Articles | Volume 17, issue 15
https://doi.org/10.5194/acp-17-9599-2017
https://doi.org/10.5194/acp-17-9599-2017
Research article
 | 
09 Aug 2017
Research article |  | 09 Aug 2017

A ubiquitous ice size bias in simulations of tropical deep convection

McKenna W. Stanford, Adam Varble, Ed Zipser, J. Walter Strapp, Delphine Leroy, Alfons Schwarzenboeck, Rodney Potts, and Alain Protat

Related authors

Prescribing the aerosol effective radiative forcing in the Simple Cloud-Resolving E3SM Atmosphere Model v1
Naser Mahfouz, Hassan Beydoun, Johannes Mülmenstädt, Noel Keen, Adam C. Varble, Luca Bertagna, Peter Bogenschutz, Andrew Bradley, Matthew W. Christensen, T. Conrad Clevenger, Aaron Donahue, Jerome Fast, James Foucar, Jean-Christophe Golaz, Oksana Guba, Walter Hannah, Benjamin Hillman, Robert Jacob, Wuyin Lin, Po-Lun Ma, Yun Qian, Balwinder Singh, Christopher Terai, Hailong Wang, Mingxuan Wu, Kai Zhang, Andrew Gettelman, Mark Taylor, L. Ruby Leung, Peter Caldwell, and Susannah Burrows
EGUsphere, https://doi.org/10.5194/egusphere-2025-1868,https://doi.org/10.5194/egusphere-2025-1868, 2025
Short summary
Can general circulation models (GCMs) represent cloud liquid water path adjustments to aerosol–cloud interactions?
Johannes Mülmenstädt, Andrew S. Ackerman, Ann M. Fridlind, Meng Huang, Po-Lun Ma, Naser Mahfouz, Susanne E. Bauer, Susannah M. Burrows, Matthew W. Christensen, Sudhakar Dipu, Andrew Gettelman, L. Ruby Leung, Florian Tornow, Johannes Quaas, Adam C. Varble, Hailong Wang, Kai Zhang, and Youtong Zheng
Atmos. Chem. Phys., 24, 13633–13652, https://doi.org/10.5194/acp-24-13633-2024,https://doi.org/10.5194/acp-24-13633-2024, 2024
Short summary
Large spatiotemporal variability in aerosol properties over central Argentina during the CACTI field campaign
Jerome D. Fast, Adam C. Varble, Fan Mei, Mikhail Pekour, Jason Tomlinson, Alla Zelenyuk, Art J. Sedlacek III, Maria Zawadowicz, and Louisa Emmons
Atmos. Chem. Phys., 24, 13477–13502, https://doi.org/10.5194/acp-24-13477-2024,https://doi.org/10.5194/acp-24-13477-2024, 2024
Short summary
Atmospheric Radiation Measurement (ARM) airborne field campaign data products between 2013 and 2018
Fan Mei, Jennifer M. Comstock, Mikhail S. Pekour, Jerome D. Fast, Krista L. Gaustad, Beat Schmid, Shuaiqi Tang, Damao Zhang, John E. Shilling, Jason M. Tomlinson, Adam C. Varble, Jian Wang, L. Ruby Leung, Lawrence Kleinman, Scot Martin, Sebastien C. Biraud, Brian D. Ermold, and Kenneth W. Burk
Earth Syst. Sci. Data, 16, 5429–5448, https://doi.org/10.5194/essd-16-5429-2024,https://doi.org/10.5194/essd-16-5429-2024, 2024
Short summary
The ACCESS-AM2 climate model strongly underestimates aerosol concentration in the Southern Ocean, but improving it could be problematic for the modelled climate system
Sonya L. Fiddes, Matthew T. Woodhouse, Marc D. Mallet, Liam Lamprey, Ruhi S. Humphries, Alain Protat, Simon P. Alexander, Hakase Hayashida, Samuel G. Putland, Branka Miljevic, and Robyn Schofield
EGUsphere, https://doi.org/10.5194/egusphere-2024-3125,https://doi.org/10.5194/egusphere-2024-3125, 2024
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Moisture budget estimates derived from airborne observations in an Arctic atmospheric river during its dissipation
Henning Dorff, Florian Ewald, Heike Konow, Mario Mech, Davide Ori, Vera Schemann, Andreas Walbröl, Manfred Wendisch, and Felix Ament
Atmos. Chem. Phys., 25, 8329–8354, https://doi.org/10.5194/acp-25-8329-2025,https://doi.org/10.5194/acp-25-8329-2025, 2025
Short summary
Aerosol–cloud interactions in cirrus clouds based on global-scale airborne observations and machine learning models
Derek Ngo, Minghui Diao, Ryan J. Patnaude, Sarah Woods, and Glenn Diskin
Atmos. Chem. Phys., 25, 7007–7036, https://doi.org/10.5194/acp-25-7007-2025,https://doi.org/10.5194/acp-25-7007-2025, 2025
Short summary
In-cloud characteristics observed in northeastern and midwestern US non-orographic winter storms with implications for ice particle mass growth and residence time
Luke R. Allen, Sandra E. Yuter, Declan M. Crowe, Matthew A. Miller, and K. Lee Thornhill
Atmos. Chem. Phys., 25, 6679–6701, https://doi.org/10.5194/acp-25-6679-2025,https://doi.org/10.5194/acp-25-6679-2025, 2025
Short summary
Vertical profiles of liquid water content in fog layers during the SOFOG3D experiment
Théophane Costabloz, Frédéric Burnet, Christine Lac, Pauline Martinet, Julien Delanoë, Susana Jorquera, and Maroua Fathalli
Atmos. Chem. Phys., 25, 6539–6573, https://doi.org/10.5194/acp-25-6539-2025,https://doi.org/10.5194/acp-25-6539-2025, 2025
Short summary
Quantified ice-nucleating ability of AgI-containing seeding particles in natural clouds
Anna J. Miller, Christopher Fuchs, Fabiola Ramelli, Huiying Zhang, Nadja Omanovic, Robert Spirig, Claudia Marcolli, Zamin A. Kanji, Ulrike Lohmann, and Jan Henneberger
Atmos. Chem. Phys., 25, 5387–5407, https://doi.org/10.5194/acp-25-5387-2025,https://doi.org/10.5194/acp-25-5387-2025, 2025
Short summary

Cited articles

Ackerman, A. S., Fridlind, A. M., Grandin, A., Dezitter, F., Weber, M., Strapp, J. W., and Korolev, A. V.: High ice water content at low radar reflectivity near deep convection – Part 2: Evaluation of microphysical pathways in updraft parcel simulations, Atmos. Chem. Phys., 15, 11729–11751, https://doi.org/10.5194/acp-15-11729-2015, 2015.
Baumgardner, D., Brenguier, J. L., Bucholtz, A., Coe, H., DeMott, P., Garrett, T. J., Gayet, J. F., Hermann, M., Heymsfield, A., Korolev, A., Krämer, M., Petzold, A., Strapp, J. W., Pilewskie, P., Taylor, J., Twohy, C., Wendisch, M., Bachalo, W., and Chuang, P.: Airborne instruments to measure atmospheric aerosol particles, clouds and radiation: A cook's tour of mature and emerging technology, Atmos. Res., 102, 10–29, https://doi.org/10.1016/j.atmosres.2011.06.021, 2011.
Bechtold, P., Redelsperger, J.-L., Beau, I., Blackburn, M., Brinkop, S., Grandper, J.-Y., Grant, A., Gregory, D., Guichard, F., How, C., and Ioannidou, E.: A GCSS model intercomparison for a tropical squall line observed during TOGA-COARE. II: Intercomparison of single-column models and a cloud-resolving model, Q. J. Roy. Meteorol. Soc., 126, 865–888, https://doi.org/10.1002/qj.49712656405, 2000.
Blahak, U.: RADAR_MIE_LM and RADAR_MIELIB – Calculation of radar reflectivity from model output, Internal Rep., Institute for Meteorology and Climate Research, University/Research Center, Karlsruhe, 150 pp., 2007.
Blossey, P. N., Bretherton, C. S., Cetrone, J., and Kharoutdinov, M.: Cloud-resolving model simulations of KWAJEX: Model sensitivities and comparisons with satellite radar observations, J. Atmos. Sci., 64, 1488–1508, https://doi.org/10.1175/JAS3982.1, 2007.
Download
Short summary
Radar reflectivity is a valuable observational tool used to guide numerical weather model improvement. Biases in simulated reflectivity help identify potential errors in physical process and property representation in models. This study uniquely compares simulated and observed tropical convective systems to establish that a commonly documented high bias in radar reflectivity values at least partially results from the production of simulated ice particle sizes that are larger than observed.
Share
Altmetrics
Final-revised paper
Preprint