Articles | Volume 18, issue 16
https://doi.org/10.5194/acp-18-11697-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-18-11697-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Assessment of global navigation satellite system (GNSS) radio occultation refractivity under heavy precipitation
Ramon Padullés
CORRESPONDING AUTHOR
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
Institut de Ciències de l'Espai (ICE, CSIC, IEEC), Barcelona, Spain
Estel Cardellach
Institut de Ciències de l'Espai (ICE, CSIC, IEEC), Barcelona, Spain
Kuo-Nung Wang
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
Chi O. Ao
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
F. Joseph Turk
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
Manuel de la Torre-Juárez
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
Related authors
Ramon Padullés, Estel Cardellach, Antía Paz, Santi Oliveras, Douglas C. Hunt, Sergey Sokolovskiy, Jan-Peter Weiss, Kuo-Nung Wang, F. Joe Turk, Chi O. Ao, and Manuel de la Torre Juárez
Earth Syst. Sci. Data, 16, 5643–5663, https://doi.org/10.5194/essd-16-5643-2024, https://doi.org/10.5194/essd-16-5643-2024, 2024
Short summary
Short summary
This dataset provides, for the first time, combined observations of clouds and precipitation with coincident retrievals of atmospheric thermodynamics obtained from the same space-based instrument. Furthermore, it provides the locations of the ray trajectories of the observations along various precipitation-related products interpolated into them with the aim of fostering the use of such dataset in scientific and operational applications.
Jonas Ernő Katona, Manuel de la Torre Juárez, Terence L. Kubar, F. Joseph Turk, Kuo-Nung Wang, and Ramon Padullés
EGUsphere, https://doi.org/10.5194/egusphere-2024-1278, https://doi.org/10.5194/egusphere-2024-1278, 2024
Short summary
Short summary
Polarimetric radio occultations (PRO) use polarized radio signals from satellites to detect moisture and precipitation in Earth's atmosphere. By applying nonlinear regression and k-means cluster analysis to over two years of PRO and non-PRO data, this study shows how deviations from a refractivity model relate to vertical profiles of water vapor pressure (moisture) and that differences between components of PRO signals correlate directly with vertical profiles of water path (precipitation).
Ramon Padullés, Estel Cardellach, and F. Joseph Turk
Atmos. Chem. Phys., 23, 2199–2214, https://doi.org/10.5194/acp-23-2199-2023, https://doi.org/10.5194/acp-23-2199-2023, 2023
Short summary
Short summary
The results of comparing the polarimetric radio occultation observables and the ice water content retrieved from the CloudSat radar in a global and statistical way show a strong correlation between the geographical patterns of both quantities for a wide range of heights. This implies that horizontally oriented hydrometeors are systematically present through the whole globe and through all vertical levels, which could provide insights on the physical processes leading to precipitation.
Ramon Padullés, Chi O. Ao, F. Joseph Turk, Manuel de la Torre Juárez, Byron Iijima, Kuo Nung Wang, and Estel Cardellach
Atmos. Meas. Tech., 13, 1299–1313, https://doi.org/10.5194/amt-13-1299-2020, https://doi.org/10.5194/amt-13-1299-2020, 2020
Short summary
Short summary
In this study we thoroughly address the calibration and validation of the new polarimetric radio occultation (PRO) observables. These represent an innovative way to obtain vertical profiles of precipitation along with thermodynamic observations of the same scene. First we perform the on-orbit calibration of the measurement. Then, we show how the PRO observables are sensitive to the presence and intensity of rain by looking for coincident precipitation measurements from independent missions.
R. Padullés, E. Cardellach, M. de la Torre Juárez, S. Tomás, F. J. Turk, S. Oliveras, C. O. Ao, and A. Rius
Atmos. Chem. Phys., 16, 635–649, https://doi.org/10.5194/acp-16-635-2016, https://doi.org/10.5194/acp-16-635-2016, 2016
Short summary
Short summary
The ROHP-PAZ mission will collect, for the first time, GPS radio occultations at two polarizations with the aim of characterizing rain. Prior to the mission's launch (2016), a field campaign has been conducted to identify and understand the measurements. In this study we present the set-up and the results of such a campaign: the main finding is the confirmation of sensitivity to heavy rain and, unexpectedly, to other frozen hydrometeors. This is key information for the spaceborne experiment.
Ramon Padullés, Estel Cardellach, Antía Paz, Santi Oliveras, Douglas C. Hunt, Sergey Sokolovskiy, Jan-Peter Weiss, Kuo-Nung Wang, F. Joe Turk, Chi O. Ao, and Manuel de la Torre Juárez
Earth Syst. Sci. Data, 16, 5643–5663, https://doi.org/10.5194/essd-16-5643-2024, https://doi.org/10.5194/essd-16-5643-2024, 2024
Short summary
Short summary
This dataset provides, for the first time, combined observations of clouds and precipitation with coincident retrievals of atmospheric thermodynamics obtained from the same space-based instrument. Furthermore, it provides the locations of the ray trajectories of the observations along various precipitation-related products interpolated into them with the aim of fostering the use of such dataset in scientific and operational applications.
Jonas Ernő Katona, Manuel de la Torre Juárez, Terence L. Kubar, F. Joseph Turk, Kuo-Nung Wang, and Ramon Padullés
EGUsphere, https://doi.org/10.5194/egusphere-2024-1278, https://doi.org/10.5194/egusphere-2024-1278, 2024
Short summary
Short summary
Polarimetric radio occultations (PRO) use polarized radio signals from satellites to detect moisture and precipitation in Earth's atmosphere. By applying nonlinear regression and k-means cluster analysis to over two years of PRO and non-PRO data, this study shows how deviations from a refractivity model relate to vertical profiles of water vapor pressure (moisture) and that differences between components of PRO signals correlate directly with vertical profiles of water path (precipitation).
Manisha Ganeshan, Dong L. Wu, Joseph A. Santanello, Jie Gong, Chi O. Ao, Panagiotis Vergados, and Kevin Nelson
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-83, https://doi.org/10.5194/amt-2024-83, 2024
Preprint under review for AMT
Short summary
Short summary
This study explores the potential of two newly launched commercial GNSS RO satellite missions for advancing Arctic lower atmospheric studies. The products have a good sampling of the lower Arctic atmosphere, and are useful to derive the planetary boundary layer (PBL) height during winter months. This research is a step towards closing the observation gap in polar regions due to the decomissioning of COSMIC-1 GNSS RO mission, and the lack of high latitude coverage by its successor (COSMIC-2).
Kuo-Nung Wang, Chi O. Ao, Mary G. Morris, George A. Hajj, Marcin J. Kurowski, Francis J. Turk, and Angelyn W. Moore
Atmos. Meas. Tech., 17, 583–599, https://doi.org/10.5194/amt-17-583-2024, https://doi.org/10.5194/amt-17-583-2024, 2024
Short summary
Short summary
In this article, we described a joint retrieval approach combining two techniques, RO and MWR, to obtain high vertical resolution and solve for temperature and moisture independently. The results show that the complicated structure in the lower troposphere can be better resolved with much smaller biases, and the RO+MWR combination is the most stable scenario in our sensitivity analysis. This approach is also applied to real data (COSMIC-2/Suomi-NPP) to show the promise of joint RO+MWR retrieval.
Ramon Padullés, Estel Cardellach, and F. Joseph Turk
Atmos. Chem. Phys., 23, 2199–2214, https://doi.org/10.5194/acp-23-2199-2023, https://doi.org/10.5194/acp-23-2199-2023, 2023
Short summary
Short summary
The results of comparing the polarimetric radio occultation observables and the ice water content retrieved from the CloudSat radar in a global and statistical way show a strong correlation between the geographical patterns of both quantities for a wide range of heights. This implies that horizontally oriented hydrometeors are systematically present through the whole globe and through all vertical levels, which could provide insights on the physical processes leading to precipitation.
Anthony J. Mannucci, Chi O. Ao, Byron A. Iijima, Thomas K. Meehan, Panagiotis Vergados, E. Robert Kursinski, and William S. Schreiner
Atmos. Meas. Tech., 15, 4971–4987, https://doi.org/10.5194/amt-15-4971-2022, https://doi.org/10.5194/amt-15-4971-2022, 2022
Short summary
Short summary
The Global Positioning System (GPS) radio occultation (RO) technique is a satellite-based method for producing highly accurate vertical profiles of atmospheric temperature and pressure. RO profiles are used to monitor global climate trends, particularly in that region of the atmosphere that includes the lower stratosphere. Two data sets spanning 1995–1997 that were produced from the first RO satellite are highly accurate and can be used to assess global atmospheric models.
Miguel Ricardo A. Hilario, Ewan Crosbie, Michael Shook, Jeffrey S. Reid, Maria Obiminda L. Cambaliza, James Bernard B. Simpas, Luke Ziemba, Joshua P. DiGangi, Glenn S. Diskin, Phu Nguyen, F. Joseph Turk, Edward Winstead, Claire E. Robinson, Jian Wang, Jiaoshi Zhang, Yang Wang, Subin Yoon, James Flynn, Sergio L. Alvarez, Ali Behrangi, and Armin Sorooshian
Atmos. Chem. Phys., 21, 3777–3802, https://doi.org/10.5194/acp-21-3777-2021, https://doi.org/10.5194/acp-21-3777-2021, 2021
Short summary
Short summary
This study characterizes long-range transport from major Asian pollution sources into the tropical northwest Pacific and the impact of scavenging on these air masses. We combined aircraft observations, HYSPLIT trajectories, reanalysis, and satellite retrievals to reveal distinct composition and size distribution profiles associated with specific emission sources and wet scavenging. The results of this work have implications for international policymaking related to climate and health.
Andrea K. Steiner, Florian Ladstädter, Chi O. Ao, Hans Gleisner, Shu-Peng Ho, Doug Hunt, Torsten Schmidt, Ulrich Foelsche, Gottfried Kirchengast, Ying-Hwa Kuo, Kent B. Lauritsen, Anthony J. Mannucci, Johannes K. Nielsen, William Schreiner, Marc Schwärz, Sergey Sokolovskiy, Stig Syndergaard, and Jens Wickert
Atmos. Meas. Tech., 13, 2547–2575, https://doi.org/10.5194/amt-13-2547-2020, https://doi.org/10.5194/amt-13-2547-2020, 2020
Short summary
Short summary
High-quality observations are critically important for monitoring the Earth’s changing climate. We provide information on the consistency and long-term stability of observations from GPS radio occultation (RO). We assess, for the first time, RO records from multiple RO missions and all major RO data providers. Our results quantify where RO can be used for reliable trend assessment and confirm its climate quality.
Ramon Padullés, Chi O. Ao, F. Joseph Turk, Manuel de la Torre Juárez, Byron Iijima, Kuo Nung Wang, and Estel Cardellach
Atmos. Meas. Tech., 13, 1299–1313, https://doi.org/10.5194/amt-13-1299-2020, https://doi.org/10.5194/amt-13-1299-2020, 2020
Short summary
Short summary
In this study we thoroughly address the calibration and validation of the new polarimetric radio occultation (PRO) observables. These represent an innovative way to obtain vertical profiles of precipitation along with thermodynamic observations of the same scene. First we perform the on-orbit calibration of the measurement. Then, we show how the PRO observables are sensitive to the presence and intensity of rain by looking for coincident precipitation measurements from independent missions.
Alexa D. Ross, Robert E. Holz, Gregory Quinn, Jeffrey S. Reid, Peng Xian, F. Joseph Turk, and Derek J. Posselt
Atmos. Chem. Phys., 18, 12747–12764, https://doi.org/10.5194/acp-18-12747-2018, https://doi.org/10.5194/acp-18-12747-2018, 2018
Short summary
Short summary
This paper explores how clouds and aerosols interact over Southeast Asia. We introduce a new collocated dataset called the Curtain Cloud-Aerosol Regional A-Train (CCARA) product. CCARA is special because it combines satellite observations with model reanalysis. We find that increased aerosol corresponds to smaller observed liquid cloud droplets in some areas. Other areas experienced little to no change in effective radius (droplet size) when aerosol amount increased.
Xiao Yu, Feiqin Xie, and Chi O. Ao
Atmos. Meas. Tech., 11, 2051–2066, https://doi.org/10.5194/amt-11-2051-2018, https://doi.org/10.5194/amt-11-2051-2018, 2018
Short summary
Short summary
Atmospheric observations from GPS receiver satellites offer uniform spatial coverage over the Arctic. The GPS profiles sensing deep into the lowest 300 m of the atmosphere only reach 50–60 % in summer but over 70 % in other seasons. The profile uncertainty due to different data centers is within 0.07 % in refractivity, 0.72 K in temperature, and 0.05 g kg-1 in humidity below 10 km. A systematic negative bias of 1 % in refractivity below 2 km is only seen in the summer due to moisture impact.
Josep M. Aparicio, Estel Cardellach, and Hilda Rodríguez
Atmos. Meas. Tech., 11, 1883–1900, https://doi.org/10.5194/amt-11-1883-2018, https://doi.org/10.5194/amt-11-1883-2018, 2018
Short summary
Short summary
It is shown that during a satellite-to-satellite radio transmission, over the Earth's limb, the signal bounced off the ocean contains information of the low atmosphere as shown with radio occultations. This bounced signal is particularly clear over colder oceans but less clear over the tropics. This information is indicative of the properties of the low troposphere and can be used as a remote sensing measurement for weather.
Panagiotis Vergados, Anthony J. Mannucci, Chi O. Ao, Olga Verkhoglyadova, and Byron Iijima
Atmos. Meas. Tech., 11, 1193–1206, https://doi.org/10.5194/amt-11-1193-2018, https://doi.org/10.5194/amt-11-1193-2018, 2018
Short summary
Short summary
This study cross-compares the 10-year record of GPS radio occultation (GPS-RO) specific humidity product against independent databases (e.g., AIRS satellite, NASA/MERRA, and ERA-Interim). Our objective is to investigate the suitability of the GPS-RO humidity as a climate variable, which the science community could use in climate research. GPS-RO offers high vertical resolution, low sensitivity to clouds, and long-term stability making GPS-RO humidity a valuable complementary data set.
Michael E. Gorbunov, Estel Cardellach, and Kent B. Lauritsen
Atmos. Meas. Tech., 11, 1181–1191, https://doi.org/10.5194/amt-11-1181-2018, https://doi.org/10.5194/amt-11-1181-2018, 2018
Short summary
Short summary
We apply linear and non-linear representations of wave fields, based on Fourier integral operators and Wigner distribution function, to the retrieval of reflected rays from radio occultation observations. We introduce a reflection index that characterizes the relative intensity of the reflected ray. A comparison of indices evaluated for a large base of events including the visual identification of reflections indicated a good agreement with our definition of reflection index.
Feiqin Xie, Loknath Adhikari, Jennifer S. Haase, Brian Murphy, Kuo-Nung Wang, and James L. Garrison
Atmos. Meas. Tech., 11, 763–780, https://doi.org/10.5194/amt-11-763-2018, https://doi.org/10.5194/amt-11-763-2018, 2018
Short summary
Short summary
The GPS signal going through the atmosphere will experience refraction or bending, which can be precisely measured and used to infer the atmospheric properties. This paper demonstrates that high-quality atmospheric measurement with less than ~ 0.4 K is achievable from a GPS recording system with a simple antenna mounted on top of an aircraft cruising at ~ 13 km. Such a simple airborne GPS system can be implemented on commercial aircraft to provide valuable data for weather models in the future.
Kuo-Nung Wang, Manuel de la Torre Juárez, Chi O. Ao, and Feiqin Xie
Atmos. Meas. Tech., 10, 4761–4776, https://doi.org/10.5194/amt-10-4761-2017, https://doi.org/10.5194/amt-10-4761-2017, 2017
Short summary
Short summary
Refractivity retrievals from GNSS radio occultation (RO) are known to be negatively biased within the planetary boundary layer (PBL). We propose an optimization-based reconstruction method in this paper to correct the negative bias with external measurements of precipitable water (PW). Our results show that the proposed method can greatly reduce the bias and better characterize the PBL.
Esayas Shume and Chi Ao
Atmos. Meas. Tech., 9, 3175–3182, https://doi.org/10.5194/amt-9-3175-2016, https://doi.org/10.5194/amt-9-3175-2016, 2016
R. Padullés, E. Cardellach, M. de la Torre Juárez, S. Tomás, F. J. Turk, S. Oliveras, C. O. Ao, and A. Rius
Atmos. Chem. Phys., 16, 635–649, https://doi.org/10.5194/acp-16-635-2016, https://doi.org/10.5194/acp-16-635-2016, 2016
Short summary
Short summary
The ROHP-PAZ mission will collect, for the first time, GPS radio occultations at two polarizations with the aim of characterizing rain. Prior to the mission's launch (2016), a field campaign has been conducted to identify and understand the measurements. In this study we present the set-up and the results of such a campaign: the main finding is the confirmation of sensitivity to heavy rain and, unexpectedly, to other frozen hydrometeors. This is key information for the spaceborne experiment.
P. Vergados, A. J. Mannucci, C. O. Ao, J. H. Jiang, and H. Su
Atmos. Meas. Tech., 8, 1789–1797, https://doi.org/10.5194/amt-8-1789-2015, https://doi.org/10.5194/amt-8-1789-2015, 2015
A. K. Steiner, D. Hunt, S.-P. Ho, G. Kirchengast, A. J. Mannucci, B. Scherllin-Pirscher, H. Gleisner, A. von Engeln, T. Schmidt, C. Ao, S. S. Leroy, E. R. Kursinski, U. Foelsche, M. Gorbunov, S. Heise, Y.-H. Kuo, K. B. Lauritsen, C. Marquardt, C. Rocken, W. Schreiner, S. Sokolovskiy, S. Syndergaard, and J. Wickert
Atmos. Chem. Phys., 13, 1469–1484, https://doi.org/10.5194/acp-13-1469-2013, https://doi.org/10.5194/acp-13-1469-2013, 2013
Related subject area
Subject: Clouds and Precipitation | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Weak liquid water path response in ship tracks
Air mass history linked to the development of Arctic mixed-phase clouds
Distinct structure, radiative effects, and precipitation characteristics of deep convection systems in the Tibetan Plateau compared to the tropical Indian Ocean
The correlation between Arctic sea ice, cloud phase and radiation using A-Train satellites
Technical note: Retrieval of the supercooled liquid fraction in mixed-phase clouds from Himawari-8 observations
Characterisation of low-base and mid-base clouds and their thermodynamic phase over the Southern Ocean and Arctic marine regions
Technical note: Applicability of physics-based and machine-learning-based algorithms of geostationary satellite in retrieving the diurnal cycle of cloud base height
A survey of radiative and physical properties of North Atlantic mesoscale cloud morphologies from multiple identification methodologies
Extensive coverage of ultrathin tropical tropopause layer cirrus clouds revealed by balloon-borne lidar observations
The effects of warm-air intrusions in the high Arctic on cirrus clouds
Observing convective activities in the complex organizations and their contributions to the precipitation and anvil amount
The characteristics of cloud macro-parameters caused by the seeder–feeder process inside clouds measured by millimeter-wave cloud radar in Xi'an, China
Shallow- and deep-convection characteristics in the greater Houston, Texas, area using cell tracking methodology
Observations of the macrophysical properties of cumulus cloud fields over the tropical western Pacific and their connection to meteorological variables
A Lagrangian perspective on the lifecycle and cloud radiative effect of deep convective clouds over Africa
How does the lifetime of detrained cirrus impact the high cloud radiative effect in the tropics?
Daytime variation in the aerosol indirect effect for warm marine boundary layer clouds in the eastern North Atlantic
Technical note: Bimodal parameterizations of in situ ice cloud particle size distributions
Inter-relations of precipitation, aerosols, and clouds over Andalusia, southern Spain, revealed by the Andalusian Global ObseRvatory of the Atmosphere (AGORA)
On the relationship between mesoscale cellular convection and meteorological forcing: comparing the Southern Ocean against the North Pacific
Aerosol-related effects on the occurrence of heterogeneous ice formation over Lauder, New Zealand ∕ Aotearoa
Low-level Arctic clouds: a blind zone in our knowledge of the radiation budget
Climatologically invariant scale invariance seen in distributions of cloud horizontal sizes
Variability and properties of liquid-dominated clouds over the ice-free and sea-ice-covered Arctic Ocean
Asymmetries in cloud microphysical properties ascribed to sea ice leads via water vapour transport in the central Arctic
Quantifying the dependence of drop spectrum width on cloud drop number concentration for cloud remote sensing
The evolution of deep convective systems and their associated cirrus outflows
Wildfire smoke triggers cirrus formation: lidar observations over the eastern Mediterranean
Rapid saturation of cloud water adjustments to shipping emissions
Sensitivities of cloud radiative effects to large-scale meteorology and aerosols from global observations
Distinct secondary ice production processes observed in radar Doppler spectra: insights from a case study
Investigating the development of clouds within marine cold-air outbreaks
Detection of large-scale cloud microphysical changes within a major shipping corridor after implementation of the International Maritime Organization 2020 fuel sulfur regulations
Examining cloud vertical structure and radiative effects from satellite retrievals and evaluation of CMIP6 scenarios
Influence of cloud microphysics schemes on weather model predictions of heavy precipitation
Convective organization and 3D structure of tropical cloud systems deduced from synergistic A-Train observations and machine learning
Seasonal controls on isolated convective storm drafts, precipitation intensity, and life cycle as observed during GoAmazon2014/5
Uncertainty in aerosol–cloud radiative forcing is driven by clean conditions
Surface-based observations of cold-air outbreak clouds during the COMBLE field campaign
Boundary layer moisture variability at the Atmospheric Radiation Measurement (ARM) Eastern North Atlantic observatory during marine conditions
Profile-based estimated inversion strength
Characteristics of supersaturation in midlatitude cirrus clouds and their adjacent cloud-free air
Establishment of an analytical model for remote sensing of typical stratocumulus cloud profiles under various precipitation and entrainment conditions
Satellite remote sensing of regional and seasonal Arctic cooling showing a multi-decadal trend towards brighter and more liquid clouds
Microphysical processes of super typhoon Lekima (2019) and their impacts on polarimetric radar remote sensing of precipitation
The impacts of dust aerosol and convective available potential energy on precipitation vertical structure in southeastern China as seen from multisource observations
Heavy snowfall event over the Swiss Alps: did wind shear impact secondary ice production?
On the global relationship between polarimetric radio occultation differential phase shift and ice water content
Observations of microphysical properties and radiative effects of a contrail cirrus outbreak over the North Atlantic
Natural marine cloud brightening in the Southern Ocean
Anna Tippett, Edward Gryspeerdt, Peter Manshausen, Philip Stier, and Tristan W. P. Smith
Atmos. Chem. Phys., 24, 13269–13283, https://doi.org/10.5194/acp-24-13269-2024, https://doi.org/10.5194/acp-24-13269-2024, 2024
Short summary
Short summary
Ship emissions can form artificially brightened clouds, known as ship tracks, and provide us with an opportunity to investigate how aerosols interact with clouds. Previous studies that used ship tracks suggest that clouds can experience large increases in the amount of water (LWP) from aerosols. Here, we show that there is a bias in previous research and that, when we account for this bias, the LWP response to aerosols is much weaker than previously reported.
Rebecca J. Murray-Watson and Edward Gryspeerdt
Atmos. Chem. Phys., 24, 11115–11132, https://doi.org/10.5194/acp-24-11115-2024, https://doi.org/10.5194/acp-24-11115-2024, 2024
Short summary
Short summary
The formation of mixed-phase clouds during marine cold-air outbreaks is not well understood. Our study, using satellite data and Lagrangian trajectories, reveals that the occurrence of these clouds depends on both time and temperature, influenced partly by the presence of biological ice-nucleating particles. This highlights the importance of comprehending local aerosol dynamics for precise modelling of cloud-phase transitions in the Arctic.
Yuxin Zhao, Jiming Li, Deyu Wen, Yarong Li, Yuan Wang, and Jianping Huang
Atmos. Chem. Phys., 24, 9435–9457, https://doi.org/10.5194/acp-24-9435-2024, https://doi.org/10.5194/acp-24-9435-2024, 2024
Short summary
Short summary
This study identifies deep convection systems (DCSs), including deep convection cores and anvils, over the Tibetan Plateau (TP) and tropical Indian Ocean (TO). The DCSs over the TP are less frequent, showing narrower and thinner cores and anvils compared to those over the TO. TP DCSs show a stronger longwave cloud radiative effect at the surface and in the low-level atmosphere. Distinct aerosol–cloud–precipitation interaction is found in TP DCSs, probably due to the cold cloud bases.
Grégory V. Cesana, Olivia Pierpaoli, Matteo Ottaviani, Linh Vu, Zhonghai Jin, and Israel Silber
Atmos. Chem. Phys., 24, 7899–7909, https://doi.org/10.5194/acp-24-7899-2024, https://doi.org/10.5194/acp-24-7899-2024, 2024
Short summary
Short summary
Better characterizing the relationship between sea ice and clouds is key to understanding Arctic climate because clouds and sea ice affect surface radiation and modulate Arctic surface warming. Our results indicate that Arctic liquid clouds robustly increase in response to sea ice decrease. This increase has a cooling effect on the surface because more solar radiation is reflected back to space, and it should contribute to dampening future Arctic surface warming.
Ziming Wang, Husi Letu, Huazhe Shang, and Luca Bugliaro
Atmos. Chem. Phys., 24, 7559–7574, https://doi.org/10.5194/acp-24-7559-2024, https://doi.org/10.5194/acp-24-7559-2024, 2024
Short summary
Short summary
The supercooled liquid fraction (SLF) in mixed-phase clouds is retrieved for the first time using passive geostationary satellite observations based on differences in liquid droplet and ice particle radiative properties. The retrieved results are comparable to global distributions observed by active instruments, and the feasibility of the retrieval method to analyze the observed trends of the SLF has been validated.
Barbara Dietel, Odran Sourdeval, and Corinna Hoose
Atmos. Chem. Phys., 24, 7359–7383, https://doi.org/10.5194/acp-24-7359-2024, https://doi.org/10.5194/acp-24-7359-2024, 2024
Short summary
Short summary
Uncertainty with respect to cloud phases over the Southern Ocean and Arctic marine regions leads to large uncertainties in the radiation budget of weather and climate models. This study investigates the phases of low-base and mid-base clouds using satellite-based remote sensing data. A comprehensive analysis of the correlation of cloud phase with various parameters, such as temperature, aerosols, sea ice, vertical and horizontal cloud extent, and cloud radiative effect, is presented.
Mengyuan Wang, Min Min, Jun Li, Han Lin, Yongen Liang, Binlong Chen, Zhigang Yao, Na Xu, and Miao Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2024-1516, https://doi.org/10.5194/egusphere-2024-1516, 2024
Short summary
Short summary
Although machine learning technology is advanced in the field of satellite remote sensing, the physical inversion algorithm based on cloud base height can better capture the daily variation characteristics of cloud base.
Ryan Eastman, Isabel L. McCoy, Hauke Schulz, and Robert Wood
Atmos. Chem. Phys., 24, 6613–6634, https://doi.org/10.5194/acp-24-6613-2024, https://doi.org/10.5194/acp-24-6613-2024, 2024
Short summary
Short summary
Cloud types are determined using machine learning image classifiers applied to satellite imagery for 1 year in the North Atlantic. This survey of these cloud types shows that the climate impact of a cloud scene is, in part, a function of cloud type. Each type displays a different mix of thick and thin cloud cover, with the fraction of thin cloud cover having the strongest impact on the clouds' radiative effect. Future studies must account for differing properties and processes among cloud types.
Thomas Lesigne, François Ravetta, Aurélien Podglajen, Vincent Mariage, and Jacques Pelon
Atmos. Chem. Phys., 24, 5935–5952, https://doi.org/10.5194/acp-24-5935-2024, https://doi.org/10.5194/acp-24-5935-2024, 2024
Short summary
Short summary
Upper tropical clouds have a strong impact on Earth's climate but are challenging to observe. We report the first long-duration observations of tropical clouds from lidars flying on board stratospheric balloons. Comparisons with spaceborne observations reveal the enhanced sensitivity of balloon-borne lidar to optically thin cirrus. These clouds, which have a significant coverage and lie in the uppermost troposphere, are linked with the dehydration of air masses on their way to the stratosphere.
Georgios Dekoutsidis, Martin Wirth, and Silke Groß
Atmos. Chem. Phys., 24, 5971–5987, https://doi.org/10.5194/acp-24-5971-2024, https://doi.org/10.5194/acp-24-5971-2024, 2024
Short summary
Short summary
For decades the earth's temperature has been rising. The Arctic regions are warming faster. Cirrus clouds can contribute to this phenomenon. During warm-air intrusions, air masses are transported into the Arctic from the mid-latitudes. The HALO-(AC)3 campaign took place to measure cirrus during intrusion events and under normal conditions. We study the two cloud types based on these measurements and find differences in their geometry, relative humidity distribution and vertical structure.
Zhenquan Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-1318, https://doi.org/10.5194/egusphere-2024-1318, 2024
Short summary
Short summary
The connected but independent convective systems are divided from the complicated organizations and tracked. The duration, precipitation and anvil amount of the tracked organization segments have a strong log-linear relationship with its brightness temperature structures. Most precipitation are contributed by the cold long-lived but less frequent convective structures, while anvils are produced by both the cold long-lived and the warm short-lived but frequent convective structures.
Huige Di and Yun Yuan
Atmos. Chem. Phys., 24, 5783–5801, https://doi.org/10.5194/acp-24-5783-2024, https://doi.org/10.5194/acp-24-5783-2024, 2024
Short summary
Short summary
We observed the seeder–feeder process among double-layer clouds using a cloud radar and microwave radiometer. By defining the parameters of the seeding depth and seeding time of the upper cloud affecting the lower cloud, we find that the cloud particle terminal velocity is significantly enhanced during the seeder–feeder period, and the lower the height and thinner the thickness of the height difference between double-layer clouds, the lower the height and thicker the thickness of seeding depth.
Kristofer S. Tuftedal, Bernat Puigdomènech Treserras, Mariko Oue, and Pavlos Kollias
Atmos. Chem. Phys., 24, 5637–5657, https://doi.org/10.5194/acp-24-5637-2024, https://doi.org/10.5194/acp-24-5637-2024, 2024
Short summary
Short summary
This study analyzed coastal convective cells from June through September 2018–2021. The cells were classified and their lifecycles were analyzed to better understand their characteristics. Features such as convective-core growth, for example, are shown. The study found differences in the initiation location of shallow convection and in the aerosol loading in deep convective environments. This work provides a foundation for future analyses of convection or other tracked events elsewhere.
Michie Vianca De Vera, Larry Di Girolamo, Guangyu Zhao, Robert M. Rauber, Stephen W. Nesbitt, and Greg M. McFarquhar
Atmos. Chem. Phys., 24, 5603–5623, https://doi.org/10.5194/acp-24-5603-2024, https://doi.org/10.5194/acp-24-5603-2024, 2024
Short summary
Short summary
Tropical oceanic low clouds remain a dominant source of uncertainty in cloud feedback in climate models due to their macrophysical properties (fraction, size, height, shape, distribution) being misrepresented. High-resolution satellite imagery over the Philippine oceans is used here to characterize cumulus macrophysical properties and their relationship to meteorological variables. Such information can act as a benchmark for cloud models and can improve low-cloud generation in climate models.
William K. Jones, Martin Stengel, and Philip Stier
Atmos. Chem. Phys., 24, 5165–5180, https://doi.org/10.5194/acp-24-5165-2024, https://doi.org/10.5194/acp-24-5165-2024, 2024
Short summary
Short summary
Storm clouds cover large areas of the tropics. These clouds both reflect incoming sunlight and trap heat from the atmosphere below, regulating the temperature of the tropics. Over land, storm clouds occur in the late afternoon and evening and so exist both during the daytime and at night. Changes in this timing could upset the balance of the respective cooling and heating effects of these clouds. We find that isolated storms have a larger effect on this balance than their small size suggests.
George Horner and Edward Gryspeerdt
EGUsphere, https://doi.org/10.5194/egusphere-2024-1090, https://doi.org/10.5194/egusphere-2024-1090, 2024
Short summary
Short summary
This work tracks the lifecycle of thin cirrus clouds that flow out of tropical convective storms. These cirrus clouds are found to have a warming effect on the atmosphere over their whole lifetime. Thin cirrus that originate from land origin convection warm more than those of ocean origin. Moreover, if the lifetime of these cirrus clouds increase, the warming they exert over their whole lifetime also increases. These results help us understand how these clouds might change in a future climate.
Shaoyue Qiu, Xue Zheng, David Painemal, Christopher R. Terai, and Xiaoli Zhou
Atmos. Chem. Phys., 24, 2913–2935, https://doi.org/10.5194/acp-24-2913-2024, https://doi.org/10.5194/acp-24-2913-2024, 2024
Short summary
Short summary
The aerosol indirect effect (AIE) depends on cloud states, which exhibit significant diurnal variations in the northeastern Atlantic. Yet the AIE diurnal cycle remains poorly understood. Using satellite retrievals, we find a pronounced “U-shaped” diurnal variation in the AIE, which is contributed to by the transition of cloud states combined with the lagged cloud responses. This suggests that polar-orbiting satellites with overpass times at noon underestimate daytime mean values of the AIE.
Irene Bartolomé García, Odran Sourdeval, Reinhold Spang, and Martina Krämer
Atmos. Chem. Phys., 24, 1699–1716, https://doi.org/10.5194/acp-24-1699-2024, https://doi.org/10.5194/acp-24-1699-2024, 2024
Short summary
Short summary
How many ice crystals of each size are in a cloud is a key parameter for the retrieval of cloud properties. The distribution of ice crystals is obtained from in situ measurements and used to create parameterizations that can be used when analyzing the remote-sensing data. Current parameterizations are based on data sets that do not include reliable measurements of small crystals, but in our study we use a data set that includes very small ice crystals to improve these parameterizations.
Wenyue Wang, Klemens Hocke, Leonardo Nania, Alberto Cazorla, Gloria Titos, Renaud Matthey, Lucas Alados-Arboledas, Agustín Millares, and Francisco Navas-Guzmán
Atmos. Chem. Phys., 24, 1571–1585, https://doi.org/10.5194/acp-24-1571-2024, https://doi.org/10.5194/acp-24-1571-2024, 2024
Short summary
Short summary
The south-central interior of Andalusia experiences complex precipitation patterns as a result of the semi-arid Mediterranean climate and the influence of Saharan dust. This study monitored the inter-relations between aerosols, clouds, meteorological variables, and precipitation systems using ground-based remote sensing and in situ instruments.
Francisco Lang, Steven T. Siems, Yi Huang, Tahereh Alinejadtabrizi, and Luis Ackermann
Atmos. Chem. Phys., 24, 1451–1466, https://doi.org/10.5194/acp-24-1451-2024, https://doi.org/10.5194/acp-24-1451-2024, 2024
Short summary
Short summary
Marine low-level clouds play a crucial role in the Earth's energy balance, trapping heat from the surface and reflecting sunlight back into space. These clouds are distinguishable by their large-scale spatial structures, primarily characterized as hexagonal patterns with either filled (closed) or empty (open) cells. Utilizing satellite observations, these two cloud type patterns have been categorized over the Southern Ocean and North Pacific Ocean through a pattern recognition program.
Julian Hofer, Patric Seifert, J. Ben Liley, Martin Radenz, Osamu Uchino, Isamu Morino, Tetsu Sakai, Tomohiro Nagai, and Albert Ansmann
Atmos. Chem. Phys., 24, 1265–1280, https://doi.org/10.5194/acp-24-1265-2024, https://doi.org/10.5194/acp-24-1265-2024, 2024
Short summary
Short summary
An 11-year dataset of polarization lidar observations from Lauder, New Zealand / Aotearoa, was used to distinguish the thermodynamic phase of natural clouds. The cloud dataset was separated to assess the impact of air mass origin on the frequency of heterogeneous ice formation. Ice formation efficiency in clouds above Lauder was found to be lower than in the polluted Northern Hemisphere midlatitudes but higher than in very clean and pristine environments, such as Punta Arenas in southern Chile.
Hannes Jascha Griesche, Carola Barrientos-Velasco, Hartwig Deneke, Anja Hünerbein, Patric Seifert, and Andreas Macke
Atmos. Chem. Phys., 24, 597–612, https://doi.org/10.5194/acp-24-597-2024, https://doi.org/10.5194/acp-24-597-2024, 2024
Short summary
Short summary
The Arctic is strongly affected by climate change and the role of clouds therein is not yet completely understood. Measurements from the Arctic expedition PS106 were used to simulate radiative fluxes with and without clouds at very low altitudes (below 165 m), and their radiative effect was calculated to be 54 Wm-2. The low heights of these clouds make them hard to observe. This study shows the importance of accurate measurements and simulations of clouds and gives suggestions for improvements.
Thomas D. DeWitt, Timothy J. Garrett, Karlie N. Rees, Corey Bois, Steven K. Krueger, and Nicolas Ferlay
Atmos. Chem. Phys., 24, 109–122, https://doi.org/10.5194/acp-24-109-2024, https://doi.org/10.5194/acp-24-109-2024, 2024
Short summary
Short summary
Viewed from space, a defining feature of Earth's atmosphere is the wide spectrum of cloud sizes. A recent study predicted the distribution of cloud sizes, and this paper compares the prediction to observations. Although there is nuance in viewing perspective, we find robust agreement with theory across different climatological conditions, including land–ocean contrasts, time of year, or latitude, suggesting a minor role for Coriolis forces, aerosol loading, or surface temperature.
Marcus Klingebiel, André Ehrlich, Elena Ruiz-Donoso, Nils Risse, Imke Schirmacher, Evelyn Jäkel, Michael Schäfer, Kevin Wolf, Mario Mech, Manuel Moser, Christiane Voigt, and Manfred Wendisch
Atmos. Chem. Phys., 23, 15289–15304, https://doi.org/10.5194/acp-23-15289-2023, https://doi.org/10.5194/acp-23-15289-2023, 2023
Short summary
Short summary
In this study we explain how we use aircraft measurements from two Arctic research campaigns to identify cloud properties (like droplet size) over sea-ice and ice-free ocean. To make sure that our measurements make sense, we compare them with other observations. Our results show, e.g., larger cloud droplets in early summer than in spring. Moreover, the cloud droplets are also larger over ice-free ocean than compared to sea ice. In the future, our data can be used to improve climate models.
Pablo Saavedra Garfias, Heike Kalesse-Los, Luisa von Albedyll, Hannes Griesche, and Gunnar Spreen
Atmos. Chem. Phys., 23, 14521–14546, https://doi.org/10.5194/acp-23-14521-2023, https://doi.org/10.5194/acp-23-14521-2023, 2023
Short summary
Short summary
An important Arctic climate process is the release of heat fluxes from sea ice openings to the atmosphere that influence the clouds. The characterization of this process is the objective of this study. Using synergistic observations from the MOSAiC expedition, we found that single-layer cloud properties show significant differences when clouds are coupled or decoupled to the water vapour transport which is used as physical link between the upwind sea ice openings and the cloud under observation.
Matthew D. Lebsock and Mikael Witte
Atmos. Chem. Phys., 23, 14293–14305, https://doi.org/10.5194/acp-23-14293-2023, https://doi.org/10.5194/acp-23-14293-2023, 2023
Short summary
Short summary
This paper evaluates measurements of cloud drop size distributions made from airplanes. We find that as the number of cloud drops increases the distribution of the cloud drop sizes narrows. The data are used to develop a simple equation that relates the drop number to the width of the drop sizes. We then use this equation to demonstrate that existing approaches to observe the drop number from satellites contain errors that can be corrected by including the new relationship.
George Horner and Edward Gryspeerdt
Atmos. Chem. Phys., 23, 14239–14253, https://doi.org/10.5194/acp-23-14239-2023, https://doi.org/10.5194/acp-23-14239-2023, 2023
Short summary
Short summary
Tropical deep convective clouds, and the thin cirrus (ice) clouds that flow out from them, are important for modulating the energy budget of the tropical atmosphere. This work uses a new method to track the evolution of the properties of these clouds across their entire lifetimes. We find these clouds cool the atmosphere in the first 6 h before switching to a warming regime after the deep convective core has dissipated, which is sustained beyond 120 h from the initial convective event.
Rodanthi-Elisavet Mamouri, Albert Ansmann, Kevin Ohneiser, Daniel A. Knopf, Argyro Nisantzi, Johannes Bühl, Ronny Engelmann, Annett Skupin, Patric Seifert, Holger Baars, Dragos Ene, Ulla Wandinger, and Diofantos Hadjimitsis
Atmos. Chem. Phys., 23, 14097–14114, https://doi.org/10.5194/acp-23-14097-2023, https://doi.org/10.5194/acp-23-14097-2023, 2023
Short summary
Short summary
For the first time, rather clear evidence is found that wildfire smoke particles can trigger strong cirrus formation. This finding is of importance because intensive and large wildfires may occur increasingly often in the future as climate change proceeds. Based on lidar observations in Cyprus in autumn 2020, we provide detailed insight into the cirrus formation at the tropopause in the presence of aged wildfire smoke (here, 8–9 day old Californian wildfire smoke).
Peter Manshausen, Duncan Watson-Parris, Matthew W. Christensen, Jukka-Pekka Jalkanen, and Philip Stier
Atmos. Chem. Phys., 23, 12545–12555, https://doi.org/10.5194/acp-23-12545-2023, https://doi.org/10.5194/acp-23-12545-2023, 2023
Short summary
Short summary
Aerosol from burning fuel changes cloud properties, e.g., the number of droplets and the content of water. Here, we study how clouds respond to different amounts of shipping aerosol. Droplet numbers increase linearly with increasing aerosol over a broad range until they stop increasing, while the amount of liquid water always increases, independently of emission amount. These changes in cloud properties can make them reflect more or less sunlight, which is important for the earth's climate.
Hendrik Andersen, Jan Cermak, Alyson Douglas, Timothy A. Myers, Peer Nowack, Philip Stier, Casey J. Wall, and Sarah Wilson Kemsley
Atmos. Chem. Phys., 23, 10775–10794, https://doi.org/10.5194/acp-23-10775-2023, https://doi.org/10.5194/acp-23-10775-2023, 2023
Short summary
Short summary
This study uses an observation-based cloud-controlling factor framework to study near-global sensitivities of cloud radiative effects to a large number of meteorological and aerosol controls. We present near-global sensitivity patterns to selected thermodynamic, dynamic, and aerosol factors and discuss the physical mechanisms underlying the derived sensitivities. Our study hopes to guide future analyses aimed at constraining cloud feedbacks and aerosol–cloud interactions.
Anne-Claire Billault-Roux, Paraskevi Georgakaki, Josué Gehring, Louis Jaffeux, Alfons Schwarzenboeck, Pierre Coutris, Athanasios Nenes, and Alexis Berne
Atmos. Chem. Phys., 23, 10207–10234, https://doi.org/10.5194/acp-23-10207-2023, https://doi.org/10.5194/acp-23-10207-2023, 2023
Short summary
Short summary
Secondary ice production plays a key role in clouds and precipitation. In this study, we analyze radar measurements from a snowfall event in the Jura Mountains. Complex signatures are observed, which reveal that ice crystals were formed through various processes. An analysis of multi-sensor data suggests that distinct ice multiplication processes were taking place. Both the methods used and the insights gained through this case study contribute to a better understanding of snowfall microphysics.
Rebecca J. Murray-Watson, Edward Gryspeerdt, and Tom Goren
Atmos. Chem. Phys., 23, 9365–9383, https://doi.org/10.5194/acp-23-9365-2023, https://doi.org/10.5194/acp-23-9365-2023, 2023
Short summary
Short summary
Clouds formed in Arctic marine cold air outbreaks undergo a distinct evolution, but the factors controlling their transition from high-coverage to broken cloud fields are poorly understood. We use satellite and reanalysis data to study how these clouds develop in time and the different influences on their evolution. The aerosol concentration is correlated with cloud break-up; more aerosol is linked to prolonged coverage and a stronger cooling effect, with implications for a more polluted Arctic.
Michael S. Diamond
Atmos. Chem. Phys., 23, 8259–8269, https://doi.org/10.5194/acp-23-8259-2023, https://doi.org/10.5194/acp-23-8259-2023, 2023
Short summary
Short summary
Fuel sulfur regulations were implemented for ships in 2020 to improve air quality but may also accelerate global warming. We use spatial statistics and satellite retrievals to detect changes in the size of cloud droplets and find evidence for a resulting decrease in cloud brightness within a major shipping corridor after the sulfur limits went into effect. Our results confirm both that the regulations are being followed and that they are having a warming influence via their effect on clouds.
Hao Luo, Johannes Quaas, and Yong Han
Atmos. Chem. Phys., 23, 8169–8186, https://doi.org/10.5194/acp-23-8169-2023, https://doi.org/10.5194/acp-23-8169-2023, 2023
Short summary
Short summary
Clouds exhibit a wide range of vertical structures with varying microphysical and radiative properties. We show a global survey of spatial distribution, vertical extent and radiative effect of various classified cloud vertical structures using joint satellite observations from the new CCCM datasets during 2007–2010. Moreover, the long-term trends in CVSs are investigated based on different CMIP6 future scenarios to capture the cloud variations with different, increasing anthropogenic forcings.
Gregor Köcher, Tobias Zinner, and Christoph Knote
Atmos. Chem. Phys., 23, 6255–6269, https://doi.org/10.5194/acp-23-6255-2023, https://doi.org/10.5194/acp-23-6255-2023, 2023
Short summary
Short summary
Polarimetric radar observations of 30 d of convective precipitation events are used to statistically analyze 5 state-of-the-art microphysics schemes of varying complexity. The frequency and area of simulated heavy-precipitation events are in some cases significantly different from those observed, depending on the microphysics scheme. Analysis of simulated particle size distributions and reflectivities shows that some schemes have problems reproducing the correct particle size distributions.
Claudia J. Stubenrauch, Giulio Mandorli, and Elisabeth Lemaitre
Atmos. Chem. Phys., 23, 5867–5884, https://doi.org/10.5194/acp-23-5867-2023, https://doi.org/10.5194/acp-23-5867-2023, 2023
Short summary
Short summary
Organized convection leads to large convective cloud systems and intense rain and may change with a warming climate. Their complete 3D description, attained by machine learning techniques in combination with various satellite observations, together with a cloud system concept, link convection to anvil properties, while convective organization can be identified by the horizontal structure of intense rain.
Scott E. Giangrande, Thiago S. Biscaro, and John M. Peters
Atmos. Chem. Phys., 23, 5297–5316, https://doi.org/10.5194/acp-23-5297-2023, https://doi.org/10.5194/acp-23-5297-2023, 2023
Short summary
Short summary
Our study tracks thunderstorms observed during the wet and dry seasons of the Amazon Basin using weather radar. We couple this precipitation tracking with opportunistic overpasses of a wind profiler and other ground observations to add unique insights into the upwards and downwards air motions within these clouds at various stages in the storm life cycle. The results of a simple updraft model are provided to give physical explanations for observed seasonal differences.
Edward Gryspeerdt, Adam C. Povey, Roy G. Grainger, Otto Hasekamp, N. Christina Hsu, Jane P. Mulcahy, Andrew M. Sayer, and Armin Sorooshian
Atmos. Chem. Phys., 23, 4115–4122, https://doi.org/10.5194/acp-23-4115-2023, https://doi.org/10.5194/acp-23-4115-2023, 2023
Short summary
Short summary
The impact of aerosols on clouds is one of the largest uncertainties in the human forcing of the climate. Aerosol can increase the concentrations of droplets in clouds, but observational and model studies produce widely varying estimates of this effect. We show that these estimates can be reconciled if only polluted clouds are studied, but this is insufficient to constrain the climate impact of aerosol. The uncertainty in aerosol impact on clouds is currently driven by cases with little aerosol.
Zackary Mages, Pavlos Kollias, Zeen Zhu, and Edward P. Luke
Atmos. Chem. Phys., 23, 3561–3574, https://doi.org/10.5194/acp-23-3561-2023, https://doi.org/10.5194/acp-23-3561-2023, 2023
Short summary
Short summary
Cold-air outbreaks (when cold air is advected over warm water and creates low-level convection) are a dominant cloud regime in the Arctic, and we capitalized on ground-based observations, which did not previously exist, from the COMBLE field campaign to study them. We characterized the extent and strength of the convection and turbulence and found evidence of secondary ice production. This information is useful for model intercomparison studies that will represent cold-air outbreak processes.
Maria P. Cadeddu, Virendra P. Ghate, David D. Turner, and Thomas E. Surleta
Atmos. Chem. Phys., 23, 3453–3470, https://doi.org/10.5194/acp-23-3453-2023, https://doi.org/10.5194/acp-23-3453-2023, 2023
Short summary
Short summary
We analyze the variability in marine boundary layer moisture at the Eastern North Atlantic site on a monthly and daily temporal scale and examine its fundamental role in the control of boundary layer cloudiness and precipitation. The study also highlights the complex interaction between large-scale and local processes controlling the boundary layer moisture and the importance of the mesoscale spatial distribution of vapor to support convection and precipitation.
Zhenquan Wang, Jian Yuan, Robert Wood, Yifan Chen, and Tiancheng Tong
Atmos. Chem. Phys., 23, 3247–3266, https://doi.org/10.5194/acp-23-3247-2023, https://doi.org/10.5194/acp-23-3247-2023, 2023
Short summary
Short summary
This study develops a novel profile-based algorithm based on the ERA5 to estimate the inversion strength in the planetary boundary layer better than the previous inversion index, which is a key low-cloud-controlling factor. This improved measure is more effective at representing the meteorological influence on low-cloud variations. It can better constrain the meteorological influence on low clouds to better isolate cloud responses to aerosols or to estimate low cloud feedbacks in climate models.
Georgios Dekoutsidis, Silke Groß, Martin Wirth, Martina Krämer, and Christian Rolf
Atmos. Chem. Phys., 23, 3103–3117, https://doi.org/10.5194/acp-23-3103-2023, https://doi.org/10.5194/acp-23-3103-2023, 2023
Short summary
Short summary
Cirrus clouds affect Earth's atmosphere, deeming our study important. Here we use water vapor measurements by lidar and study the relative humidity (RHi) within and around midlatitude cirrus clouds. We find high supersaturations in the cloud-free air and within the clouds, especially near the cloud top. We study two cloud types with different formation processes. Finally, we conclude that the shape of the distribution of RHi can be used as an indicator of different cloud evolutionary stages.
Huazhe Shang, Souichiro Hioki, Guillaume Penide, Céline Cornet, Husi Letu, and Jérôme Riedi
Atmos. Chem. Phys., 23, 2729–2746, https://doi.org/10.5194/acp-23-2729-2023, https://doi.org/10.5194/acp-23-2729-2023, 2023
Short summary
Short summary
We find that cloud profiles can be divided into four prominent patterns, and the frequency of these four patterns is related to intensities of cloud-top entrainment and precipitation. Based on these analyses, we further propose a cloud profile parameterization scheme allowing us to represent these patterns. Our results shed light on how to facilitate the representation of cloud profiles and how to link them to cloud entrainment or precipitating status in future remote-sensing applications.
Luca Lelli, Marco Vountas, Narges Khosravi, and John Philipp Burrows
Atmos. Chem. Phys., 23, 2579–2611, https://doi.org/10.5194/acp-23-2579-2023, https://doi.org/10.5194/acp-23-2579-2023, 2023
Short summary
Short summary
Arctic amplification describes the recent period in which temperatures have been rising twice as fast as or more than the global average and sea ice and the Greenland ice shelf are approaching a tipping point. Hence, the Arctic ability to reflect solar energy decreases and absorption by the surface increases. Using 2 decades of complementary satellite data, we discover that clouds unexpectedly increase the pan-Arctic reflectance by increasing their liquid water content, thus cooling the Arctic.
Yabin Gou, Haonan Chen, Hong Zhu, and Lulin Xue
Atmos. Chem. Phys., 23, 2439–2463, https://doi.org/10.5194/acp-23-2439-2023, https://doi.org/10.5194/acp-23-2439-2023, 2023
Short summary
Short summary
This article investigates the complex precipitation microphysics associated with super typhoon Lekima using a host of in situ and remote sensing observations, including rain gauge and disdrometer data, as well as polarimetric radar observations. The impacts of precipitation microphysics on multi-source data consistency and radar precipitation estimation are quantified. It is concluded that the dynamical precipitation microphysical processes must be considered in radar precipitation estimation.
Hongxia Zhu, Rui Li, Shuping Yang, Chun Zhao, Zhe Jiang, and Chen Huang
Atmos. Chem. Phys., 23, 2421–2437, https://doi.org/10.5194/acp-23-2421-2023, https://doi.org/10.5194/acp-23-2421-2023, 2023
Short summary
Short summary
The impacts of atmospheric dust aerosols and cloud dynamic conditions on precipitation vertical development in southeastern China were studied using multiple satellite observations. It was found that the precipitating drops under dusty conditions grow faster in the middle layer but slower in the upper and lower layers compared with their pristine counterparts. Quantitative estimation of the sensitivity of the precipitation top temperature to the dust aerosol optical depth is also provided.
Zane Dedekind, Jacopo Grazioli, Philip H. Austin, and Ulrike Lohmann
Atmos. Chem. Phys., 23, 2345–2364, https://doi.org/10.5194/acp-23-2345-2023, https://doi.org/10.5194/acp-23-2345-2023, 2023
Short summary
Short summary
Simulations allowing ice particles to collide with one another producing more ice particles represented surface observations of ice particles accurately. An increase in ice particles formed through collisions was related to sharp changes in the wind direction and speed with height. Changes in wind speed and direction can therefore cause more enhanced collisions between ice particles and alter how fast and how much precipitation forms. Simulations were conducted with the atmospheric model COSMO.
Ramon Padullés, Estel Cardellach, and F. Joseph Turk
Atmos. Chem. Phys., 23, 2199–2214, https://doi.org/10.5194/acp-23-2199-2023, https://doi.org/10.5194/acp-23-2199-2023, 2023
Short summary
Short summary
The results of comparing the polarimetric radio occultation observables and the ice water content retrieved from the CloudSat radar in a global and statistical way show a strong correlation between the geographical patterns of both quantities for a wide range of heights. This implies that horizontally oriented hydrometeors are systematically present through the whole globe and through all vertical levels, which could provide insights on the physical processes leading to precipitation.
Ziming Wang, Luca Bugliaro, Tina Jurkat-Witschas, Romy Heller, Ulrike Burkhardt, Helmut Ziereis, Georgios Dekoutsidis, Martin Wirth, Silke Groß, Simon Kirschler, Stefan Kaufmann, and Christiane Voigt
Atmos. Chem. Phys., 23, 1941–1961, https://doi.org/10.5194/acp-23-1941-2023, https://doi.org/10.5194/acp-23-1941-2023, 2023
Short summary
Short summary
Differences in the microphysical properties of contrail cirrus and natural cirrus in a contrail outbreak situation during the ML-CIRRUS campaign over the North Atlantic flight corridor can be observed from in situ measurements. The cirrus radiative effect in the area of the outbreak, derived from satellite observation-based radiative transfer modeling, is warming in the early morning and cooling during the day.
Gerald G. Mace, Sally Benson, Ruhi Humphries, Peter M. Gombert, and Elizabeth Sterner
Atmos. Chem. Phys., 23, 1677–1685, https://doi.org/10.5194/acp-23-1677-2023, https://doi.org/10.5194/acp-23-1677-2023, 2023
Short summary
Short summary
The number of cloud droplets per unit volume is a significantly important property of clouds that controls their reflective properties. Computer models of the Earth's atmosphere and climate have low skill at predicting the reflective properties of Southern Ocean clouds. Here we investigate the properties of those clouds using satellite data and find that the cloud droplet number and cloud albedo in the Southern Ocean are related to the oceanic phytoplankton abundance near Antarctica.
Cited articles
Anthes, R. A., Bernhardt, P. A., Chen, Y., Cucurull, L., Dymond, K. F.,
Ector,D., Healy, S. B., Ho, S. P., Hunt, D. C., Kuo, Y. H., Liu, H., Manning,
K., McCormick, C., Meehan, T. K., Randel, W. J., Rocken, C., Schreiner,
W. S., Sokolovskiy, S. V., Syndergaard, S., Thompson, D. C., Trenberth,
K. E., Wee, T. K., Yen, N. L., and Zeng, Z.: The COSMIC/Formosat-3 mission:
Early results, B. Am. Meteorol. Soc., 89, 313–333,
https://doi.org/10.1175/BAMS-89-3-313, 2008. a
Ao, C. O., Meehan, T. K., Hajj, G. A., and Mannucci, A. J.: Lower troposphere
refractivity bias in GPS occultation retrievals, J. Geophys. Res., 108, 4577,
https://doi.org/10.1029/2002JD003216, 2003. a
Arakawa, A.: The cumulus parameterization problem: Past, present, and future,
J. Climate, 17, 2493–2525,
https://doi.org/10.1175/1520-0442(2004)017<2493:RATCPP>2.0.CO;2,
2004. a
Beard, K. V. and Chuang, C.: A new model for the equilibrium shape of
raindrops, J. Atmos. Sci., 44, 1509–1524,
https://doi.org/10.1175/1520-0469(1987)044<1509:ANMFTE>2.0.CO;2,
1987. a, b
Cardellach, E., Tomás, S., Oliveras, S., Padullés, R., Rius, A.,
de la Torre-Juárez, M., Turk, F. J., Ao, C. O., Kursinski, E. R.,
Schreiner, W. S., Ector, D., and Cucurull, L.: Sensitivity of PAZ LEO
Polarimetric GNSS Radio-Occultation Experiment to Precipitation Events, IEEE
T. Geosci. Remote, 53, 190–206, https://doi.org/10.1109/TGRS.2014.2320309, 2014. a
Cardellach, E., Padullés, R., Tomás, S., Turk, F. J., de la
Torre-Juárez, M., and Ao, C. O.: Probability of intense precipitation
from polarimetric GNSS radio occultation observations, Q. J. Roy. Meteor.
Soc., https://doi.org/10.1002/qj.3161, 2017. a, b
Cardinali, C. and Healy, S. B.: Impact of GPS radio occultation measurements
in the ECMWF system using adjoint-based diagnostics, Q. J. Roy. Meteor. Soc.,
140, 2315–2320, https://doi.org/10.1002/qj.2300, 2014. a
Cucurull, L., Derber, J. C., Treadon, R., and Purser, R. J.: Assimilation of
Global Positioning System Radio Occultation Observations into NCEP's Global
Data Assimilation System, Mon. Weather Rev., 135, 3174–3193,
https://doi.org/10.1175/MWR3461.1, 2007. a
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P.,
Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N.,
Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy,
S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kallberg, P. W.,
Köhler, M., Matricardi, M., Mcnally, A. P., Monge-Sanz, B. M.,
Morcrette, J. J., Park, B. K., Peubey, C., de Rosnay, P., Tavolato, C.,
Thépaut, J. N., and Vitart, F.: The ERA-Interim reanalysis:
Configuration and performance of the data assimilation system, Q. J. Roy.
Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011. a
Fjeldbo, G., Kliore, A., and Eshleman, V. R.: The Neutral Atmosphere of Venus
as Studied with the Mariner V Radio Occultation Experiments, Astron. J., 76,
123–140, https://doi.org/10.1086/111096, 1971. a
Foelsche, U., Syndergaard, S., Fritzer, J., and Kirchengast, G.: Errors in
GNSS radio occultation data: relevance of the measurement geometry and
obliquity of profiles, Atmos. Meas. Tech., 4, 189–199,
https://doi.org/10.5194/amt-4-189-2011, 2011. a
Hajj, G. A., Kursinski, E. R., Romans, L. J., Bertiger, W. I., and Leroy,
S. S.: A Technical Description of Atmospheric Sounding By Gps occultation,
J. Atmos. Sol.-Terr. Phy., 64, 451–469, https://doi.org/10.1016/S1364-6826(01)00114-6,
2002. a
Healy, S. B. and Eyre, J. R.: Retrieving temperature, water vapour and
surface pressure information from refractive index profiles derived by radio
occultation: A simulation study, Q. J. Roy. Meteor. Soc., 126, 1661–1683,
https://doi.org/10.1002/qj.49712656606, 2000. a
Healy, S. B., Jupp, A. M., and Marquardt, C.: Forecast impact experiment with
GPS radio occultation measurements, Geophys. Res. Lett., 32, L03804,
https://doi.org/10.1029/2004GL020806, 2005. a
Hersbach, H., Peubey, C., Simmons, A. J., Berrisford, P., Poli, P., and Dee,
D.: ERA-20CM: A twentieth-century atmospheric model ensemble, Q. J. Roy.
Meteor. Soc., 141, 2350–2375, https://doi.org/10.1002/qj.2528, 2015. a
Holloway, C. E. and Neelin, J. D.: Moisture Vertical Structure, Column Water
Vapor, and Tropical Deep Convection, J. Atmos. Sci., 66, 1665–1683,
https://doi.org/10.1175/2008JAS2806.1, 2009. a
Hou, A. Y., Kakar, R. K., Neeck, S., Azarbarzin, A. A., Kummerow, C. D.,
Kojima, M., Oki, R., Nakamura, K., and Iguchi, T.: The global precipitation
measurement mission, B. Am. Meteorol. Soc., 95, 701–722,
https://doi.org/10.1175/BAMS-D-13-00164.1, 2014. a
Huffman, G. J., Bolvin, D., Braithwaite, D., Hsu, K., Joyce, R., Kidd, C.,
Nelkin, E. J., Sorooshian, S., Tan, J., and Xie, P.: Algorithm Theoretical
Basis Document (ATBD) of Integrated Multi-satellitE Retrievals for GPM
(IMERG), version 5.2, Tech. Rep. March, available at:
https://pmm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V5.2.pdf,
last access: 8 August 2018. a
Jensen, A. S., Lohmann, M. S., Benzon, H. H., and Nielsen, A. S.: Full
spectrum inversion of radio occultation signals, Radio Sci., 38, 1040,
https://doi.org/10.1029/2002RS002763, 2003. a
Jones, R. C.: A new calculus for the treatment of optical systems, J. Opt.
Soc. Am., 31, 488–493, https://doi.org/10.1364/JOSA.31.000488, 1941. a
Kozu, T., Iguchi, T., Shimomai, T., and Kashiwagi, N.: Raindrop size
distribution modeling from a statistical rain parameter relation and its
application to the TRMM precipitation radar rain retrieval algorithm,
J. Appl. Meteorol. Clim., 48, 716–724, https://doi.org/10.1175/2008JAMC1998.1, 2009. a
Kummerow, C. D., Simpson, J., Thiele, O., Barnes, W., Chang, A. T. C.,
Stocker, E., Adler, R. F., Hou, A., Kakar, R., Wentz, F., Ashcroft, P., Kozu,
T., Hong, Y., Okamoto, K., Iguchi, T., Kuroiwa, H., Im, E., Haddad, Z.,
Huffman, G., Ferrier, B., Olson, W. S., Zipser, E. J., Smith, E. A., Wilheit,
T. T., North, G., Krishnamurti, T., and Nakamura, K.: The Status of the
Tropical Rainfall Measuring Mission (TRMM) after Two Years in Orbit, J. Appl.
Meteorol., 39, 1965–1982,
https://doi.org/10.1175/1520-0450(2001)040<1965:TSOTTR>2.0.CO;2,
2000. a
Kursinski, E. R., Hajj, G. A., Schofield, J. T., Linfield, R. P., and Hardy,
K. R.: Observing Earth's atmosphere with radio occultation measurements using
the Global Positioning System, J. Geophys. Res., 102, 23429–23465,
https://doi.org/10.1029/97JD01569, 1997. a, b, c
Liebe, H. J., Hufford, G. A., and Manabe, T.: A model for the complex
permittivity of water at frequencies below 1 THz, Int. J. Infrared Milli.,
12, 659–675, https://doi.org/10.1007/BF01008897, 1991. a
Lin, L., Zou, X., Anthes, R. A., and Kuo, Y. H.: COSMIC GPS Radio Occultation
Temperature Profiles in Clouds, Mon. Weather Rev., 138, 1104–1118,
https://doi.org/10.1175/2009MWR2986.1, 2010. a
Liu, C. and Zipser, E. J.: The global distribution of largest, deepest, and
most intense precipitation systems, Geophys. Res. Lett., 42, 3591–3595,
https://doi.org/10.1002/2015GL063776, 2015. a
Mishchenko, M. I., Travis, L. D., and Mackowski, D. W.: T-matrix computations
of light scattering by nonspherical particles: A review, J. Quant. Spectrosc.
Ra., 55, 535–575, https://doi.org/10.1016/0022-4073(96)00002-7, 1996. a
NOAA/NCEP: The GFS Atmospheric Model, NOAA/NCEP/Environmental Modeling
Center, NCEP Office Note 442, 14 pp., 2003. a
Oguchi, T.: Electromagnetic wave propagation and scattering in rain and other
hydrometeors, Proceedings of the IEEE, 71, 1029–1078,
https://doi.org/10.1109/PROC.1983.12724, 1983. a
Padullés, R., Cardellach, E., de la Torre Juárez, M., Tomás, S.,
Turk, F. J., Oliveras, S., Ao, C. O., and Rius, A.: Atmospheric polarimetric
effects on GNSS radio occultations: the ROHP-PAZ field campaign, Atmos. Chem.
Phys., 16, 635–649, https://doi.org/10.5194/acp-16-635-2016, 2016. a
Pruppacher, H. R. and Beard, K. V.: A wind tunnel investigation of the
internal circulation and shape of water drops falling at terminal velocity in
air, Q. J. Roy. Meteor. Soc., 96, 247–256, https://doi.org/10.1002/qj.49709640807,
1970. a
Sokolovskiy, S. V.: Effect of superrefraction on inversions of radio
occultation signals in the lower troposphere, Radio Sci., 38, 1058,
https://doi.org/10.1029/2002RS002728, 2003. a
Sokolovskiy, S. V., Rocken, C., Schreiner, W. S., and Hunt, D. C.: On the
uncertainty of radio occultation inversions in the lower troposphere,
J. Geophys. Res., 115, D22111, https://doi.org/10.1029/2010JD014058, 2010. a
Thayer, G. D.: An improved equation for the radio refractive index of air,
Radio Sci., 9, 803–807, https://doi.org/10.1029/RS009i010p00803, 1974. a
Tropical Rainfall Measuring Mission (TRMM): TRMM Combined
Precipitation Radar and Microwave Imager Rainfall Profile L2 1.5 hours V7,
Greenbelt, MD, Goddard Earth Sciences Data and Information Services Center
(GES DISC), available at:
https://disc.gsfc.nasa.gov/datacollection/TRMM_2B31_7.html (last access:
13 August 2018), 2011.
Vergados, P., Mannucci, A. J., Ao, C. O., Jiang, J. H., and Su, H.: On the
comparisons of tropical relative humidity in the lower and middle troposphere
among COSMIC radio occultations and MERRA and ECMWF data sets, Atmos. Meas.
Tech., 8, 1789–1797, https://doi.org/10.5194/amt-8-1789-2015, 2015. a
Vorob'ev, V. V. and Krasil'nikova, T. G.: Estimation of the accuracy of the
atmospheric refractive index recovery from Doppler shift measurements at
frequencies used in the NAVSTAR system, Izv. Atmos. Ocean. Phys, 29, 602–609, 1994. a
Wang, K.-N., de la Torre Juárez, M., Ao, C. O., and Xie, F.: Correcting
negatively biased refractivity below ducts in GNSS radio occultation: an
optimal estimation approach towards improving planetary boundary layer (PBL)
characterization, Atmos. Meas. Tech., 10, 4761–4776,
https://doi.org/10.5194/amt-10-4761-2017, 2017.
a
Xie, F., Syndergaard, S., Kursinski, E. R., and Herman, B. M.: An approach
for retrieving marine boundary layer refractivity from GPS occultation data
in the presence of superrefraction, J. Atmos. Ocean. Tech., 23, 1629–1644,
https://doi.org/10.1175/JTECH1996.1, 2006. a
Xie, F., Wu, D. L., Ao, C. O., Mannucci, A. J., and Kursinski, E. R.:
Advances and limitations of atmospheric boundary layer observations with GPS
occultation over southeast Pacific Ocean, Atmos. Chem. Phys., 12, 903–918,
https://doi.org/10.5194/acp-12-903-2012, 2012. a
Yang, S. and Zou, X.: Assessments of cloud liquid water contributions to GPS
radio occultation refractivity using measurements from COSMIC and CloudSat,
J. Geophys. Res., 117, D06219, https://doi.org/10.1029/2011JD016452, 2012. a
Yang, S. and Zou, X.: Dependence of positive refractivity bias of GPS RO
cloudy profiles on cloud fraction along GPS RO limb tracks, GPS Solutions,
21, 499–509, https://doi.org/10.1007/s10291-016-0541-1, 2016. a
Zou, X., Yang, S., and Ray, P. S.: Impacts of Ice Clouds on GPS RO
Measurements, J. Atmos. Sci., 69, 3670–3682, https://doi.org/10.1175/JAS-D-11-0199.1,
2012. a
Short summary
In this paper we have assessed the positive difference observed between radio-occultation-retrieved refractivity and that of weather analyses and reanalyses when heavy precipitation is present. The impact of the precipitation media on the refractivity observable has been evaluated, showing that precipitation itself cannot explain the magnitude of the observed difference. Instead, the difference is shown to be linked to high specific-humidity conditions, which in turn are linked to rain.
In this paper we have assessed the positive difference observed between...
Altmetrics
Final-revised paper
Preprint