Articles | Volume 17, issue 14
https://doi.org/10.5194/acp-17-9035-2017
https://doi.org/10.5194/acp-17-9035-2017
Research article
 | 
27 Jul 2017
Research article |  | 27 Jul 2017

An improved hydrometeor detection method for millimeter-wavelength cloud radar

Jinming Ge, Zeen Zhu, Chuang Zheng, Hailing Xie, Tian Zhou, Jianping Huang, and Qiang Fu

Related authors

A robust low-level cloud and clutter discrimination method for ground-based millimeter-wavelength cloud radar
Xiaoyu Hu, Jinming Ge, Jiajing Du, Qinghao Li, Jianping Huang, and Qiang Fu
Atmos. Meas. Tech., 14, 1743–1759, https://doi.org/10.5194/amt-14-1743-2021,https://doi.org/10.5194/amt-14-1743-2021, 2021
Short summary
Wintertime organic and inorganic aerosols in Lanzhou, China: sources, processes, and comparison with the results during summer
Jianzhong Xu, Jinsen Shi, Qi Zhang, Xinlei Ge, Francesco Canonaco, André S. H. Prévôt, Matthias Vonwiller, Sönke Szidat, Jinming Ge, Jianmin Ma, Yanqing An, Shichang Kang, and Dahe Qin
Atmos. Chem. Phys., 16, 14937–14957, https://doi.org/10.5194/acp-16-14937-2016,https://doi.org/10.5194/acp-16-14937-2016, 2016
Short summary
Taklimakan Desert nocturnal low-level jet: climatology and dust activity
Jin Ming Ge, Huayue Liu, Jianping Huang, and Qiang Fu
Atmos. Chem. Phys., 16, 7773–7783, https://doi.org/10.5194/acp-16-7773-2016,https://doi.org/10.5194/acp-16-7773-2016, 2016
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
The correlation between Arctic sea ice, cloud phase and radiation using A-Train satellites
Grégory V. Cesana, Olivia Pierpaoli, Matteo Ottaviani, Linh Vu, Zhonghai Jin, and Israel Silber
Atmos. Chem. Phys., 24, 7899–7909, https://doi.org/10.5194/acp-24-7899-2024,https://doi.org/10.5194/acp-24-7899-2024, 2024
Short summary
Technical note: Retrieval of the supercooled liquid fraction in mixed-phase clouds from Himawari-8 observations
Ziming Wang, Husi Letu, Huazhe Shang, and Luca Bugliaro
Atmos. Chem. Phys., 24, 7559–7574, https://doi.org/10.5194/acp-24-7559-2024,https://doi.org/10.5194/acp-24-7559-2024, 2024
Short summary
Characterisation of low-base and mid-base clouds and their thermodynamic phase over the Southern Ocean and Arctic marine regions
Barbara Dietel, Odran Sourdeval, and Corinna Hoose
Atmos. Chem. Phys., 24, 7359–7383, https://doi.org/10.5194/acp-24-7359-2024,https://doi.org/10.5194/acp-24-7359-2024, 2024
Short summary
A survey of radiative and physical properties of North Atlantic mesoscale cloud morphologies from multiple identification methodologies
Ryan Eastman, Isabel L. McCoy, Hauke Schulz, and Robert Wood
Atmos. Chem. Phys., 24, 6613–6634, https://doi.org/10.5194/acp-24-6613-2024,https://doi.org/10.5194/acp-24-6613-2024, 2024
Short summary
Extensive coverage of ultrathin tropical tropopause layer cirrus clouds revealed by balloon-borne lidar observations
Thomas Lesigne, François Ravetta, Aurélien Podglajen, Vincent Mariage, and Jacques Pelon
Atmos. Chem. Phys., 24, 5935–5952, https://doi.org/10.5194/acp-24-5935-2024,https://doi.org/10.5194/acp-24-5935-2024, 2024
Short summary

Cited articles

Ackerman, T. P. and Stokes, G. M.: The Atmospheric Radiation Measurement program, Phys. Today, 56, 14–14, 2003.
Barker, H. W.: Indirect aerosol forcing by homogeneous and inhomogeneous clouds, J. Climate, 13, 4042–4049, https://doi.org/10.1175/1520-0442(2000)013<4042:iafbha>2.0.co;2, 2010.
Barker, H. W. and Fu, Q.: Assessment and optimization of the gamma-weighted two-stream approximation, J. Atmos. Sci., 57, 1181–1188, https://doi.org/10.1175/1520-0469(2000)057<1181:aaootg>2.0.co;2, 2000.
Canny, J.: A computational approach to edge-detection, IEEE T. Pattern Anal., 8, 679–698, 1986.
Download
Short summary
A modified method with a new noise reduction scheme that can reduce the noise distribution to a narrow range is proposed to distinguish clouds and other hydrometeors from noise and recognize more features with weak signal in cloud radar observations. It was found that our method has significant advantages in reducing the rates of both failed negative and false positive hydrometeor identifications in simulated clouds and recognizing clouds with weak signal from our cloud radar observations.
Altmetrics
Final-revised paper
Preprint