 
Anglada, J. M., Aplincourt, P., Bofill, J. M., and Cremer, D.: Atmospheric formation of OH radicals and H2O2 from alkene ozonolysis under humid conditions, Chem. Phys. Chem., 3, 215–221, https://doi.org/10.1002/1439-7641(20020215)3:2<215::Aid-Cphc215>3.3.Co;2-V, 2002. 
Anglada, J. M., González, J., and Torrent-Sucarrat, M.: Effects of the substituents on the reactivity of carbonyl oxides. A theoretical study on the reaction of substituted carbonyl oxides with water, Phys. Chem. Chem. Phys., 13, 13034–13045, https://doi.org/10.1039/C1CP20872A, 2011. 
Aplincourt, P. and Anglada, J. M.: Theoretical studies of the isoprene ozonolysis under tropospheric conditions. 2. Unimolecular and water-assisted decomposition of the α-hydroxy hydroperoxides, J. Phys. Chem. A, 107, 5812–5820, https://doi.org/10.1021/jp034203w, 2003. 
Download
Short summary
In limonene ozonolysis, the endocyclic double bond is inclined to generate hydroxy radicals, while the exocyclic double bond has a higher fraction of forming stabilized Criegee intermediates. The oxidation that happens on the exocyclic double bond greatly contributes to the organic peroxides, which account for a considerable proportion of secondary organic aerosol. Terpenes with multiple double bonds may have more complex effects on the atmosphere than previously thought.
Altmetrics
Final-revised paper
Preprint