Articles | Volume 17, issue 14
https://doi.org/10.5194/acp-17-9035-2017
https://doi.org/10.5194/acp-17-9035-2017
Research article
 | 
27 Jul 2017
Research article |  | 27 Jul 2017

An improved hydrometeor detection method for millimeter-wavelength cloud radar

Jinming Ge, Zeen Zhu, Chuang Zheng, Hailing Xie, Tian Zhou, Jianping Huang, and Qiang Fu

Related authors

A robust low-level cloud and clutter discrimination method for ground-based millimeter-wavelength cloud radar
Xiaoyu Hu, Jinming Ge, Jiajing Du, Qinghao Li, Jianping Huang, and Qiang Fu
Atmos. Meas. Tech., 14, 1743–1759, https://doi.org/10.5194/amt-14-1743-2021,https://doi.org/10.5194/amt-14-1743-2021, 2021
Short summary
Wintertime organic and inorganic aerosols in Lanzhou, China: sources, processes, and comparison with the results during summer
Jianzhong Xu, Jinsen Shi, Qi Zhang, Xinlei Ge, Francesco Canonaco, André S. H. Prévôt, Matthias Vonwiller, Sönke Szidat, Jinming Ge, Jianmin Ma, Yanqing An, Shichang Kang, and Dahe Qin
Atmos. Chem. Phys., 16, 14937–14957, https://doi.org/10.5194/acp-16-14937-2016,https://doi.org/10.5194/acp-16-14937-2016, 2016
Short summary
Taklimakan Desert nocturnal low-level jet: climatology and dust activity
Jin Ming Ge, Huayue Liu, Jianping Huang, and Qiang Fu
Atmos. Chem. Phys., 16, 7773–7783, https://doi.org/10.5194/acp-16-7773-2016,https://doi.org/10.5194/acp-16-7773-2016, 2016
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
How does the lifetime of detrained cirrus impact the high-cloud radiative effect in the tropics?
George Horner and Edward Gryspeerdt
Atmos. Chem. Phys., 25, 5617–5631, https://doi.org/10.5194/acp-25-5617-2025,https://doi.org/10.5194/acp-25-5617-2025, 2025
Short summary
Anvil–radiation diurnal interaction: shortwave radiative-heating destabilization driving the diurnal variation of convective anvil outflow and its modulation on the radiative cancellation
Zhenquan Wang
Atmos. Chem. Phys., 25, 5021–5039, https://doi.org/10.5194/acp-25-5021-2025,https://doi.org/10.5194/acp-25-5021-2025, 2025
Short summary
Impact of wildfire smoke on Arctic cirrus formation – Part 1: Analysis of MOSAiC 2019–2020 observations
Albert Ansmann, Cristofer Jimenez, Johanna Roschke, Johannes Bühl, Kevin Ohneiser, Ronny Engelmann, Martin Radenz, Hannes Griesche, Julian Hofer, Dietrich Althausen, Daniel A. Knopf, Sandro Dahlke, Tom Gaudek, Patric Seifert, and Ulla Wandinger
Atmos. Chem. Phys., 25, 4847–4866, https://doi.org/10.5194/acp-25-4847-2025,https://doi.org/10.5194/acp-25-4847-2025, 2025
Short summary
A new aggregation and riming discrimination algorithm based on polarimetric weather radars
Armin Blanke, Mathias Gergely, and Silke Trömel
Atmos. Chem. Phys., 25, 4167–4184, https://doi.org/10.5194/acp-25-4167-2025,https://doi.org/10.5194/acp-25-4167-2025, 2025
Short summary
Study of optical scattering properties and direct radiative effects of high-altitude cirrus clouds in Barcelona, Spain, with 4 years of lidar measurements
Cristina Gil-Díaz, Michäel Sicard, Odran Sourdeval, Athulya Saiprakash, Constantino Muñoz-Porcar, Adolfo Comerón, Alejandro Rodríguez-Gómez, and Daniel Camilo Fortunato dos Santos Oliveira
Atmos. Chem. Phys., 25, 3445–3464, https://doi.org/10.5194/acp-25-3445-2025,https://doi.org/10.5194/acp-25-3445-2025, 2025
Short summary

Cited articles

Ackerman, T. P. and Stokes, G. M.: The Atmospheric Radiation Measurement program, Phys. Today, 56, 14–14, 2003.
Barker, H. W.: Indirect aerosol forcing by homogeneous and inhomogeneous clouds, J. Climate, 13, 4042–4049, https://doi.org/10.1175/1520-0442(2000)013<4042:iafbha>2.0.co;2, 2010.
Barker, H. W. and Fu, Q.: Assessment and optimization of the gamma-weighted two-stream approximation, J. Atmos. Sci., 57, 1181–1188, https://doi.org/10.1175/1520-0469(2000)057<1181:aaootg>2.0.co;2, 2000.
Canny, J.: A computational approach to edge-detection, IEEE T. Pattern Anal., 8, 679–698, 1986.
Download
Short summary
A modified method with a new noise reduction scheme that can reduce the noise distribution to a narrow range is proposed to distinguish clouds and other hydrometeors from noise and recognize more features with weak signal in cloud radar observations. It was found that our method has significant advantages in reducing the rates of both failed negative and false positive hydrometeor identifications in simulated clouds and recognizing clouds with weak signal from our cloud radar observations.
Share
Altmetrics
Final-revised paper
Preprint