Research article
17 Aug 2018
Research article
| 17 Aug 2018
Assessment of global navigation satellite system (GNSS) radio occultation refractivity under heavy precipitation
Ramon Padullés et al.
Related authors
Ramon Padullés, Estel Cardellach, and F. Joseph Turk
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-300, https://doi.org/10.5194/acp-2022-300, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
The results of comparing the polarimetric radio occultation observable ΔΦ and the ice water content derived from the Cloudsat radar, in a global and statistical way, show a strong correlation between the geographical patterns of both quantities for a wide range of heights. This implies that horizontally oriented hydrometeors are systematically present through the whole globe and through all vertical levels, which could provide insights on the physical processes leading to precipitation.
Ramon Padullés, Chi O. Ao, F. Joseph Turk, Manuel de la Torre Juárez, Byron Iijima, Kuo Nung Wang, and Estel Cardellach
Atmos. Meas. Tech., 13, 1299–1313, https://doi.org/10.5194/amt-13-1299-2020, https://doi.org/10.5194/amt-13-1299-2020, 2020
Short summary
Short summary
In this study we thoroughly address the calibration and validation of the new polarimetric radio occultation (PRO) observables. These represent an innovative way to obtain vertical profiles of precipitation along with thermodynamic observations of the same scene. First we perform the on-orbit calibration of the measurement. Then, we show how the PRO observables are sensitive to the presence and intensity of rain by looking for coincident precipitation measurements from independent missions.
R. Padullés, E. Cardellach, M. de la Torre Juárez, S. Tomás, F. J. Turk, S. Oliveras, C. O. Ao, and A. Rius
Atmos. Chem. Phys., 16, 635–649, https://doi.org/10.5194/acp-16-635-2016, https://doi.org/10.5194/acp-16-635-2016, 2016
Short summary
Short summary
The ROHP-PAZ mission will collect, for the first time, GPS radio occultations at two polarizations with the aim of characterizing rain. Prior to the mission's launch (2016), a field campaign has been conducted to identify and understand the measurements. In this study we present the set-up and the results of such a campaign: the main finding is the confirmation of sensitivity to heavy rain and, unexpectedly, to other frozen hydrometeors. This is key information for the spaceborne experiment.
Anthony J. Mannucci, Chi O. Ao, Byron A. Iijima, Thomas K. Meehan, Panagiotis Vergados, E. Robert Kursinski, and William S. Schreiner
Atmos. Meas. Tech., 15, 4971–4987, https://doi.org/10.5194/amt-15-4971-2022, https://doi.org/10.5194/amt-15-4971-2022, 2022
Short summary
Short summary
The Global Positioning System (GPS) radio occultation (RO) technique is a satellite-based method for producing highly accurate vertical profiles of atmospheric temperature and pressure. RO profiles are used to monitor global climate trends, particularly in that region of the atmosphere that includes the lower stratosphere. Two data sets spanning 1995–1997 that were produced from the first RO satellite are highly accurate and can be used to assess global atmospheric models.
Ramon Padullés, Estel Cardellach, and F. Joseph Turk
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-300, https://doi.org/10.5194/acp-2022-300, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
The results of comparing the polarimetric radio occultation observable ΔΦ and the ice water content derived from the Cloudsat radar, in a global and statistical way, show a strong correlation between the geographical patterns of both quantities for a wide range of heights. This implies that horizontally oriented hydrometeors are systematically present through the whole globe and through all vertical levels, which could provide insights on the physical processes leading to precipitation.
Miguel Ricardo A. Hilario, Ewan Crosbie, Michael Shook, Jeffrey S. Reid, Maria Obiminda L. Cambaliza, James Bernard B. Simpas, Luke Ziemba, Joshua P. DiGangi, Glenn S. Diskin, Phu Nguyen, F. Joseph Turk, Edward Winstead, Claire E. Robinson, Jian Wang, Jiaoshi Zhang, Yang Wang, Subin Yoon, James Flynn, Sergio L. Alvarez, Ali Behrangi, and Armin Sorooshian
Atmos. Chem. Phys., 21, 3777–3802, https://doi.org/10.5194/acp-21-3777-2021, https://doi.org/10.5194/acp-21-3777-2021, 2021
Short summary
Short summary
This study characterizes long-range transport from major Asian pollution sources into the tropical northwest Pacific and the impact of scavenging on these air masses. We combined aircraft observations, HYSPLIT trajectories, reanalysis, and satellite retrievals to reveal distinct composition and size distribution profiles associated with specific emission sources and wet scavenging. The results of this work have implications for international policymaking related to climate and health.
Andrea K. Steiner, Florian Ladstädter, Chi O. Ao, Hans Gleisner, Shu-Peng Ho, Doug Hunt, Torsten Schmidt, Ulrich Foelsche, Gottfried Kirchengast, Ying-Hwa Kuo, Kent B. Lauritsen, Anthony J. Mannucci, Johannes K. Nielsen, William Schreiner, Marc Schwärz, Sergey Sokolovskiy, Stig Syndergaard, and Jens Wickert
Atmos. Meas. Tech., 13, 2547–2575, https://doi.org/10.5194/amt-13-2547-2020, https://doi.org/10.5194/amt-13-2547-2020, 2020
Short summary
Short summary
High-quality observations are critically important for monitoring the Earth’s changing climate. We provide information on the consistency and long-term stability of observations from GPS radio occultation (RO). We assess, for the first time, RO records from multiple RO missions and all major RO data providers. Our results quantify where RO can be used for reliable trend assessment and confirm its climate quality.
Ramon Padullés, Chi O. Ao, F. Joseph Turk, Manuel de la Torre Juárez, Byron Iijima, Kuo Nung Wang, and Estel Cardellach
Atmos. Meas. Tech., 13, 1299–1313, https://doi.org/10.5194/amt-13-1299-2020, https://doi.org/10.5194/amt-13-1299-2020, 2020
Short summary
Short summary
In this study we thoroughly address the calibration and validation of the new polarimetric radio occultation (PRO) observables. These represent an innovative way to obtain vertical profiles of precipitation along with thermodynamic observations of the same scene. First we perform the on-orbit calibration of the measurement. Then, we show how the PRO observables are sensitive to the presence and intensity of rain by looking for coincident precipitation measurements from independent missions.
Alexa D. Ross, Robert E. Holz, Gregory Quinn, Jeffrey S. Reid, Peng Xian, F. Joseph Turk, and Derek J. Posselt
Atmos. Chem. Phys., 18, 12747–12764, https://doi.org/10.5194/acp-18-12747-2018, https://doi.org/10.5194/acp-18-12747-2018, 2018
Short summary
Short summary
This paper explores how clouds and aerosols interact over Southeast Asia. We introduce a new collocated dataset called the Curtain Cloud-Aerosol Regional A-Train (CCARA) product. CCARA is special because it combines satellite observations with model reanalysis. We find that increased aerosol corresponds to smaller observed liquid cloud droplets in some areas. Other areas experienced little to no change in effective radius (droplet size) when aerosol amount increased.
Xiao Yu, Feiqin Xie, and Chi O. Ao
Atmos. Meas. Tech., 11, 2051–2066, https://doi.org/10.5194/amt-11-2051-2018, https://doi.org/10.5194/amt-11-2051-2018, 2018
Short summary
Short summary
Atmospheric observations from GPS receiver satellites offer uniform spatial coverage over the Arctic. The GPS profiles sensing deep into the lowest 300 m of the atmosphere only reach 50–60 % in summer but over 70 % in other seasons. The profile uncertainty due to different data centers is within 0.07 % in refractivity, 0.72 K in temperature, and 0.05 g kg-1 in humidity below 10 km. A systematic negative bias of 1 % in refractivity below 2 km is only seen in the summer due to moisture impact.
Josep M. Aparicio, Estel Cardellach, and Hilda Rodríguez
Atmos. Meas. Tech., 11, 1883–1900, https://doi.org/10.5194/amt-11-1883-2018, https://doi.org/10.5194/amt-11-1883-2018, 2018
Short summary
Short summary
It is shown that during a satellite-to-satellite radio transmission, over the Earth's limb, the signal bounced off the ocean contains information of the low atmosphere as shown with radio occultations. This bounced signal is particularly clear over colder oceans but less clear over the tropics. This information is indicative of the properties of the low troposphere and can be used as a remote sensing measurement for weather.
Panagiotis Vergados, Anthony J. Mannucci, Chi O. Ao, Olga Verkhoglyadova, and Byron Iijima
Atmos. Meas. Tech., 11, 1193–1206, https://doi.org/10.5194/amt-11-1193-2018, https://doi.org/10.5194/amt-11-1193-2018, 2018
Short summary
Short summary
This study cross-compares the 10-year record of GPS radio occultation (GPS-RO) specific humidity product against independent databases (e.g., AIRS satellite, NASA/MERRA, and ERA-Interim). Our objective is to investigate the suitability of the GPS-RO humidity as a climate variable, which the science community could use in climate research. GPS-RO offers high vertical resolution, low sensitivity to clouds, and long-term stability making GPS-RO humidity a valuable complementary data set.
Michael E. Gorbunov, Estel Cardellach, and Kent B. Lauritsen
Atmos. Meas. Tech., 11, 1181–1191, https://doi.org/10.5194/amt-11-1181-2018, https://doi.org/10.5194/amt-11-1181-2018, 2018
Short summary
Short summary
We apply linear and non-linear representations of wave fields, based on Fourier integral operators and Wigner distribution function, to the retrieval of reflected rays from radio occultation observations. We introduce a reflection index that characterizes the relative intensity of the reflected ray. A comparison of indices evaluated for a large base of events including the visual identification of reflections indicated a good agreement with our definition of reflection index.
Feiqin Xie, Loknath Adhikari, Jennifer S. Haase, Brian Murphy, Kuo-Nung Wang, and James L. Garrison
Atmos. Meas. Tech., 11, 763–780, https://doi.org/10.5194/amt-11-763-2018, https://doi.org/10.5194/amt-11-763-2018, 2018
Short summary
Short summary
The GPS signal going through the atmosphere will experience refraction or bending, which can be precisely measured and used to infer the atmospheric properties. This paper demonstrates that high-quality atmospheric measurement with less than ~ 0.4 K is achievable from a GPS recording system with a simple antenna mounted on top of an aircraft cruising at ~ 13 km. Such a simple airborne GPS system can be implemented on commercial aircraft to provide valuable data for weather models in the future.
Kuo-Nung Wang, Manuel de la Torre Juárez, Chi O. Ao, and Feiqin Xie
Atmos. Meas. Tech., 10, 4761–4776, https://doi.org/10.5194/amt-10-4761-2017, https://doi.org/10.5194/amt-10-4761-2017, 2017
Short summary
Short summary
Refractivity retrievals from GNSS radio occultation (RO) are known to be negatively biased within the planetary boundary layer (PBL). We propose an optimization-based reconstruction method in this paper to correct the negative bias with external measurements of precipitable water (PW). Our results show that the proposed method can greatly reduce the bias and better characterize the PBL.
Esayas Shume and Chi Ao
Atmos. Meas. Tech., 9, 3175–3182, https://doi.org/10.5194/amt-9-3175-2016, https://doi.org/10.5194/amt-9-3175-2016, 2016
R. Padullés, E. Cardellach, M. de la Torre Juárez, S. Tomás, F. J. Turk, S. Oliveras, C. O. Ao, and A. Rius
Atmos. Chem. Phys., 16, 635–649, https://doi.org/10.5194/acp-16-635-2016, https://doi.org/10.5194/acp-16-635-2016, 2016
Short summary
Short summary
The ROHP-PAZ mission will collect, for the first time, GPS radio occultations at two polarizations with the aim of characterizing rain. Prior to the mission's launch (2016), a field campaign has been conducted to identify and understand the measurements. In this study we present the set-up and the results of such a campaign: the main finding is the confirmation of sensitivity to heavy rain and, unexpectedly, to other frozen hydrometeors. This is key information for the spaceborne experiment.
P. Vergados, A. J. Mannucci, C. O. Ao, J. H. Jiang, and H. Su
Atmos. Meas. Tech., 8, 1789–1797, https://doi.org/10.5194/amt-8-1789-2015, https://doi.org/10.5194/amt-8-1789-2015, 2015
A. K. Steiner, D. Hunt, S.-P. Ho, G. Kirchengast, A. J. Mannucci, B. Scherllin-Pirscher, H. Gleisner, A. von Engeln, T. Schmidt, C. Ao, S. S. Leroy, E. R. Kursinski, U. Foelsche, M. Gorbunov, S. Heise, Y.-H. Kuo, K. B. Lauritsen, C. Marquardt, C. Rocken, W. Schreiner, S. Sokolovskiy, S. Syndergaard, and J. Wickert
Atmos. Chem. Phys., 13, 1469–1484, https://doi.org/10.5194/acp-13-1469-2013, https://doi.org/10.5194/acp-13-1469-2013, 2013
Related subject area
Subject: Clouds and Precipitation | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Distinct regional meteorological influences on low-cloud albedo susceptibility over global marine stratocumulus regions
Diurnal cycles of cloud cover and its vertical distribution over the Tibetan Plateau revealed by satellite observations, reanalysis datasets, and CMIP6 outputs
Satellite observations of seasonality and long-term trends in cirrus cloud properties over Europe: investigation of possible aviation impacts
Ice crystal characterization in cirrus clouds III: retrieval of ice crystal shape and roughness from observations of halo displays
Technical note: Identification of two ice-nucleating regimes for dust-related cirrus clouds based on the relationship between number concentrations of ice-nucleating particles and ice crystals
Highly supercooled riming and unusual triple-frequency radar signatures over McMurdo Station, Antarctica
Ice microphysical processes in the dendritic growth layer: a statistical analysis combining multi-frequency and polarimetric Doppler cloud radar observations
Observing short-timescale cloud development to constrain aerosol–cloud interactions
Observations of microphysical properties and radiative effects of contrail cirrus and natural cirrus over the North Atlantic
Natural Marine Cloud Brightening in the Southern Ocean
Microphysical Characteristics of Super Typhoon Lekima (2019) and Its Impacts on Polarimetric Radar Remote Sensing of Precipitation
Exploring relations between cloud morphology, cloud phase, and cloud radiative properties in Southern Ocean's stratocumulus clouds
Observations of cold-cloud properties in the Norwegian Arctic using ground-based and spaceborne lidar
An evaluation of the liquid cloud droplet effective radius derived from MODIS, airborne remote sensing, and in situ measurements from CAMP2Ex
A Lagrangian analysis of pockets of open cells over the southeastern Pacific
The formation and composition of the Mount Everest plume in winter
New insights on the prevalence of drizzle in marine stratocumulus clouds based on a machine learning algorithm applied to radar Doppler spectra
Addressing the difficulties in quantifying droplet number response to aerosol from satellite observations
Optically thin clouds in the trades
On the global relationship between polarimetric radio occultation observable ΔΦ and ice water content
Stability-dependent increases in liquid water with droplet number in the Arctic
Lightning activity in northern Europe during a stormy winter: disruptions of weather patterns originating in global climate phenomena
A climatology of open and closed mesoscale cellular convection over the Southern Ocean derived from Himawari-8 observations
Methodology to determine the coupling of continental clouds with surface and boundary layer height under cloudy conditions from lidar and meteorological data
Albedo susceptibility of northeastern Pacific stratocumulus: the role of covarying meteorological conditions
Opportunistic experiments to constrain aerosol effective radiative forcing
Environmental effects on aerosol–cloud interaction in non-precipitating marine boundary layer (MBL) clouds over the eastern North Atlantic
Hemispheric contrasts in ice formation in stratiform mixed-phase clouds: disentangling the role of aerosol and dynamics with ground-based remote sensing
Microphysical process of precipitating hydrometeors from warm-front mid-level stratiform clouds revealed by ground-based lidar observations
Overview: Fusion of radar polarimetry and numerical atmospheric modelling towards an improved understanding of cloud and precipitation processes
A climatology of trade-wind cumulus cold pools and their link to mesoscale cloud organization
Global evidence of aerosol-induced invigoration in marine cumulus clouds
Impacts of the Saharan air layer on the physical properties of the Atlantic tropical cyclone cloud systems: 2003–2019
Two-year statistics of columnar-ice production in stratiform clouds over Hyytiälä, Finland: environmental conditions and the relevance to secondary ice production
Changes in cirrus cloud properties and occurrence over Europe during the COVID-19-caused air traffic reduction
A new conceptual model for adiabatic fog
Deciphering organization of GOES-16 green cumulus through the empirical orthogonal function (EOF) lens
Satellite retrieval of cloud base height and geometric thickness of low-level cloud based on CALIPSO
Lightning occurrences and intensity over the Indian region: long-term trends and future projections
Contrasting ice formation in Arctic clouds: surface-coupled vs. surface-decoupled clouds
Evaluation of the CMIP6 marine subtropical stratocumulus cloud albedo and its controlling factors
Identifying meteorological influences on marine low-cloud mesoscale morphology using satellite classifications
Lidar observations of cirrus clouds in Palau (7°33′ N, 134°48′ E)
Observing the timescales of aerosol–cloud interactions in snapshot satellite images
Potential impact of aerosols on convective clouds revealed by Himawari-8 observations over different terrain types in eastern China
How frequent is natural cloud seeding from ice cloud layers ( < −35 °C) over Switzerland?
Processes contributing to cloud dissipation and formation events on the North Slope of Alaska
Characterisation and surface radiative impact of Arctic low clouds from the IAOOS field experiment
A-Train estimates of the sensitivity of the cloud-to-rainwater ratio to cloud size, relative humidity, and aerosols
Ice injected into the tropopause by deep convection – Part 2: Over the Maritime Continent
Jianhao Zhang and Graham Feingold
Atmos. Chem. Phys., 23, 1073–1090, https://doi.org/10.5194/acp-23-1073-2023, https://doi.org/10.5194/acp-23-1073-2023, 2023
Short summary
Short summary
Using observations from space, we show maps of potential brightness changes in marine warm clouds in response to increases in cloud droplet concentrations. The environmental and aerosol conditions in which these clouds reside covary differently in each ocean basin, leading to distinct evolutions of cloud brightness changes. This work stresses the central importance of the covariability between meteorology and aerosol for scaling up the radiative response of cloud brightness changes.
Yuxin Zhao, Jiming Li, Lijie Zhang, Cong Deng, Yarong Li, Bida Jian, and Jianping Huang
Atmos. Chem. Phys., 23, 743–769, https://doi.org/10.5194/acp-23-743-2023, https://doi.org/10.5194/acp-23-743-2023, 2023
Short summary
Short summary
Diurnal variations of clouds play an important role in the radiative budget and precipitation. Based on satellite observations, reanalysis, and CMIP6 outputs, the diurnal variations in total cloud cover and cloud vertical distribution over the Tibetan Plateau are explored. The diurnal cycle of cirrus is a key focus and found to have different characteristics from those found in the tropics. The relationship between the diurnal cycle of cirrus and meteorological factors is also discussed.
Qiang Li and Silke Groß
Atmos. Chem. Phys., 22, 15963–15980, https://doi.org/10.5194/acp-22-15963-2022, https://doi.org/10.5194/acp-22-15963-2022, 2022
Short summary
Short summary
The IPCC report identified that cirrus clouds have a significant impact on the radiation balance comparable to the CO2 effects, which, however, is still hard to parameterize. The current study investigates the possible impact of aviation on cirrus properties based on the analysis of 10-year lidar measurements of CALIPSO. The results reveal that there is a significant positive trend in cirrus depolarization ratio in the last 10 years before COVID-19, which is strongly correlated with aviation.
Linda Forster and Bernhard Mayer
Atmos. Chem. Phys., 22, 15179–15205, https://doi.org/10.5194/acp-22-15179-2022, https://doi.org/10.5194/acp-22-15179-2022, 2022
Short summary
Short summary
We present a novel retrieval using ground-based imaging observations of halo displays together with radiative transfer simulations to help improve our understanding of ice crystal properties representative of cirrus clouds. Analysis of 4400 calibrated HaloCam images featuring a 22° halo revealed aggregates of hexagonal columns of 20 µm effective radius with a mixture of about 37 % smooth and 63% severely roughened surfaces as the best match in general.
Yun He, Zhenping Yin, Fuchao Liu, and Fan Yi
Atmos. Chem. Phys., 22, 13067–13085, https://doi.org/10.5194/acp-22-13067-2022, https://doi.org/10.5194/acp-22-13067-2022, 2022
Short summary
Short summary
A method is proposed to identify the sole presence of heterogeneous nucleation and competition between heterogeneous and homogeneous nucleation for dust-related cirrus clouds by characterizing the relationship between dust ice-nucleating particle concentration calculated from CALIOP using the POLIPHON method and in-cloud ice crystal number concentration from the DARDAR-Nice dataset. Two typical cirrus cases are shown as a demonstration, and the proposed method can be extended to a global scale.
Frederic Tridon, Israel Silber, Alessandro Battaglia, Stefan Kneifel, Ann Fridlind, Petros Kalogeras, and Ranvir Dhillon
Atmos. Chem. Phys., 22, 12467–12491, https://doi.org/10.5194/acp-22-12467-2022, https://doi.org/10.5194/acp-22-12467-2022, 2022
Short summary
Short summary
The role of ice precipitation in the Earth water budget is not well known because ice particles are complex, and their formation involves intricate processes. Riming of ice crystals by supercooled water droplets is an efficient process, but little is known about its importance at high latitudes. In this work, by exploiting the deployment of an unprecedented number of remote sensing systems in Antarctica, we find that riming occurs at much lower temperatures compared with the mid-latitudes.
Leonie von Terzi, José Dias Neto, Davide Ori, Alexander Myagkov, and Stefan Kneifel
Atmos. Chem. Phys., 22, 11795–11821, https://doi.org/10.5194/acp-22-11795-2022, https://doi.org/10.5194/acp-22-11795-2022, 2022
Short summary
Short summary
We present a statistical analysis of ice microphysical processes (IMP) in mid-latitude clouds. Combining various radar approaches, we find that the IMP active at −20 to −10 °C seems to be the main driver of ice particle size, shape and concentration. The strength of aggregation at −20 to −10 °C correlates with the increase in concentration and aspect ratio of locally formed ice particles. Despite ongoing aggregation, the concentration of ice particles stays enhanced until −4 °C.
Edward Gryspeerdt, Franziska Glassmeier, Graham Feingold, Fabian Hoffmann, and Rebecca J. Murray-Watson
Atmos. Chem. Phys., 22, 11727–11738, https://doi.org/10.5194/acp-22-11727-2022, https://doi.org/10.5194/acp-22-11727-2022, 2022
Short summary
Short summary
The response of clouds to changes in aerosol remains a large uncertainty in our understanding of the climate. Studies typically look at aerosol and cloud processes in snapshot images, measuring all properties at the same time. Here we use multiple images to characterise how cloud temporal development responds to aerosol. We find a reduction in liquid water path with increasing aerosol, party due to feedbacks. This suggests the aerosol impact on cloud water may be weaker than in previous studies.
Ziming Wang, Luca Bugliaro, Tina Jurkat-Witschas, Romy Heller, Ulrike Burkhardt, Helmut Ziereis, Georgios Dekoutsidis, Martin Wirth, Silke Groß, Simon Kirschler, Stefan Kaufmann, and Christiane Voigt
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-537, https://doi.org/10.5194/acp-2022-537, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
This paper discusses differences between contrails, contrail cirrus and natural cirrus combining HALO aircraft measurements and MSG satellite remote sensing with radiative transfer simulations for cases in the ML-CIRRUS campaign over the North Atlantic. Microphysical properties are evaluated to investigate the evolution of contrails. Contrail cirrus net radiative forcing is four times as large as for contrails, and natural cirrus is in-between.
Gerald G. Mace, Sally Benson, Ruhi Humphries, Mathew Peter Gombert, and Elizabeth Sterner
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-571, https://doi.org/10.5194/acp-2022-571, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
The number cloud droplets per unit volume is a significantly important property of clouds that controls their reflective properties. Computer models of the Earth's atmosphere and climate have low skill at predicting the reflective properties of Southern Ocean clouds. Here we investigate the properties of those clouds using satellite data and find that the cloud droplet number in the Southern Ocean is related to the oceanic phytoplankton abundance near Antarctica.
Yabin Gou, Haonan Chen, and Lulin Xue
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-495, https://doi.org/10.5194/acp-2022-495, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
This article investigates the complex precipitation microphysics associated with super typhoon Lekima (2019) using a host of in situ and remote sensing observations, including rain gauge and disdrometer data, and polarimetric radar observations. The impacts of precipitation microphysics on multi-source data consistency and radar precipitation estimation are quantified. It is concluded that the dynamical precipitation microphysical processes must be considered in radar precipitation estimation.
Jessica Danker, Odran Sourdeval, Isabel L. McCoy, Robert Wood, and Anna Possner
Atmos. Chem. Phys., 22, 10247–10265, https://doi.org/10.5194/acp-22-10247-2022, https://doi.org/10.5194/acp-22-10247-2022, 2022
Short summary
Short summary
Using spaceborne lidar-radar retrievals, we show that seasonal changes in cloud phase outweigh changes in cloud-phase statistics across cloud morphologies at given cloud-top temperatures. These results show that cloud morphology does not seem to pose a primary constraint on cloud-phase statistics in the Southern Ocean. Meanwhile, larger changes in in-cloud albedo across cloud morphologies are observed in supercooled liquid rather than mixed-phase stratocumuli.
Britta Schäfer, Tim Carlsen, Ingrid Hanssen, Michael Gausa, and Trude Storelvmo
Atmos. Chem. Phys., 22, 9537–9551, https://doi.org/10.5194/acp-22-9537-2022, https://doi.org/10.5194/acp-22-9537-2022, 2022
Short summary
Short summary
Cloud properties are important for the surface radiation budget. This study presents cold-cloud observations based on lidar measurements from the Norwegian Arctic between 2011 and 2017. Using statistical assessments and case studies, we give an overview of the macro- and microphysical properties of these clouds and demonstrate the capabilities of long-term cloud observations in the Norwegian Arctic from the ground-based lidar at Andenes.
Dongwei Fu, Larry Di Girolamo, Robert M. Rauber, Greg M. McFarquhar, Stephen W. Nesbitt, Jesse Loveridge, Yulan Hong, Bastiaan van Diedenhoven, Brian Cairns, Mikhail D. Alexandrov, Paul Lawson, Sarah Woods, Simone Tanelli, Sebastian Schmidt, Chris Hostetler, and Amy Jo Scarino
Atmos. Chem. Phys., 22, 8259–8285, https://doi.org/10.5194/acp-22-8259-2022, https://doi.org/10.5194/acp-22-8259-2022, 2022
Short summary
Short summary
Satellite-retrieved cloud microphysics are widely used in climate research because of their central role in water and energy cycles. Here, we provide the first detailed investigation of retrieved cloud drop sizes from in situ and various satellite and airborne remote sensing techniques applied to real cumulus cloud fields. We conclude that the most widely used passive remote sensing method employed in climate research produces high biases of 6–8 µm (60 %–80 %) caused by 3-D radiative effects.
Kevin M. Smalley, Matthew D. Lebsock, Ryan Eastman, Mark Smalley, and Mikael K. Witte
Atmos. Chem. Phys., 22, 8197–8219, https://doi.org/10.5194/acp-22-8197-2022, https://doi.org/10.5194/acp-22-8197-2022, 2022
Short summary
Short summary
We use geostationary satellite observations to track pockets of open-cell (POC) stratocumulus and analyze how precipitation, cloud microphysics, and the environment change. Precipitation becomes more intense, corresponding to increasing effective radius and decreasing number concentrations, while the environment remains relatively unchanged. This implies that changes in cloud microphysics are more important than the environment to POC development.
Edward E. Hindman and Scott Lindstrom
Atmos. Chem. Phys., 22, 7995–8008, https://doi.org/10.5194/acp-22-7995-2022, https://doi.org/10.5194/acp-22-7995-2022, 2022
Short summary
Short summary
Winds buffeting the Mt. Everest massif often produce plumes. This systematic study identified plumes from daily observations of real-time, on-line images from a geosynchronous meteorological satellite. The corresponding meteorological data were used with a cloud-forming model to show the plumes were composed, depending on the temperature, of droplets, crystals or both. They were not composed of resuspended snow, which is a common belief. We estimated the plumes may produce significant snowfall.
Zeen Zhu, Pavlos Kollias, Edward Luke, and Fan Yang
Atmos. Chem. Phys., 22, 7405–7416, https://doi.org/10.5194/acp-22-7405-2022, https://doi.org/10.5194/acp-22-7405-2022, 2022
Short summary
Short summary
Drizzle (small rain droplets) is an important component of warm clouds; however, its existence is poorly understood. In this study, we capitalized on a machine-learning algorithm to develop a drizzle detection method. We applied this algorithm to investigate drizzle occurrence and found out that drizzle is far more ubiquitous than previously thought. This study demonstrates the ubiquitous nature of drizzle in clouds and will improve understanding of the associated microphysical process.
Hailing Jia, Johannes Quaas, Edward Gryspeerdt, Christoph Böhm, and Odran Sourdeval
Atmos. Chem. Phys., 22, 7353–7372, https://doi.org/10.5194/acp-22-7353-2022, https://doi.org/10.5194/acp-22-7353-2022, 2022
Short summary
Short summary
Aerosol–cloud interaction is the most uncertain component of the anthropogenic forcing of the climate. By combining satellite and reanalysis data, we show that the strength of the Twomey effect (S) increases remarkably with vertical velocity. Both the confounding effect of aerosol–precipitation interaction and the lack of vertical co-location between aerosol and cloud are found to overestimate S, whereas the retrieval biases in aerosol and cloud appear to underestimate S.
Theresa Mieslinger, Bjorn Stevens, Tobias Kölling, Manfred Brath, Martin Wirth, and Stefan A. Buehler
Atmos. Chem. Phys., 22, 6879–6898, https://doi.org/10.5194/acp-22-6879-2022, https://doi.org/10.5194/acp-22-6879-2022, 2022
Short summary
Short summary
The trades are home to a plethora of small cumulus clouds that are often barely visible to the human eye and difficult to detect with active and passive remote sensing methods. With the help of a new method and by means of high-resolution data we can detect small and particularly thin clouds. We find that optically thin clouds are a common phenomenon in the trades, covering a large area and influencing the radiative effect of clouds if they are undetected and contaminate the cloud-free signal.
Ramon Padullés, Estel Cardellach, and F. Joseph Turk
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-300, https://doi.org/10.5194/acp-2022-300, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
The results of comparing the polarimetric radio occultation observable ΔΦ and the ice water content derived from the Cloudsat radar, in a global and statistical way, show a strong correlation between the geographical patterns of both quantities for a wide range of heights. This implies that horizontally oriented hydrometeors are systematically present through the whole globe and through all vertical levels, which could provide insights on the physical processes leading to precipitation.
Rebecca J. Murray-Watson and Edward Gryspeerdt
Atmos. Chem. Phys., 22, 5743–5756, https://doi.org/10.5194/acp-22-5743-2022, https://doi.org/10.5194/acp-22-5743-2022, 2022
Short summary
Short summary
Clouds are important to the Arctic surface energy budget, but the impact of aerosols on their properties is largely uncertain. This work shows that the response of liquid water path to cloud droplet number increases is strongly dependent on lower tropospheric stability (LTS), with weaker cooling effects in polluted clouds and at high LTS. LTS is projected to decrease in a warmer Arctic, reducing the cooling effect of aerosols and producing a positive, aerosol-dependent cloud feedback.
Ivana Kolmašová, Ondřej Santolík, and Kateřina Rosická
Atmos. Chem. Phys., 22, 3379–3389, https://doi.org/10.5194/acp-22-3379-2022, https://doi.org/10.5194/acp-22-3379-2022, 2022
Short summary
Short summary
The 2014–2015 winter brought an enormous number of lightning strokes to northern Europe, about 4 times more than their long-term median over the last decade. This unusual production of lightning, concentrated above the ocean and along the western coastal areas, was probably due to a combination of large-scale climatic events like El Niño and the North Atlantic Oscillation, causing increased sea surface temperatures and updraft strengths, which acted as additional thundercloud-charging drivers.
Francisco Lang, Luis Ackermann, Yi Huang, Son C. H. Truong, Steven T. Siems, and Michael J. Manton
Atmos. Chem. Phys., 22, 2135–2152, https://doi.org/10.5194/acp-22-2135-2022, https://doi.org/10.5194/acp-22-2135-2022, 2022
Short summary
Short summary
Marine low-level clouds cover vast areas of the Southern Ocean, and they are essential to the Earth system energy balance. We use 3 years of satellite observations to group low-level clouds by their spatial structure using a pattern-recognizing program. We studied two primary cloud type patterns, i.e. open and closed clouds. Open clouds are uniformly distributed over the storm track, while closed clouds are most predominant in the southeastern Indian Ocean. Closed clouds exhibit a daily cycle.
Tianning Su, Youtong Zheng, and Zhanqing Li
Atmos. Chem. Phys., 22, 1453–1466, https://doi.org/10.5194/acp-22-1453-2022, https://doi.org/10.5194/acp-22-1453-2022, 2022
Short summary
Short summary
To enrich our understanding of coupling of continental clouds, we developed a novel methodology to determine cloud coupling state from a lidar and a suite of surface meteorological instruments. This method is built upon advancement in our understanding of fundamental boundary layer processes and clouds. As the first remote sensing method for determining the coupling state of low clouds over land, this methodology paves a solid ground for further investigating the coupled land–atmosphere system.
Jianhao Zhang, Xiaoli Zhou, Tom Goren, and Graham Feingold
Atmos. Chem. Phys., 22, 861–880, https://doi.org/10.5194/acp-22-861-2022, https://doi.org/10.5194/acp-22-861-2022, 2022
Short summary
Short summary
Oceanic liquid-form clouds are effective sunlight reflectors. Their brightness is highly sensitive to changes in the amount of aerosol particles in the atmosphere and the state of the atmosphere they reside in. This study quantifies this sensitivity using long-term satellite observations and finds an overall cloud brightening (a cooling effect) potential and an essential role of the covarying meteorological conditions in governing this sensitivity for northeastern Pacific stratocumulus.
Matthew W. Christensen, Andrew Gettelman, Jan Cermak, Guy Dagan, Michael Diamond, Alyson Douglas, Graham Feingold, Franziska Glassmeier, Tom Goren, Daniel P. Grosvenor, Edward Gryspeerdt, Ralph Kahn, Zhanqing Li, Po-Lun Ma, Florent Malavelle, Isabel L. McCoy, Daniel T. McCoy, Greg McFarquhar, Johannes Mülmenstädt, Sandip Pal, Anna Possner, Adam Povey, Johannes Quaas, Daniel Rosenfeld, Anja Schmidt, Roland Schrödner, Armin Sorooshian, Philip Stier, Velle Toll, Duncan Watson-Parris, Robert Wood, Mingxi Yang, and Tianle Yuan
Atmos. Chem. Phys., 22, 641–674, https://doi.org/10.5194/acp-22-641-2022, https://doi.org/10.5194/acp-22-641-2022, 2022
Short summary
Short summary
Trace gases and aerosols (tiny airborne particles) are released from a variety of point sources around the globe. Examples include volcanoes, industrial chimneys, forest fires, and ship stacks. These sources provide opportunistic experiments with which to quantify the role of aerosols in modifying cloud properties. We review the current state of understanding on the influence of aerosol on climate built from the wide range of natural and anthropogenic laboratories investigated in recent decades.
Xiaojian Zheng, Baike Xi, Xiquan Dong, Peng Wu, Timothy Logan, and Yuan Wang
Atmos. Chem. Phys., 22, 335–354, https://doi.org/10.5194/acp-22-335-2022, https://doi.org/10.5194/acp-22-335-2022, 2022
Short summary
Short summary
This study uses ground-based observations to investigate the physical processes in the aerosol–cloud interactions in non-precipitating marine boundary layer clouds, over the eastern North Atlantic Ocean. Results show that the cloud responses to the aerosols are diminished with limited water vapor supply, while they are enhanced with increasing water vapor availability. The clouds are found to be most sensitive to the aerosols under sufficient water vapor and strong boundary layer turbulence.
Martin Radenz, Johannes Bühl, Patric Seifert, Holger Baars, Ronny Engelmann, Boris Barja González, Rodanthi-Elisabeth Mamouri, Félix Zamorano, and Albert Ansmann
Atmos. Chem. Phys., 21, 17969–17994, https://doi.org/10.5194/acp-21-17969-2021, https://doi.org/10.5194/acp-21-17969-2021, 2021
Short summary
Short summary
This study brings together long-term ground-based remote-sensing observations of mixed-phase clouds at three key locations of aerosol–cloud interactions in the Northern and Southern Hemisphere midlatitudes. The findings contribute several new aspects on the nature of the excess of supercooled liquid clouds in the Southern Hemisphere, such as a long-term lidar-based estimate of ice-nucleating particle profiles as well as the effects of boundary layer coupling and gravity waves on ice formation.
Yang Yi, Fan Yi, Fuchao Liu, Yunpeng Zhang, Changming Yu, and Yun He
Atmos. Chem. Phys., 21, 17649–17664, https://doi.org/10.5194/acp-21-17649-2021, https://doi.org/10.5194/acp-21-17649-2021, 2021
Short summary
Short summary
Our lidar observations reveal the complete microphysical process of hydrometeors falling from mid-level stratiform clouds. We find that the surface rainfall begins as supercooled mixed-phase hydrometeors fall out of a liquid parent cloud base. We find also that the collision–coalescence growth of precipitating raindrops and subsequent spontaneous breakup always occur around 0.6 km altitude during surface rainfalls. Our findings provide new insights into stratiform precipitation formation.
Silke Trömel, Clemens Simmer, Ulrich Blahak, Armin Blanke, Sabine Doktorowski, Florian Ewald, Michael Frech, Mathias Gergely, Martin Hagen, Tijana Janjic, Heike Kalesse-Los, Stefan Kneifel, Christoph Knote, Jana Mendrok, Manuel Moser, Gregor Köcher, Kai Mühlbauer, Alexander Myagkov, Velibor Pejcic, Patric Seifert, Prabhakar Shrestha, Audrey Teisseire, Leonie von Terzi, Eleni Tetoni, Teresa Vogl, Christiane Voigt, Yuefei Zeng, Tobias Zinner, and Johannes Quaas
Atmos. Chem. Phys., 21, 17291–17314, https://doi.org/10.5194/acp-21-17291-2021, https://doi.org/10.5194/acp-21-17291-2021, 2021
Short summary
Short summary
The article introduces the ACP readership to ongoing research in Germany on cloud- and precipitation-related process information inherent in polarimetric radar measurements, outlines pathways to inform atmospheric models with radar-based information, and points to remaining challenges towards an improved fusion of radar polarimetry and atmospheric modelling.
Raphaela Vogel, Heike Konow, Hauke Schulz, and Paquita Zuidema
Atmos. Chem. Phys., 21, 16609–16630, https://doi.org/10.5194/acp-21-16609-2021, https://doi.org/10.5194/acp-21-16609-2021, 2021
Short summary
Short summary
The shallow cumulus clouds that populate the trade-wind regions can produce substantial amounts of rain. Before reaching the surface, part of the rain can evaporate and form pools of cold air that spread at the surface as density currents. We use 10 years of data from Barbados to show that such cold pools occur on 3 out of 4 d, that cold-pool periods are 90 % cloudier relative to the average winter conditions, and that they are connected to specific patterns of mesoscale cloud organization.
Alyson Douglas and Tristan L'Ecuyer
Atmos. Chem. Phys., 21, 15103–15114, https://doi.org/10.5194/acp-21-15103-2021, https://doi.org/10.5194/acp-21-15103-2021, 2021
Short summary
Short summary
When aerosols enter the atmosphere, they interact with the clouds above in what we term aerosol–cloud interactions and lead to a series of reactions which delay the onset of rain. This delay may lead to increased rain rates, or invigoration, when the cloud eventually rains. We show that aerosol leads to invigoration in certain environments. The strength of the invigoration depends on how large the cloud is, which suggests that it is highly tied to the organization of the cloud system.
Hao Luo and Yong Han
Atmos. Chem. Phys., 21, 15171–15184, https://doi.org/10.5194/acp-21-15171-2021, https://doi.org/10.5194/acp-21-15171-2021, 2021
Short summary
Short summary
The various feedbacks of Atlantic tropical cyclones (TCs) to the Saharan air layer (SAL) are determined by the combined effects of dry air masses, the dust aerosols as ice nuclei, and dynamic, thermodynamic, and moisture conditions. The specific influence mechanisms of SAL on the three intensities of TCs (tropical depression, tropical storm, and hurricane) are different. The conclusions are beneficial to our recognition of the physical process and evolution of TCs in the Atlantic region.
Haoran Li, Ottmar Möhler, Tuukka Petäjä, and Dmitri Moisseev
Atmos. Chem. Phys., 21, 14671–14686, https://doi.org/10.5194/acp-21-14671-2021, https://doi.org/10.5194/acp-21-14671-2021, 2021
Short summary
Short summary
In natural clouds, ice-nucleating particles are expected to be rare above –10 °C. In the current paper, we found that the formation of ice columns is frequent in stratiform clouds and is associated with increased precipitation intensity and liquid water path. In single-layer shallow clouds, the production of ice columns was attributed to secondary ice production, despite the rime-splintering process not being expected to take place in such clouds.
Qiang Li and Silke Groß
Atmos. Chem. Phys., 21, 14573–14590, https://doi.org/10.5194/acp-21-14573-2021, https://doi.org/10.5194/acp-21-14573-2021, 2021
Short summary
Short summary
Aircraft emit exhaust gases and particles directly into the atmosphere, which may contribute to climate change. We present a significant reduction in the occurrence rate and particle linear depolarization ratio of cirrus clouds based on the analysis of measurements with the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite during COVID-19 when air traffic was significantly reduced. The findings imply that these clouds formed with less influence from aviation.
Felipe Toledo, Martial Haeffelin, Eivind Wærsted, and Jean-Charles Dupont
Atmos. Chem. Phys., 21, 13099–13117, https://doi.org/10.5194/acp-21-13099-2021, https://doi.org/10.5194/acp-21-13099-2021, 2021
Short summary
Short summary
The article presents a new conceptual model to describe the temporal evolution of continental fog layers, developed based on 7 years of fog measurements performed at the SIRTA observatory, France. This new paradigm relates the visibility reduction caused by fog to its vertical thickness and liquid water path and provides diagnostic variables that could substantially improve the reliability of fog dissipation nowcasting at a local scale, based on real-time profiling observation.
Tom Dror, Mickaël D. Chekroun, Orit Altaratz, and Ilan Koren
Atmos. Chem. Phys., 21, 12261–12272, https://doi.org/10.5194/acp-21-12261-2021, https://doi.org/10.5194/acp-21-12261-2021, 2021
Short summary
Short summary
A part of continental shallow convective cumulus (Cu) was shown to share properties such as organization and formation over vegetated areas, thus named green Cu. Mechanisms behind the formed patterns are not understood. We use different metrics and an empirical orthogonal function (EOF) to decompose the dataset and quantify organization factors (cloud streets and gravity waves). We show that clouds form a highly organized grid structure over hundreds of kilometers at the field lifetime.
Xin Lu, Feiyue Mao, Daniel Rosenfeld, Yannian Zhu, Zengxin Pan, and Wei Gong
Atmos. Chem. Phys., 21, 11979–12003, https://doi.org/10.5194/acp-21-11979-2021, https://doi.org/10.5194/acp-21-11979-2021, 2021
Short summary
Short summary
In this paper, a novel method for retrieving cloud base height and geometric thickness is developed and applied to produce a global climatology of boundary layer clouds with a high accuracy. The retrieval is based on the 333 m resolution low-level cloud distribution as obtained from the CALIPSO lidar data. The main part of the study describes the variability of cloud vertical geometrical properties in space, season, and time of the day. Resultant new insights are presented.
Rohit Chakraborty, Arindam Chakraborty, Ghouse Basha, and Madineni Venkat Ratnam
Atmos. Chem. Phys., 21, 11161–11177, https://doi.org/10.5194/acp-21-11161-2021, https://doi.org/10.5194/acp-21-11161-2021, 2021
Short summary
Short summary
In this study, urbanization-induced surface warming has been found to trigger prominent changes in upper-troposphere–lower-stratosphere regions leading to stronger and more frequent lightning extremes over India. Consequently, the implementation of this hypothesis in global climate models reveals that lightning frequency and intensity values across India will rise by ~10–25 % and 15–50 %, respectively, by 2100 at the current urbanization rate, which should be alarming for present policymakers.
Hannes J. Griesche, Kevin Ohneiser, Patric Seifert, Martin Radenz, Ronny Engelmann, and Albert Ansmann
Atmos. Chem. Phys., 21, 10357–10374, https://doi.org/10.5194/acp-21-10357-2021, https://doi.org/10.5194/acp-21-10357-2021, 2021
Short summary
Short summary
Heterogeneous ice formation in Arctic mixed-phase clouds under consideration of their surface-coupling state is investigated. Cloud phase and macrophysical properties were determined by means of lidar and cloud radar measurements, the coupling state, and cloud minimum temperature by radiosonde profiles. Above −15 °C cloud minimum temperature, surface-coupled clouds are more likely to contain ice by a factor of 2–6. By means of a literature survey, causes of the observed effects are discussed.
Bida Jian, Jiming Li, Guoyin Wang, Yuxin Zhao, Yarong Li, Jing Wang, Min Zhang, and Jianping Huang
Atmos. Chem. Phys., 21, 9809–9828, https://doi.org/10.5194/acp-21-9809-2021, https://doi.org/10.5194/acp-21-9809-2021, 2021
Short summary
Short summary
We evaluate the performance of the AMIP6 model in simulating cloud albedo over marine subtropical regions and the impacts of different aerosol types and meteorological factors on the cloud albedo based on multiple satellite datasets and reanalysis data. The results show that AMIP6 demonstrates moderate improvement over AMIP5 in simulating the monthly variation in cloud albedo, and changes in different aerosol types and meteorological factors can explain ~65 % of the changes in the cloud albedo.
Johannes Mohrmann, Robert Wood, Tianle Yuan, Hua Song, Ryan Eastman, and Lazaros Oreopoulos
Atmos. Chem. Phys., 21, 9629–9642, https://doi.org/10.5194/acp-21-9629-2021, https://doi.org/10.5194/acp-21-9629-2021, 2021
Short summary
Short summary
Observations of marine-boundary-layer conditions are composited by cloud type, based on a new classification dataset. It is found that two cloud types, representing regions of clustered and suppressed low-level clouds, occur in very similar large-scale conditions but are distinguished from each other by considering low-level circulation and surface wind fields, validating prior results from modeling.
Francesco Cairo, Mauro De Muro, Marcel Snels, Luca Di Liberto, Silvia Bucci, Bernard Legras, Ajil Kottayil, Andrea Scoccione, and Stefano Ghisu
Atmos. Chem. Phys., 21, 7947–7961, https://doi.org/10.5194/acp-21-7947-2021, https://doi.org/10.5194/acp-21-7947-2021, 2021
Short summary
Short summary
A lidar was used in Palau from February–March 2016. Clouds were observed peaking at 3 km below the high cold-point tropopause (CPT). Their occurrence was linked with cold anomalies, while in warm cases, cirrus clouds were restricted to 5 km below the CPT. Thin subvisible cirrus (SVC) near the CPT had distinctive characteristics. They were linked to wave-induced cold anomalies. Back trajectories are mostly compatible with convective outflow, while some distinctive SVC may originate in situ.
Edward Gryspeerdt, Tom Goren, and Tristan W. P. Smith
Atmos. Chem. Phys., 21, 6093–6109, https://doi.org/10.5194/acp-21-6093-2021, https://doi.org/10.5194/acp-21-6093-2021, 2021
Short summary
Short summary
Cloud responses to aerosol are time-sensitive, but this development is rarely observed. This study uses isolated aerosol perturbations from ships to measure this development and shows that macrophysical (width, cloud fraction, detectability) and microphysical (droplet number) properties of ship tracks vary strongly with time since emission, background cloud and meteorological state. This temporal development should be considered when constraining aerosol–cloud interactions with observations.
Tianmeng Chen, Zhanqing Li, Ralph A. Kahn, Chuanfeng Zhao, Daniel Rosenfeld, Jianping Guo, Wenchao Han, and Dandan Chen
Atmos. Chem. Phys., 21, 6199–6220, https://doi.org/10.5194/acp-21-6199-2021, https://doi.org/10.5194/acp-21-6199-2021, 2021
Short summary
Short summary
A convective cloud identification process is developed using geostationary satellite data from Himawari-8.
Convective cloud fraction is generally larger before noon and smaller in the afternoon under polluted conditions, but megacities and complex topography can influence the pattern.
A robust relationship between convective cloud and aerosol loading is found. This pattern varies with terrain height and is modulated by varying thermodynamic, dynamical, and humidity conditions during the day.
Ulrike Proske, Verena Bessenbacher, Zane Dedekind, Ulrike Lohmann, and David Neubauer
Atmos. Chem. Phys., 21, 5195–5216, https://doi.org/10.5194/acp-21-5195-2021, https://doi.org/10.5194/acp-21-5195-2021, 2021
Short summary
Short summary
Ice crystals falling out of one cloud can initiate freezing in a second cloud below. We estimate the occurrence frequency of this natural cloud seeding over Switzerland from satellite data and sublimation calculations. We find that such situations with an ice cloud above another cloud are frequent and that the falling crystals survive the fall between two clouds in a significant number of cases, suggesting that natural cloud seeding is an important phenomenon over Switzerland.
Joseph Sedlar, Adele Igel, and Hagen Telg
Atmos. Chem. Phys., 21, 4149–4167, https://doi.org/10.5194/acp-21-4149-2021, https://doi.org/10.5194/acp-21-4149-2021, 2021
Julia Maillard, François Ravetta, Jean-Christophe Raut, Vincent Mariage, and Jacques Pelon
Atmos. Chem. Phys., 21, 4079–4101, https://doi.org/10.5194/acp-21-4079-2021, https://doi.org/10.5194/acp-21-4079-2021, 2021
Short summary
Short summary
Clouds remain a major source of uncertainty in understanding the Arctic climate, due in part to the lack of measurements over the sea ice. In this paper, we exploit a series of lidar profiles acquired from autonomous drifting buoys deployed in the Arctic Ocean and derive a statistic of low cloud frequency and macrophysical properties. We also show that clouds contribute to warm the surface in the shoulder seasons but not significantly from May to September.
Kevin M. Smalley and Anita D. Rapp
Atmos. Chem. Phys., 21, 2765–2779, https://doi.org/10.5194/acp-21-2765-2021, https://doi.org/10.5194/acp-21-2765-2021, 2021
Short summary
Short summary
We use satellite observations of shallow cumulus clouds to investigate the influence of cloud size on the ratio of cloud water path to rainwater (WRR) in different environments. For a fixed temperature and relative humidity, WRR increases with cloud size, but it varies little with aerosols. These results imply that increasing WRR with rising temperature relates not only to deeper clouds but also to more frequent larger clouds.
Iris-Amata Dion, Cyrille Dallet, Philippe Ricaud, Fabien Carminati, Thibaut Dauhut, and Peter Haynes
Atmos. Chem. Phys., 21, 2191–2210, https://doi.org/10.5194/acp-21-2191-2021, https://doi.org/10.5194/acp-21-2191-2021, 2021
Short summary
Short summary
Ice in the tropopause has a strong radiative effect on climate. The amount of ice injected (∆IWC) up to the tropical tropopause layer has been shown to be the highest over the Maritime Continent (MC), a region that includes Indonesia. ∆IWC is studied over islands and sea of the MC. Space-borne observations of ice, precipitation and lightning are used to estimate ∆IWC and are compared to ∆IWC estimated from the ERA5 reanalyses. It is shown that Java is the area of the greatest ∆IWC over the MC.
Cited articles
Anthes, R. A., Bernhardt, P. A., Chen, Y., Cucurull, L., Dymond, K. F.,
Ector,D., Healy, S. B., Ho, S. P., Hunt, D. C., Kuo, Y. H., Liu, H., Manning,
K., McCormick, C., Meehan, T. K., Randel, W. J., Rocken, C., Schreiner,
W. S., Sokolovskiy, S. V., Syndergaard, S., Thompson, D. C., Trenberth,
K. E., Wee, T. K., Yen, N. L., and Zeng, Z.: The COSMIC/Formosat-3 mission:
Early results, B. Am. Meteorol. Soc., 89, 313–333,
https://doi.org/10.1175/BAMS-89-3-313, 2008. a
Ao, C. O., Meehan, T. K., Hajj, G. A., and Mannucci, A. J.: Lower troposphere
refractivity bias in GPS occultation retrievals, J. Geophys. Res., 108, 4577,
https://doi.org/10.1029/2002JD003216, 2003. a
Arakawa, A.: The cumulus parameterization problem: Past, present, and future,
J. Climate, 17, 2493–2525,
https://doi.org/10.1175/1520-0442(2004)017<2493:RATCPP>2.0.CO;2,
2004. a
Beard, K. V. and Chuang, C.: A new model for the equilibrium shape of
raindrops, J. Atmos. Sci., 44, 1509–1524,
https://doi.org/10.1175/1520-0469(1987)044<1509:ANMFTE>2.0.CO;2,
1987. a, b
Cardellach, E., Tomás, S., Oliveras, S., Padullés, R., Rius, A.,
de la Torre-Juárez, M., Turk, F. J., Ao, C. O., Kursinski, E. R.,
Schreiner, W. S., Ector, D., and Cucurull, L.: Sensitivity of PAZ LEO
Polarimetric GNSS Radio-Occultation Experiment to Precipitation Events, IEEE
T. Geosci. Remote, 53, 190–206, https://doi.org/10.1109/TGRS.2014.2320309, 2014. a
Cardellach, E., Padullés, R., Tomás, S., Turk, F. J., de la
Torre-Juárez, M., and Ao, C. O.: Probability of intense precipitation
from polarimetric GNSS radio occultation observations, Q. J. Roy. Meteor.
Soc., https://doi.org/10.1002/qj.3161, 2017. a, b
Cardinali, C. and Healy, S. B.: Impact of GPS radio occultation measurements
in the ECMWF system using adjoint-based diagnostics, Q. J. Roy. Meteor. Soc.,
140, 2315–2320, https://doi.org/10.1002/qj.2300, 2014. a
Cucurull, L., Derber, J. C., Treadon, R., and Purser, R. J.: Assimilation of
Global Positioning System Radio Occultation Observations into NCEP's Global
Data Assimilation System, Mon. Weather Rev., 135, 3174–3193,
https://doi.org/10.1175/MWR3461.1, 2007. a
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P.,
Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N.,
Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy,
S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kallberg, P. W.,
Köhler, M., Matricardi, M., Mcnally, A. P., Monge-Sanz, B. M.,
Morcrette, J. J., Park, B. K., Peubey, C., de Rosnay, P., Tavolato, C.,
Thépaut, J. N., and Vitart, F.: The ERA-Interim reanalysis:
Configuration and performance of the data assimilation system, Q. J. Roy.
Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011. a
Fjeldbo, G., Kliore, A., and Eshleman, V. R.: The Neutral Atmosphere of Venus
as Studied with the Mariner V Radio Occultation Experiments, Astron. J., 76,
123–140, https://doi.org/10.1086/111096, 1971. a
Foelsche, U., Syndergaard, S., Fritzer, J., and Kirchengast, G.: Errors in
GNSS radio occultation data: relevance of the measurement geometry and
obliquity of profiles, Atmos. Meas. Tech., 4, 189–199,
https://doi.org/10.5194/amt-4-189-2011, 2011. a
Hajj, G. A., Kursinski, E. R., Romans, L. J., Bertiger, W. I., and Leroy,
S. S.: A Technical Description of Atmospheric Sounding By Gps occultation,
J. Atmos. Sol.-Terr. Phy., 64, 451–469, https://doi.org/10.1016/S1364-6826(01)00114-6,
2002. a
Healy, S. B. and Eyre, J. R.: Retrieving temperature, water vapour and
surface pressure information from refractive index profiles derived by radio
occultation: A simulation study, Q. J. Roy. Meteor. Soc., 126, 1661–1683,
https://doi.org/10.1002/qj.49712656606, 2000. a
Healy, S. B., Jupp, A. M., and Marquardt, C.: Forecast impact experiment with
GPS radio occultation measurements, Geophys. Res. Lett., 32, L03804,
https://doi.org/10.1029/2004GL020806, 2005. a
Hersbach, H., Peubey, C., Simmons, A. J., Berrisford, P., Poli, P., and Dee,
D.: ERA-20CM: A twentieth-century atmospheric model ensemble, Q. J. Roy.
Meteor. Soc., 141, 2350–2375, https://doi.org/10.1002/qj.2528, 2015. a
Holloway, C. E. and Neelin, J. D.: Moisture Vertical Structure, Column Water
Vapor, and Tropical Deep Convection, J. Atmos. Sci., 66, 1665–1683,
https://doi.org/10.1175/2008JAS2806.1, 2009. a
Hou, A. Y., Kakar, R. K., Neeck, S., Azarbarzin, A. A., Kummerow, C. D.,
Kojima, M., Oki, R., Nakamura, K., and Iguchi, T.: The global precipitation
measurement mission, B. Am. Meteorol. Soc., 95, 701–722,
https://doi.org/10.1175/BAMS-D-13-00164.1, 2014. a
Huffman, G. J., Bolvin, D., Braithwaite, D., Hsu, K., Joyce, R., Kidd, C.,
Nelkin, E. J., Sorooshian, S., Tan, J., and Xie, P.: Algorithm Theoretical
Basis Document (ATBD) of Integrated Multi-satellitE Retrievals for GPM
(IMERG), version 5.2, Tech. Rep. March, available at:
https://pmm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V5.2.pdf,
last access: 8 August 2018. a
Jensen, A. S., Lohmann, M. S., Benzon, H. H., and Nielsen, A. S.: Full
spectrum inversion of radio occultation signals, Radio Sci., 38, 1040,
https://doi.org/10.1029/2002RS002763, 2003. a
Jones, R. C.: A new calculus for the treatment of optical systems, J. Opt.
Soc. Am., 31, 488–493, https://doi.org/10.1364/JOSA.31.000488, 1941. a
Kozu, T., Iguchi, T., Shimomai, T., and Kashiwagi, N.: Raindrop size
distribution modeling from a statistical rain parameter relation and its
application to the TRMM precipitation radar rain retrieval algorithm,
J. Appl. Meteorol. Clim., 48, 716–724, https://doi.org/10.1175/2008JAMC1998.1, 2009. a
Kummerow, C. D., Simpson, J., Thiele, O., Barnes, W., Chang, A. T. C.,
Stocker, E., Adler, R. F., Hou, A., Kakar, R., Wentz, F., Ashcroft, P., Kozu,
T., Hong, Y., Okamoto, K., Iguchi, T., Kuroiwa, H., Im, E., Haddad, Z.,
Huffman, G., Ferrier, B., Olson, W. S., Zipser, E. J., Smith, E. A., Wilheit,
T. T., North, G., Krishnamurti, T., and Nakamura, K.: The Status of the
Tropical Rainfall Measuring Mission (TRMM) after Two Years in Orbit, J. Appl.
Meteorol., 39, 1965–1982,
https://doi.org/10.1175/1520-0450(2001)040<1965:TSOTTR>2.0.CO;2,
2000. a
Kursinski, E. R., Hajj, G. A., Schofield, J. T., Linfield, R. P., and Hardy,
K. R.: Observing Earth's atmosphere with radio occultation measurements using
the Global Positioning System, J. Geophys. Res., 102, 23429–23465,
https://doi.org/10.1029/97JD01569, 1997. a, b, c
Liebe, H. J., Hufford, G. A., and Manabe, T.: A model for the complex
permittivity of water at frequencies below 1 THz, Int. J. Infrared Milli.,
12, 659–675, https://doi.org/10.1007/BF01008897, 1991. a
Lin, L., Zou, X., Anthes, R. A., and Kuo, Y. H.: COSMIC GPS Radio Occultation
Temperature Profiles in Clouds, Mon. Weather Rev., 138, 1104–1118,
https://doi.org/10.1175/2009MWR2986.1, 2010. a
Liu, C. and Zipser, E. J.: The global distribution of largest, deepest, and
most intense precipitation systems, Geophys. Res. Lett., 42, 3591–3595,
https://doi.org/10.1002/2015GL063776, 2015. a
Mishchenko, M. I., Travis, L. D., and Mackowski, D. W.: T-matrix computations
of light scattering by nonspherical particles: A review, J. Quant. Spectrosc.
Ra., 55, 535–575, https://doi.org/10.1016/0022-4073(96)00002-7, 1996. a
NOAA/NCEP: The GFS Atmospheric Model, NOAA/NCEP/Environmental Modeling
Center, NCEP Office Note 442, 14 pp., 2003. a
Oguchi, T.: Electromagnetic wave propagation and scattering in rain and other
hydrometeors, Proceedings of the IEEE, 71, 1029–1078,
https://doi.org/10.1109/PROC.1983.12724, 1983. a
Padullés, R., Cardellach, E., de la Torre Juárez, M., Tomás, S.,
Turk, F. J., Oliveras, S., Ao, C. O., and Rius, A.: Atmospheric polarimetric
effects on GNSS radio occultations: the ROHP-PAZ field campaign, Atmos. Chem.
Phys., 16, 635–649, https://doi.org/10.5194/acp-16-635-2016, 2016. a
Pruppacher, H. R. and Beard, K. V.: A wind tunnel investigation of the
internal circulation and shape of water drops falling at terminal velocity in
air, Q. J. Roy. Meteor. Soc., 96, 247–256, https://doi.org/10.1002/qj.49709640807,
1970. a
Sokolovskiy, S. V.: Effect of superrefraction on inversions of radio
occultation signals in the lower troposphere, Radio Sci., 38, 1058,
https://doi.org/10.1029/2002RS002728, 2003. a
Sokolovskiy, S. V., Rocken, C., Schreiner, W. S., and Hunt, D. C.: On the
uncertainty of radio occultation inversions in the lower troposphere,
J. Geophys. Res., 115, D22111, https://doi.org/10.1029/2010JD014058, 2010. a
Thayer, G. D.: An improved equation for the radio refractive index of air,
Radio Sci., 9, 803–807, https://doi.org/10.1029/RS009i010p00803, 1974. a
Tropical Rainfall Measuring Mission (TRMM): TRMM Combined
Precipitation Radar and Microwave Imager Rainfall Profile L2 1.5 hours V7,
Greenbelt, MD, Goddard Earth Sciences Data and Information Services Center
(GES DISC), available at:
https://disc.gsfc.nasa.gov/datacollection/TRMM_2B31_7.html (last access:
13 August 2018), 2011.
Vergados, P., Mannucci, A. J., Ao, C. O., Jiang, J. H., and Su, H.: On the
comparisons of tropical relative humidity in the lower and middle troposphere
among COSMIC radio occultations and MERRA and ECMWF data sets, Atmos. Meas.
Tech., 8, 1789–1797, https://doi.org/10.5194/amt-8-1789-2015, 2015. a
Vorob'ev, V. V. and Krasil'nikova, T. G.: Estimation of the accuracy of the
atmospheric refractive index recovery from Doppler shift measurements at
frequencies used in the NAVSTAR system, Izv. Atmos. Ocean. Phys, 29, 602–609, 1994. a
Wang, K.-N., de la Torre Juárez, M., Ao, C. O., and Xie, F.: Correcting
negatively biased refractivity below ducts in GNSS radio occultation: an
optimal estimation approach towards improving planetary boundary layer (PBL)
characterization, Atmos. Meas. Tech., 10, 4761–4776,
https://doi.org/10.5194/amt-10-4761-2017, 2017.
a
Xie, F., Syndergaard, S., Kursinski, E. R., and Herman, B. M.: An approach
for retrieving marine boundary layer refractivity from GPS occultation data
in the presence of superrefraction, J. Atmos. Ocean. Tech., 23, 1629–1644,
https://doi.org/10.1175/JTECH1996.1, 2006. a
Xie, F., Wu, D. L., Ao, C. O., Mannucci, A. J., and Kursinski, E. R.:
Advances and limitations of atmospheric boundary layer observations with GPS
occultation over southeast Pacific Ocean, Atmos. Chem. Phys., 12, 903–918,
https://doi.org/10.5194/acp-12-903-2012, 2012. a
Yang, S. and Zou, X.: Assessments of cloud liquid water contributions to GPS
radio occultation refractivity using measurements from COSMIC and CloudSat,
J. Geophys. Res., 117, D06219, https://doi.org/10.1029/2011JD016452, 2012. a
Yang, S. and Zou, X.: Dependence of positive refractivity bias of GPS RO
cloudy profiles on cloud fraction along GPS RO limb tracks, GPS Solutions,
21, 499–509, https://doi.org/10.1007/s10291-016-0541-1, 2016. a
Zou, X., Yang, S., and Ray, P. S.: Impacts of Ice Clouds on GPS RO
Measurements, J. Atmos. Sci., 69, 3670–3682, https://doi.org/10.1175/JAS-D-11-0199.1,
2012. a
Short summary
In this paper we have assessed the positive difference observed between radio-occultation-retrieved refractivity and that of weather analyses and reanalyses when heavy precipitation is present. The impact of the precipitation media on the refractivity observable has been evaluated, showing that precipitation itself cannot explain the magnitude of the observed difference. Instead, the difference is shown to be linked to high specific-humidity conditions, which in turn are linked to rain.
In this paper we have assessed the positive difference observed between...
Altmetrics
Final-revised paper
Preprint