Articles | Volume 18, issue 16
https://doi.org/10.5194/acp-18-11697-2018
https://doi.org/10.5194/acp-18-11697-2018
Research article
 | 
17 Aug 2018
Research article |  | 17 Aug 2018

Assessment of global navigation satellite system (GNSS) radio occultation refractivity under heavy precipitation

Ramon Padullés, Estel Cardellach, Kuo-Nung Wang, Chi O. Ao, F. Joseph Turk, and Manuel de la Torre-Juárez

Related authors

Cluster Analysis of Vertical Polarimetric Radio Occultation Profiles and Corresponding Liquid and Ice Water Paths From GPM Microwave Data
Jonas Ernő Katona, Manuel de la Torre Juárez, Terence L. Kubar, F. Joseph Turk, Kuo-Nung Wang, and Ramon Padullés
EGUsphere, https://doi.org/10.5194/egusphere-2024-1278,https://doi.org/10.5194/egusphere-2024-1278, 2024
Short summary
The PAZ Polarimetric Radio Occultation Research Dataset for Scientific Applications
Ramon Padullés, Estel Cardellach, Antía Paz, Santi Oliveras, Douglas C. Hunt, Sergey Sokolovskiy, Jan P. Weiss, Kuo-Nung Wang, F. Joe Turk, Chi O. Ao, and Manuel de la Torre Juárez
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-150,https://doi.org/10.5194/essd-2024-150, 2024
Revised manuscript accepted for ESSD
Short summary
On the global relationship between polarimetric radio occultation differential phase shift and ice water content
Ramon Padullés, Estel Cardellach, and F. Joseph Turk
Atmos. Chem. Phys., 23, 2199–2214, https://doi.org/10.5194/acp-23-2199-2023,https://doi.org/10.5194/acp-23-2199-2023, 2023
Short summary
Calibration and validation of the Polarimetric Radio Occultation and Heavy Precipitation experiment aboard the PAZ satellite
Ramon Padullés, Chi O. Ao, F. Joseph Turk, Manuel de la Torre Juárez, Byron Iijima, Kuo Nung Wang, and Estel Cardellach
Atmos. Meas. Tech., 13, 1299–1313, https://doi.org/10.5194/amt-13-1299-2020,https://doi.org/10.5194/amt-13-1299-2020, 2020
Short summary
Atmospheric polarimetric effects on GNSS radio occultations: the ROHP-PAZ field campaign
R. Padullés, E. Cardellach, M. de la Torre Juárez, S. Tomás, F. J. Turk, S. Oliveras, C. O. Ao, and A. Rius
Atmos. Chem. Phys., 16, 635–649, https://doi.org/10.5194/acp-16-635-2016,https://doi.org/10.5194/acp-16-635-2016, 2016
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Air mass history linked to the development of Arctic mixed-phase clouds
Rebecca J. Murray-Watson and Edward Gryspeerdt
Atmos. Chem. Phys., 24, 11115–11132, https://doi.org/10.5194/acp-24-11115-2024,https://doi.org/10.5194/acp-24-11115-2024, 2024
Short summary
Distinct structure, radiative effects, and precipitation characteristics of deep convection systems in the Tibetan Plateau compared to the tropical Indian Ocean
Yuxin Zhao, Jiming Li, Deyu Wen, Yarong Li, Yuan Wang, and Jianping Huang
Atmos. Chem. Phys., 24, 9435–9457, https://doi.org/10.5194/acp-24-9435-2024,https://doi.org/10.5194/acp-24-9435-2024, 2024
Short summary
The correlation between Arctic sea ice, cloud phase and radiation using A-Train satellites
Grégory V. Cesana, Olivia Pierpaoli, Matteo Ottaviani, Linh Vu, Zhonghai Jin, and Israel Silber
Atmos. Chem. Phys., 24, 7899–7909, https://doi.org/10.5194/acp-24-7899-2024,https://doi.org/10.5194/acp-24-7899-2024, 2024
Short summary
Technical note: Retrieval of the supercooled liquid fraction in mixed-phase clouds from Himawari-8 observations
Ziming Wang, Husi Letu, Huazhe Shang, and Luca Bugliaro
Atmos. Chem. Phys., 24, 7559–7574, https://doi.org/10.5194/acp-24-7559-2024,https://doi.org/10.5194/acp-24-7559-2024, 2024
Short summary
Characterisation of low-base and mid-base clouds and their thermodynamic phase over the Southern Ocean and Arctic marine regions
Barbara Dietel, Odran Sourdeval, and Corinna Hoose
Atmos. Chem. Phys., 24, 7359–7383, https://doi.org/10.5194/acp-24-7359-2024,https://doi.org/10.5194/acp-24-7359-2024, 2024
Short summary

Cited articles

Anthes, R. A., Bernhardt, P. A., Chen, Y., Cucurull, L., Dymond, K. F., Ector,D., Healy, S. B., Ho, S. P., Hunt, D. C., Kuo, Y. H., Liu, H., Manning, K., McCormick, C., Meehan, T. K., Randel, W. J., Rocken, C., Schreiner, W. S., Sokolovskiy, S. V., Syndergaard, S., Thompson, D. C., Trenberth, K. E., Wee, T. K., Yen, N. L., and Zeng, Z.: The COSMIC/Formosat-3 mission: Early results, B. Am. Meteorol. Soc., 89, 313–333, https://doi.org/10.1175/BAMS-89-3-313, 2008. a
Ao, C. O., Meehan, T. K., Hajj, G. A., and Mannucci, A. J.: Lower troposphere refractivity bias in GPS occultation retrievals, J. Geophys. Res., 108, 4577, https://doi.org/10.1029/2002JD003216, 2003. a
Arakawa, A.: The cumulus parameterization problem: Past, present, and future, J. Climate, 17, 2493–2525, https://doi.org/10.1175/1520-0442(2004)017<2493:RATCPP>2.0.CO;2, 2004. a
Beard, K. V. and Chuang, C.: A new model for the equilibrium shape of raindrops, J. Atmos. Sci., 44, 1509–1524, https://doi.org/10.1175/1520-0469(1987)044<1509:ANMFTE>2.0.CO;2, 1987. a, b
Bringi, V. N. and Chandrasekar, V.: Polarimetric doppler weather radar; principles and applications, Cambridge University Press, Cambridge, 2001. a, b
Download
Short summary
In this paper we have assessed the positive difference observed between radio-occultation-retrieved refractivity and that of weather analyses and reanalyses when heavy precipitation is present. The impact of the precipitation media on the refractivity observable has been evaluated, showing that precipitation itself cannot explain the magnitude of the observed difference. Instead, the difference is shown to be linked to high specific-humidity conditions, which in turn are linked to rain.
Altmetrics
Final-revised paper
Preprint