Articles | Volume 17, issue 15
https://doi.org/10.5194/acp-17-9599-2017
https://doi.org/10.5194/acp-17-9599-2017
Research article
 | 
09 Aug 2017
Research article |  | 09 Aug 2017

A ubiquitous ice size bias in simulations of tropical deep convection

McKenna W. Stanford, Adam Varble, Ed Zipser, J. Walter Strapp, Delphine Leroy, Alfons Schwarzenboeck, Rodney Potts, and Alain Protat

Related authors

Can general circulation models (GCMs) represent cloud liquid water path adjustments to aerosol–cloud interactions?
Johannes Mülmenstädt, Andrew S. Ackerman, Ann M. Fridlind, Meng Huang, Po-Lun Ma, Naser Mahfouz, Susanne E. Bauer, Susannah M. Burrows, Matthew W. Christensen, Sudhakar Dipu, Andrew Gettelman, L. Ruby Leung, Florian Tornow, Johannes Quaas, Adam C. Varble, Hailong Wang, Kai Zhang, and Youtong Zheng
Atmos. Chem. Phys., 24, 13633–13652, https://doi.org/10.5194/acp-24-13633-2024,https://doi.org/10.5194/acp-24-13633-2024, 2024
Short summary
Large spatiotemporal variability in aerosol properties over central Argentina during the CACTI field campaign
Jerome D. Fast, Adam C. Varble, Fan Mei, Mikhail Pekour, Jason Tomlinson, Alla Zelenyuk, Art J. Sedlacek III, Maria Zawadowicz, and Louisa Emmons
Atmos. Chem. Phys., 24, 13477–13502, https://doi.org/10.5194/acp-24-13477-2024,https://doi.org/10.5194/acp-24-13477-2024, 2024
Short summary
Atmospheric Radiation Measurement (ARM) airborne field campaign data products between 2013 and 2018
Fan Mei, Jennifer M. Comstock, Mikhail S. Pekour, Jerome D. Fast, Krista L. Gaustad, Beat Schmid, Shuaiqi Tang, Damao Zhang, John E. Shilling, Jason M. Tomlinson, Adam C. Varble, Jian Wang, L. Ruby Leung, Lawrence Kleinman, Scot Martin, Sebastien C. Biraud, Brian D. Ermold, and Kenneth W. Burk
Earth Syst. Sci. Data, 16, 5429–5448, https://doi.org/10.5194/essd-16-5429-2024,https://doi.org/10.5194/essd-16-5429-2024, 2024
Short summary
The ACCESS-AM2 climate model strongly underestimates aerosol concentration in the Southern Ocean, but improving it could be problematic for the modelled climate system
Sonya L. Fiddes, Matthew T. Woodhouse, Marc D. Mallet, Liam Lamprey, Ruhi S. Humphries, Alain Protat, Simon P. Alexander, Hakase Hayashida, Samuel G. Putland, Branka Miljevic, and Robyn Schofield
EGUsphere, https://doi.org/10.5194/egusphere-2024-3125,https://doi.org/10.5194/egusphere-2024-3125, 2024
Short summary
General circulation models simulate negative liquid water path–droplet number correlations, but anthropogenic aerosols still increase simulated liquid water path
Johannes Mülmenstädt, Edward Gryspeerdt, Sudhakar Dipu, Johannes Quaas, Andrew S. Ackerman, Ann M. Fridlind, Florian Tornow, Susanne E. Bauer, Andrew Gettelman, Yi Ming, Youtong Zheng, Po-Lun Ma, Hailong Wang, Kai Zhang, Matthew W. Christensen, Adam C. Varble, L. Ruby Leung, Xiaohong Liu, David Neubauer, Daniel G. Partridge, Philip Stier, and Toshihiko Takemura
Atmos. Chem. Phys., 24, 7331–7345, https://doi.org/10.5194/acp-24-7331-2024,https://doi.org/10.5194/acp-24-7331-2024, 2024
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Theoretical framework for measuring cloud effective supersaturation fluctuations with an advanced optical system
Ye Kuang, Jiangchuan Tao, Hanbing Xu, Li Liu, Pengfei Liu, Wanyun Xu, Weiqi Xu, Yele Sun, and Chunsheng Zhao
Atmos. Chem. Phys., 25, 1163–1174, https://doi.org/10.5194/acp-25-1163-2025,https://doi.org/10.5194/acp-25-1163-2025, 2025
Short summary
Investigating the role of typhoon-induced waves and stratospheric hydration in the formation of tropopause cirrus clouds observed during the 2017 Asian monsoon
Amit Kumar Pandit, Jean-Paul Vernier, Thomas Duncan Fairlie, Kristopher M. Bedka, Melody A. Avery, Harish Gadhavi, Madineni Venkat Ratnam, Sanjeev Dwivedi, Kasimahanthi Amar Jyothi, Frank G. Wienhold, Holger Vömel, Hongyu Liu, Bo Zhang, Buduru Suneel Kumar, Tra Dinh, and Achuthan Jayaraman
Atmos. Chem. Phys., 24, 14209–14238, https://doi.org/10.5194/acp-24-14209-2024,https://doi.org/10.5194/acp-24-14209-2024, 2024
Short summary
How does riming influence the observed spatial variability of ice water in mixed-phase clouds?
Nina Maherndl, Manuel Moser, Imke Schirmacher, Aaron Bansemer, Johannes Lucke, Christiane Voigt, and Maximilian Maahn
Atmos. Chem. Phys., 24, 13935–13960, https://doi.org/10.5194/acp-24-13935-2024,https://doi.org/10.5194/acp-24-13935-2024, 2024
Short summary
Microphysical view of the development and ice production of mid-latitude stratiform clouds with embedded convection during an extratropical cyclone
Yuanmou Du, Dantong Liu, Delong Zhao, Mengyu Huang, Ping Tian, Dian Wen, Wei Xiao, Wei Zhou, Hui He, Baiwan Pan, Dongfei Zuo, Xiange Liu, Yingying Jing, Rong Zhang, Jiujiang Sheng, Fei Wang, Yu Huang, Yunbo Chen, and Deping Ding
Atmos. Chem. Phys., 24, 13429–13444, https://doi.org/10.5194/acp-24-13429-2024,https://doi.org/10.5194/acp-24-13429-2024, 2024
Short summary
Clouds and precipitation in the initial phase of marine cold-air outbreaks as observed by airborne remote sensing
Imke Schirmacher, Sabrina Schnitt, Marcus Klingebiel, Nina Maherndl, Benjamin Kirbus, André Ehrlich, Mario Mech, and Susanne Crewell
Atmos. Chem. Phys., 24, 12823–12842, https://doi.org/10.5194/acp-24-12823-2024,https://doi.org/10.5194/acp-24-12823-2024, 2024
Short summary

Cited articles

Ackerman, A. S., Fridlind, A. M., Grandin, A., Dezitter, F., Weber, M., Strapp, J. W., and Korolev, A. V.: High ice water content at low radar reflectivity near deep convection – Part 2: Evaluation of microphysical pathways in updraft parcel simulations, Atmos. Chem. Phys., 15, 11729–11751, https://doi.org/10.5194/acp-15-11729-2015, 2015.
Baumgardner, D., Brenguier, J. L., Bucholtz, A., Coe, H., DeMott, P., Garrett, T. J., Gayet, J. F., Hermann, M., Heymsfield, A., Korolev, A., Krämer, M., Petzold, A., Strapp, J. W., Pilewskie, P., Taylor, J., Twohy, C., Wendisch, M., Bachalo, W., and Chuang, P.: Airborne instruments to measure atmospheric aerosol particles, clouds and radiation: A cook's tour of mature and emerging technology, Atmos. Res., 102, 10–29, https://doi.org/10.1016/j.atmosres.2011.06.021, 2011.
Bechtold, P., Redelsperger, J.-L., Beau, I., Blackburn, M., Brinkop, S., Grandper, J.-Y., Grant, A., Gregory, D., Guichard, F., How, C., and Ioannidou, E.: A GCSS model intercomparison for a tropical squall line observed during TOGA-COARE. II: Intercomparison of single-column models and a cloud-resolving model, Q. J. Roy. Meteorol. Soc., 126, 865–888, https://doi.org/10.1002/qj.49712656405, 2000.
Blahak, U.: RADAR_MIE_LM and RADAR_MIELIB – Calculation of radar reflectivity from model output, Internal Rep., Institute for Meteorology and Climate Research, University/Research Center, Karlsruhe, 150 pp., 2007.
Blossey, P. N., Bretherton, C. S., Cetrone, J., and Kharoutdinov, M.: Cloud-resolving model simulations of KWAJEX: Model sensitivities and comparisons with satellite radar observations, J. Atmos. Sci., 64, 1488–1508, https://doi.org/10.1175/JAS3982.1, 2007.
Download
Short summary
Radar reflectivity is a valuable observational tool used to guide numerical weather model improvement. Biases in simulated reflectivity help identify potential errors in physical process and property representation in models. This study uniquely compares simulated and observed tropical convective systems to establish that a commonly documented high bias in radar reflectivity values at least partially results from the production of simulated ice particle sizes that are larger than observed.
Altmetrics
Final-revised paper
Preprint