Articles | Volume 18, issue 19
Research article
09 Oct 2018
Research article |  | 09 Oct 2018

A numerical modelling investigation of the role of diabatic heating and cooling in the development of a mid-level vortex prior to tropical cyclogenesis – Part 1: The response to stratiform components of diabatic forcing

Melville E. Nicholls, Roger A. Pielke Sr., Donavan Wheeler, Gustavo Carrio, and Warren P. Smith

Related authors

A numerical modelling study of the physical mechanisms causing radiation to accelerate tropical cyclogenesisand cause diurnal cycles
Melville E. Nicholls, Warren P. Smith, Roger A. Pielke Sr., Stephen M. Saleeby, and Norman B. Wood
Atmos. Chem. Phys. Discuss.,,, 2019
Preprint withdrawn
Short summary
On the role of thermal expansion and compression in large-scale atmospheric energy and mass transports
Melville E. Nicholls and Roger A. Pielke Sr.
Atmos. Chem. Phys., 18, 15975–16003,,, 2018
Short summary
An investigation of how radiation may cause accelerated rates of tropical cyclogenesis and diurnal cycles of convective activity
M. E. Nicholls
Atmos. Chem. Phys., 15, 9003–9029,,, 2015
An examination of two pathways to tropical cyclogenesis occurring in idealized simulations with a cloud-resolving numerical model
M. E. Nicholls and M. T. Montgomery
Atmos. Chem. Phys., 13, 5999–6022,,, 2013

Related subject area

Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Evaluation of aerosol–cloud interactions in E3SM using a Lagrangian framework
Matthew W. Christensen, Po-Lun Ma, Peng Wu, Adam C. Varble, Johannes Mülmenstädt, and Jerome D. Fast
Atmos. Chem. Phys., 23, 2789–2812,,, 2023
Short summary
Impact of formulations of the homogeneous nucleation rate on ice nucleation events in cirrus
Peter Spichtinger, Patrik Marschalik, and Manuel Baumgartner
Atmos. Chem. Phys., 23, 2035–2060,,, 2023
Short summary
Temperature and cloud condensation nuclei (CCN) sensitivity of orographic precipitation enhanced by a mixed-phase seeder–feeder mechanism: a case study for the 2015 Cumbria flood
Julia Thomas, Andrew Barrett, and Corinna Hoose
Atmos. Chem. Phys., 23, 1987–2002,,, 2023
Short summary
Aerosol–precipitation elevation dependence over the central Himalayas using cloud-resolving WRF-Chem numerical modeling
Pramod Adhikari and John F. Mejia
Atmos. Chem. Phys., 23, 1019–1042,,, 2023
Short summary
Machine learning of cloud types in satellite observations and climate models
Peter Kuma, Frida A.-M. Bender, Alex Schuddeboom, Adrian J. McDonald, and Øyvind Seland
Atmos. Chem. Phys., 23, 523–549,,, 2023
Short summary

Cited articles

Adams-Selin, R. D. and Johnson, R. H.: Examination of gravity waves associated with the 13 March 2003 bow echo, Mon. Weather Rev., 141, 3735–3756, 2013. 
Bister, M. and Emanuel, K. A.: The genesis of hurricane Guillermo: TEXMEX analyses and a modeling study, Mon. Weather Rev., 125, 2662–2682, 1997. 
Braun, S. A. and Houze Jr., R. A.: The evolution of the 10–11 June 1985 PRE-STORM squall line: Initiation, development of rear inflow, and dissipation, Mon. Weather Rev., 125, 478–504, 1997. 
Chen, S. S. and Frank, W. M.: A numerical study of the genesis of extratropical convective mesovortices. Part I: Evolution and dynamics, J. Atmos. Sci., 50, 2401–2426, 1993. 
Conzemius, R. J. and Montgomery, M. T.: Clarification on the generation of absolute and potential vorticity in mesoscale convective vortices, Atmos. Chem. Phys., 9, 7591–7605,, 2009. 
Short summary
Mid-level vortices are often observed to develop prior to the formation of a tropical cyclone. A numerical modelling simulation of tropical cyclogenesis is carried out which shows the development of a mid-level vortex, and an analysis indicates that sublimation at the base of the stratiform ice layer plays a major role in its formation. Understanding how mid-level vortices form and their role in tropical cyclogenesis may eventually lead to improved forecasts of these major weather events.
Final-revised paper