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Abstract. A modified method with a new noise reduction
scheme that can reduce the noise distribution to a nar-
row range is proposed to distinguish clouds and other hy-
drometeors from noise and recognize more features with
weak signal in cloud radar observations. A spatial filter
with central weighting, which is widely used in cloud radar
hydrometeor detection algorithms, is also applied in our
method to examine radar return for significant levels of sig-
nals. “Square clouds” were constructed to test our algo-
rithm and the method used for the US Department of Energy
Atmospheric Radiation Measurements Program millimeter-
wavelength cloud radar. We also applied both the methods
to 6 months of cloud radar observations at the Semi-Arid
Climate and Environment Observatory of Lanzhou Univer-
sity and compared the results. It was found that our method
has significant advantages in reducing the rates of both failed
negative and false positive hydrometeor identifications in
simulated clouds and recognizing clouds with weak signal
from our cloud radar observations.

1 Introduction

Clouds, which are composed of liquid water droplets, ice
crystals or both, cover about two-thirds of the Earth surface at
any time (e.g., King et al., 2013). By reflecting solar radiation
back to the space (the albedo effect) and trapping thermal
radiation emitted by the Earth surface and the lower tropo-
sphere (the greenhouse effect), clouds strongly modulate the
radiative energy budget in the climate system (e.g., Fu et al.,
2002; Huang et al., 2006a, b, 2007; Ramanathan et al., 1989;

Jing Su et al., 2008). Clouds are also a vital component of
water cycle by connecting the water-vapor condensation and
precipitation. Despite the importance of clouds in the climate
system, they are difficult to represent in climate models (e.g.,
Williams and Webb, 2009), which causes the largest uncer-
tainty in the predictions of climate change by general circu-
lation models (GCMs; e.g., Randall, 2007; Stephens, 2005;
Williams and Webb, 2009).

Cloud formation, evolution and distribution are governed
by complex physical and dynamical processes on a wide
range of scales from synoptic motions to turbulence (Bony et
al., 2015). Unfortunately, the processes that occur on smaller
spatial scales than a GCM grid box cannot be resolved by
current climate models, and the coupling between large-scale
fluctuations and cloud microphysical processes is not well
understood (e.g., Huang et al., 2006b; Mace et al., 1998; Yan
et al., 2015; Yuan et al., 2006). Moreover, the cloud hori-
zontal inhomogeneity and vertical overlap are not resolved
by GCMs (Barker, 2000; Barker and Fu, 2000; Fu et al.,
2000a, b; Huang et al., 2005; Li et al., 2015). To better un-
derstand cloud processes to improve their parameterization
in climate models and reveal their evolution in response to
climate change, long-term continuous observations of cloud
fields in terms of both macro- and microphysical properties
are essential (e.g., Ackerman and Stokes, 2003; Sassen and
Benson, 2001; Thorsen et al., 2011; Wang and Sassen, 2001).

Millimeter-wavelength cloud radars (MMCRs) can re-
solve cloud vertical structure for their occurrences and mi-
crophysical properties (e.g., Clothiaux et al., 1995; Kollias
et al., 2007a; Mace et al., 2001). The wavelengths of MM-
CRs are shorter than those of weather radars, making them
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sensitive to cloud droplets and ice crystals and able to pene-
trate multiple cloud layers (e.g., Kollias et al., 2007a). Be-
cause of their outstanding advantages for cloud research,
millimeter-wavelength radars have been deployed on various
research platforms including the first space-borne millimeter-
wavelength Cloud Profiling Radar (CPR) onboard the Cloud-
Sat (Stephens et al., 2002). Ground-based cloud radars are
operated at the US Department of Energy’s Atmospheric Ra-
diation Program (ARM) observational sites (formerly MM-
CRs, now replaced with a new generation of Ka-band zenith
radar; KAZR; e.g., Ackerman and Stokes, 2003; Clothiaux
et al., 1999, 2000; Kollias et al., 2007b; Protat et al., 2011)
and in Europe (Illingworth et al., 2007; Protat et al., 2009).
In July 2013, a KAZR was deployed in China at the Semi-
Arid Climate and Environment Observatory of Lanzhou Uni-
versity (SACOL) site (latitude of 35.946◦ N, longitude of
104.137◦ E; altitude of 1.97 km; Huang et al., 2008), provid-
ing an opportunity to observe and reveal the detailed struc-
ture and process of the midlatitude clouds over the semi-arid
regions of East Asia.

Before characterizing the cloud physical properties from
the cloud radar return signal, we first need to distinguish and
extract the hydrometeor signals from the background noise
(i.e., cloud mask). A classical cloud mask method was de-
veloped in Clothiaux et al. (2000, 1995) by analyzing the
strength and significance of returned signals. This method
consists of two main steps. First any power in a range gate
that is greater than a mean value of noise plus 1 standard
deviation is selected as a bin containing potential hydrom-
eter signal. Second, a space–time coherent filter is created
to estimate the significance level of the potential hydrometer
bin signal to be real. This cloud mask algorithm is opera-
tionally used for the ARM MMCRs data analysis and was
later adopted to the CPR onboard the CloudSat (Marchand et
al., 2008).

It is recognized that by visually examining a cloud radar
return image, one can easily tell where the return power is
likely to be caused by hydrometeors and where the power is
just from noise. This ability of the human eye to extract and
analyze information from an image has been broadly stud-
ied in image processing and computer vision. A number of
mathematical methods for acquiring and processing informa-
tion from images have been developed, including some novel
algorithms for noise reduction and edge detection (Canny,
1986; He et al., 2013; Marr and Hildreth, 1980; Perona and
Malik, 1990). In this paper, we propose a modified cloud
mask method for cloud radar by noticing that removing noise
from signal and identifying cloud boundaries are the essen-
tial goals of cloud masking. This method reduces the radar
noise while preserving cloud edges by employing the bi-
lateral filtering that is widely used in the image processing
(Tomasi and Manduchi, 1998). The power weighting prob-
ability method proposed by Marchand et al. (2008) is also
adopted in our method to prevent the cloud corners from be-
ing removed. It is found that our improved hydrometeor de-
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Figure 1. (a) Probability distribution function (PDF) of the noise
power and SNR from the KAZR observations on a clear day, 21 Jan-
uary 2014. (b) Cumulative distribution function (CDF) of original
and convolved SNR of the noise on the clear day. (c) and (d) CDF
of original and convolved SNR of a cloudy case on 4 January 2014
for range gates inside and outside the cloud adjacent to the cloud
boundary, respectively. The converted SNR is obtained by using a
2-D Gaussian distribution kernel (Eq. 2).

tection algorithm is efficient in terms of reducing false posi-
tives and negatives as well as identifying cloud features with
weak signals such as thin cirrus clouds.

The KAZR deployed at the SACOL is described in Sect. 2
and the modified cloud mask algorithm is introduced in
Sect. 3. The applications of the new scheme to both hypo-
thetical and observed cloud fields including a comparison
with previous schemes are shown in Sect. 4. Summary and
conclusions are given in Sect. 5.

2 The KAZR radar

The SACOL KAZR, built by ProSensing Inc. of Amherst,
MA, is a zenith-pointing cloud radar operating at approx-
imately 35 GHz for the dual-polarization measurements of
Doppler spectra. The main purpose of the KAZR is to pro-
vide vertical profiles of clouds by measuring the first three
Doppler moments: reflectivity, radial Doppler velocity and
spectra width. The linear depolarization ratio (LDR; Marr
and Hildreth, 1980) can be computed from the ratio of cross-
polarized reflectivity to co-polarized reflectivity.

The SACOL KAZR has a transmitter with a peak power
of 2.2 kw and two modes working at separate frequencies.
One is called “chirp” mode that uses a linear frequency-
modulation pulse compression to achieve high radar sensi-
tivity of about −65 dBZ at 5 km altitude. The minimum al-
titude (or range) that can be detected in chirp mode is ap-
proximately 1 km a.g.l. To view clouds below 1 km, a short
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Figure 2. (a) Comparison of original noise, reduced noise and hydrometeor signal distributions. σo and σn are 1 standard deviation of the
original and reduced background noise, respectively. (b) Illustration of the bilateral filtering process: (b1) Gaussian kernel distribution in
space, (b2) δ function and (b3) bilateral kernel by combining Gaussian kernel with δ function.

pulse or “burst mode” pulse is transmitted at a separate fre-
quency just after transmission of the chirp pulse. This burst
mode pulse allows clouds as low as 200 m to be measured.
The chirp pulse is transmitted at 34.890 GHz while the burst
pulse is transmitted at 34.830 GHz. These two waveforms are
separated in the receiver and processed separately.

The pulse length is approximately 300 ns (giving a range
resolution of about 45 m), while the digital receiver sam-
ples the return signal every 30 m. The inter-pulse period is
208.8 µs, the number of coherent averages is 1 and the num-
ber of the fast Fourier transform points is currently set to
512. An unambiguous range is thus 31.29 km, an unam-
biguous velocity is 10.29 m s−1 and a velocity resolution is
0.04 m s−1. The signal dwell time is 4.27 s. These operational
parameters are set for the purpose of having enough radar
sensitivity and accurately acquiring reflectivities of hydrom-
eteors. In this study, we mainly use radar-observed reflectiv-
ity (dBZ) data to test our new hydrometeor detection method.

3 Improved hydrometeor detection algorithm

The basic assumption in the former cloud mask algorithms
(e.g., Clothiaux et al., 1995; Marchand et al., 2008) is that the
random noise power follows the normal distribution. Here
clear-sky cases in all seasons from the KAZR observations
were first analyzed for its background noise power distribu-
tions. Figure 1a shows an example of a clear-sky case from
00:00 to 12:00 UTC on 21 January 2014. The noise power is
estimated from the top 30 range gates, which includes both
internal and external sources (Fukao and Hamazu, 2014). It
has an apparent non-Gaussian distribution with a positive
skewness of 1.40 (Fig. 1a). The signal-to-noise ratio (SNR)

is defined as

SNR= 10log
(
Ps

Pn

)
, (1)

where Ps is the power received at each range gate in a pro-
file and Pn is the mean noise power that is estimated by av-
eraging the return power in the top 30 range gates, which
are between 16.8 and 17.7 km a.g.l. Since this layer is well
above the tropopause, few atmospheric hydrometeors exist-
ing in this layer can scatter enough power back to achieve
the radar sensitivity. Figure 1a shows that the SNRs for clear
skies closely follow a Gaussian distribution. Instead of us-
ing radar-received power, the SNR is used as the input in our
cloud mask algorithm including estimating the background
noise level. This is because in our method the chance of a
central range gate being noise or a potential feature relies on
the probability of a given range of SNR values following the
Gaussian distribution. Note that the mean value of the SNR
for the noise power is not zero, but a small negative value of
about −0.3. This is because the mean of the noise power is
larger than its the median due to its positive skewed distribu-
tion. It is further noted that, for the noise, the distribution of
SNR and its mean for the top 30 range gates are the same as
those from the lower atmosphere.

The SNR value is treated as the brightness of a pixel in
an image f (x,y) in our hydrometeor detection method. In
image processing, the random noise can be smoothed out by
using a low-pass filter, which gives a new value for a pixel
of an image by averaging with neighboring pixels (Tomasi
and Manduchi, 1998). The cloud signals are highly corre-
lated in both space and time and have more similar values
in near pixels while the random noise values are not corre-
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Figure 3. Schematic flow diagram for hydrometeor detection
method. So and Sn are the mean SNR for the original and reduced
noise, respectively.

lated. Figure 2a shows a schematic comparison of the orig-
inal noise, reduced noise and hydrometeor signal distribu-
tions: the low-pass filter could efficiently reduce the original
radar noise represented by the green line to a narrow band-
width (blue line) while keeping the signal preserved. By re-
ducing the standard deviations of noise, which shrinks the
overlap region of signal and noise and enhances their con-
trast, the weak signals (yellow area) that cannot be detected
based on original noise level may become distinguished.

Following this idea, we develop a non-iterative hydrom-
eteor detection algorithm by applying a noise reduction
and a central-pixel weighting schemes. Figure 3 shows the
schematic flow diagram of our method. For given mean SNR
values (So) and 1 standard deviation (σo) of the original
background noise, the input SNR data set is first separated
into two groups. The group with values greater than So+3σo
is considered to be the cloud features that can be confi-
dently identified. Another group with values between So and
So+3σo may potentially contain moderate (So+σo < SNR≤
So+3σo) to weak (So < SNR≤ So+σo) cloud signals, which
will further go through a noise reduction process. Here So
and σo are estimated from the top 30 range gates of each five
successive profiles.

The noise reduction process is performed by convolving
radar SNR time–height data with a low-pass filter. The Gaus-
sian filter, which outputs a “weighted average” of each pixel
and its neighborhood with the average weighted more to-
wards the value of the central pixel (v0), is one of the most
common functions of the noise reduction filter. A 2-D Gaus-
sian distribution kernel, shown in Fig. 2b1, can be expressed

as

G(i,j)=
1

2πσ 2 exp
(
−
i2+ j2

2σ 2

)
, (2)

where i and j are the indexes in a filter window and are 0 for
the central pixel, and σ is the standard deviation of the Gaus-
sian distribution for the window size of the kernel. Equa-
tion (2) is used in our study to filter the radar SNR image.
Note that the convolution kernel is truncated at about 3 stan-
dard deviations away from the mean in order to accurately
represent the Gaussian distribution. Figure 1b is the cumu-
lative distribution functions of clear-sky SNR by convolving
the same data in Fig. 1a with filters that have different kernel
sizes (3× 3, 5× 5, 7× 7 and 9× 9 pixels), corresponding to
the σ ranging from 0.5 to 2. The original SNR values are dis-
tributed from about−5 to 5. After convolving the image with
the Gaussian filter, the SNR distribution can be constrained to
a much narrower range. It is clear that the filter with a larger
kernel size is more effective in suppressing the noise. Shown
in Fig. 1c are results for a cloudy case on 4 January 2014
by applying the filter to the range gates inside the cloud but
adjacent to the boundary. It is shown that a larger kernel size
shifts the SNR farther away from the noise region. It there-
fore appears that increasing the standard deviation (i.e., the
window size) would reduce the noise and enhance the con-
trast between signal and noise more effectively. At the same
time, however, a larger kernel can also attenuate or blur the
high-frequency components of an image (e.g., the boundary
of clouds) more. As shown in Fig. 1d, when the window size
is increased from 3× 3 (σ = 0.5) to 9× 9 (σ = 2), the SNR
distribution of the range gates that are outside the cloud but
adjacent to the boundary gradually move toward larger val-
ues. This will consequently raise the risk of misidentifying
cloud boundaries. To solve this problem, a bilateral filtering
idea proposed by Tomasi and Manduchi (1998) is adopted
here. Considering a sharp edge between cloudy and clear re-
gion as shown in Fig. 2b2, we define a δ (i,j) function that,
when the central pixel is on the cloudy or clear side, gives
a weighting of 1 to the similar neighboring pixels (i.e., on
the same side) and 0 to the other side. After combining this
δ function to the Gaussian kernel in Fig. 2b1, we can get a
new nonlinear function called bilateral kernel as shown in
Fig. 2b3. It can be written as

B (i,j)=
1

2πσ 2 exp
(
−
i2+ j2

2σ 2

)
· δ (i,j) . (3)

Thus the bilateral kernel will reduce averaging noises with
signals, and vice versa. The noise-reduced imageh(x,y) is
produced by convolving the bilateral kernel with the original
input image f (x,y) as

h(x,y)= k−1 (x,y)
j=w∑
j=−w

i=w∑
i=−w

f (x+ i,y+ j) ·B (i,j) , (4)
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where ±w is the bounds of the finite filter window, and

k−1 (x,y) is defined as 1/
j=w∑
j=−w

i=w∑
i=−w

B (i,j), which is used

to normalize the weighting. Since the bilateral kernel func-
tion only averages the central pixel with neighbors on the
same side (Fig. 2b), ideally it will preserve sharp edges of
a target. We will discuss how to construct the δ function in
order to group the central pixel with its neighbors later in
this section. In the noise reduction process, a 5× 5 window
size (i.e., 25 bins in total) is specified for the low-pass filter,
which is empirically determined by visually comparing the
cloud masks with original images. We should keep in mind
that a small window size is less effective in noise reduction
but a large window is not suitable for recognizing weak sig-
nals.

For performing the noise reduction with Eq. (4) in a 5× 5
filter window, the number of range bins (Ns) with signal
greater than So+ 3σo are first counted. These Ns range bins
are then subtracted from the total 25 of the range bins in
the filter window. Note that a noise reduction is only applied
when the central pixel is among the 25−Ns bins, and the δ
function is set to be zero for the Ns range bins. If the remain-
ing 25−Ns range bins are all noises, the range bin number
(Nm) with SNR greater than So+σo should be about equal to
an integral number (Nt ) of 0.16× (25−Ns)where 0.16 is the
probability for a remaining range bin to have a value greater
than So+σo for a Gaussian noise. Thus when Nm is equal to
or smaller thanNt , all the 25−Ns range bins could only con-
tain pure noise and/or some weak cloud signals. In this case,
the δ function is set to 1 for all the 25−Ns bins. When Nm
is found to be larger than Nt , the 25−Ns range bins might
contain a combination of moderate signal, noise and/or some
weak clouds. In this case, So+σo is selected as a threshold to
determine whether the pixels are on the same side of the cen-
tral pixel. If the central pixel has a value greater than So+σo,
the δ function is assigned to 1 for the 25−Ns pixels with
SNR≥ So+σo, but 0 for the bins with SNR< So+σo. If the
central pixel is less than So+ σo, the δ function is assigned
to 1 for the pixels with SNR< So+σo, but 0 for the 25−Ns
bins with SNR≥ So+ σo.

After picking out the strong return signals and applying
the noise reduction scheme, the new background noise Sn
and its standard deviation σn are estimated. While Sn is the
same as So, the σn is significantly reduced, which is a half of
σo. This will make it possible to identify more hydrometeors
as exhibited in Fig. 2a. We assign different confidence level
values (which is called the mask value in this study) to the
following initial cloud mask according to the SNR; 40 is first
assigned to the mask of any range bins with SNR> So+3σo
in the original input data. For the rest of the range bins, after
applying the noise reduction, if the SNR> Sn+3σn, the mask
is assigned a value of 30; if Sn+2σn < SNR≤ Sn+3σn, the
mask is 20; if Sn+σn < SNR≤ Sn+2σn, the mask is 10; and
the remaining range bin mask is assigned a value of 0. Thus, a
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Figure 4. Illustration of the steps of the detection method using the
real data from 8 January 2014.

mask value assigned to a pixel represents the confident level
for the pixel to be a feature.

To reduce both false positives (i.e., false detections) and
false negatives (i.e., failed detections), the next step is to es-
timate whether a range gate contains significant hydrome-
teor. Following Clothiaux et al. (2000, 1995) and Marchand
et al. (2008), a 5× 5 spatial filter is used to calculate the prob-
ability of clouds and noise occurring in the 25 range gates.
The probability of central-pixel weighting scheme proposed
by Marchand et al. (2008) is adopted here, and the weighting
for the central pixel is assigned according to its initial mask
value. The probability is calculated by

p =G(L)
(

0.16NT
)(

0.84N0
)
, (5)

where N0 is the number of masks with zero mask value,
NT is the number of masks with non-zero mask value and
N0+NT = 25;G(L) is the weighting probability of the cen-
tral pixel that could be a false detection at a given signifi-
cant level of L (i.e., mask value) in the initial cloud mask.
Here G(0)= 0.84, G(10)= 0.16, G(20)= 0.028 and G(≥
30)= 0.002. If p estimated from Eq. (5) is less than a given
threshold (pthresh), then the central pixel is likely to be a hy-
drometeor signal. The cloud mask value will be set to the
same value as in the initial mask if it is non-zero; otherwise
it will be set to 10. Likewise, if p > pthresh, then the central
pixel is likely to be noise and the mask value will be set to 0.
This process is iterated five times for each pixel to obtain the
final cloud mask.
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Figure 5. Panels (a1), (a2) and (a3) are three “square clouds” that
have strong, moderate and weak SNR values with random Gaus-
sian noise used to test the detection method. Panels (b1), (b2) and
(b3) are SNR distributions after convolving the data with a bilateral
kernel. Panels (c1), (c2) and (c3) are the final cloud mask filtered by
the spatial filter.

Following Marchand et al. (2008), who explained the logic
of choosing a proper threshold, pthresh is calculated as

pthresh =
(

0.16Nthresh
)(

0.8425−Nthresh
)
. (6)

Note that a smaller pthresh will keep the false positives lower
but increase the false negative. Herein we adopt the pthresh of
5.0× 10−12 used in Clothiaux et al. (2000), which is approx-
imately equivalent to Nthresh = 13.

Figure 4 illustrates the main steps of our detection method
by using the data from 8 January 2014. Figure 4a is the
original SNR input. Figure 4b shows the SNR distribu-
tion after the noise reduction process. One can see that the
SNR, after being compressed to a narrow range, becomes
much smoother than original input. This step significantly
increases the contrast between signal and noise. Figure 4c
indicates the range gates that potentially contain hydromete-
ors in the initial cloud mask. Figure 4d is the final result after
applying the spatial filter.

4 Results

4.1 Detection test

To test the performance of our hydrometeor detection
method, we create seven squares of SNR with sides of 100,
50, 25, 15, 10 and 5 and three bins to mimic the radar “time–
height” observations as shown in Fig. 5. The background

Table 1. Summary of false positives and failed negatives for hy-
pothetical strong, moderate and weak cloud cases in Fig. 5a1, a2
and a3, respectively.

Cloud mask confidence level

Cloud Performance ≥ 10 ≥ 20 ≥ 30 ≥ 40
type (%)

Strong False positive 0.048 0.044 0.009 0
Failed negative 0.244 0.244 0.244 0.244

Moderate False positive 0.103 0.103 0.063 0
Failed negative 0.229 0.229 0.229 100

Weak False positive 0.007 0.006 0.003 0
Failed negative 9.774 96.788 100 100

noise is randomly given by a Gaussian distribution with a
mean S0 and a standard deviation σ0. The targets in panels
a1, a2 and a3 are set with different SNR values to represent
situations in which clouds have strong, moderate and weak
signals, respectively. In panel a1 the target signals are set to
be S0+ 10σ0. In panel a2, the target signals distribute from
S0+ σ0 to S0+ 3σ0 with a mean value of S0+ 2σ0. In panel
a3, the target SNRs range from S0 to S0+ σ0 with a mean
value of S0+ 0.5σ0.

The three middle panels in Fig. 5 show the results after ap-
plying the noise reduction. Again, comparing with the input
signals, we can see that the background noise is well com-
pressed and becomes smoother. The shapes of the square tar-
gets are all well maintained with sharp boundaries for strong
and moderate signals (see Fig. 5b1 and b2). In Fig. 5b3 for
weak signals, the three-bin square target is not obvious while
the other six squares are still distinguishable. To separate
the compressed background noise from hydrometeor signals,
the 5× 5 spatial filter is further applied to the noise-reduced
data. The three right panels in Fig. 5 show the final mask re-
sults. Generally, the hydrometeor detection method can iden-
tify those targets well. Six of the seven square targets can
be identified for clouds with strong and moderate SNR. The
3× 3 square is missed because the small targets cannot be
resolved by the 5× 5 spatial filter. Since the temporal res-
olution of KAZR is about 4 s, we expect that a cloud only
having three bins in horizontal would be rare. For the targets
with weak SNR values, the 3× 3 and 5× 5 square targets are
missed, but the rest five square targets are successfully distin-
guished and their boundaries are well maintained as shown in
Fig. 5c3.

To further demonstrate the performance of our method for
detecting the hypothetical clouds in Fig. 5a1, a2 and a3, the
false and failed detection rates are listed in the Table 1. For
strong signals, no background noise pixel is misidentified as
one containing hydrometeors at level 40. Although at levels
less than 40, some noise pixels around the edges of targets are
identified as signals, the false detection is within 0.05 %. The
failed detection rate is about 0.24 %. For moderate signals,
the failed detection rate is still as small as 0.23 %, while the
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Figure 6. Cloud mask without applying noise reduction and central-
pixel weighting. (a), (b) and (c) are for the targets with strong, mod-
erate and weak SNR, respectively, from Fig. 4a1, a2 and a3.

false detection increases a little to 0.10 % at the confidence
levels below 30. The failed detection can reach up to 9.77 %
for weak signal at level 10 but more than 90 % weak signals
can be captured in our method. Note that the false positive is
less than 0.01 %; in other words, any range gate that is de-
tected likely as a signal bin will have extremely high likeli-
hood to contain hydrometeors although its backscattered sig-
nal is weak.

The simple square clouds are also tested by using the ARM
hydrometeor detection algorithm developed for the MMCRs
(Clothiaux et al., 2000, 1995), which does not include the
noise reduction and weighting schemes. As can be seen in
Fig. 6, this algorithm can only find five of the seven square
targets with strong and moderate SNR. Meanwhile, without
central-pixel weighting, the corners of the targets become
rounded and more than 2.23 % of hydrometeors are missed
for strong and moderate cloud cases. More importantly, none
of the weak cloud signals can be detected. Comparing Figs. 5

and 6, it is obvious that our hydrometeor detection method
can maintain the cloud boundary well, keep both false and
failed detection rate as low as a few percent for strong and
moderate cloud cases and has a remarkable advantage in rec-
ognizing weak signals.

It is noted that the ARM program has recently developed
a new operational cloud mask algorithm for the KAZRs by
applying the Hildebrand and Sekhon (1974) technique to de-
termine the SNR values along with the spatial filter (Johnson,
K., personal communication, 2017). It is our future research
task to compare our algorithm with the ARM’s new opera-
tional algorithm.

4.2 Application to the SACOL KAZR observations

Our hydrometeor detection method was then applied to the
winter and summer (December 2013 and January, February,
June, July and August 2014) KAZR data at the SACOL. A
micropulse lidar (MPL) transmitted at 527 nm is operated
near the KAZR. Lidar is more sensitive to thin cirrus clouds
and thus used to assess the performance of our algorithm.
Figure 7a, b and c show a 1-day example of radar reflectivity,
normalized backscatter and depolarization ratio of lidar, re-
spectively. The cloud masks from our detection method and
the ARM MMCR method are shown in Fig. 7d and e. The
MPL feature mask is derived by modifying the method de-
veloped in Thorsen et al. (2015) and Thorsen and Fu (2015;
see Fig. 7f). The vertical and horizontal resolutions of the
radar and lidar are different, and we map the observed data
and derived feature mask on the same height and time coordi-
nates for the purpose of a comparison. A distinct thin feature
layer appears at about 8 km from 15:00 to 18:30 UTC during
the lidar observation, which is clearly identified as a cirrus
cloud using the depolarization ratio. The contrast between
the cirrus layer and background from the KAZR observation
(Fig. 7a) is very weak, and only a few range gates are identi-
fied as the hydrometeors using the method without the noise
reduction and weighting (Fig. 7d). However, our cloud mask
method can find more range gates (about 2.8 times of ARM’s
result). All these increased range bins from our method are
also detected as thin cirrus by the MPL (Fig. 7f). Another
apparent discrepancy exists in the low atmosphere layer. A
non-negligible number of range gates at about 2 km are rec-
ognized as hydrometeor echoes by our method but mostly
missed by former technique. This feature layer is also appar-
ent in lidar observations with both relative large backscat-
ter intensities and depolarization ratios (Fig. 7b and c). MPL
recognizes this feature as an aerosol layer. From our KAZR
observations, we did find some dust events that were detected
by this millimeter-wavelength radar (see the auxiliary Fig. 1).
Those feature echoes detected by our method might be partly
caused by large dust particles. Although the dust is not de-
sired for cloud mask, the appearance of those particles does
prove the ability of our method to recognize weak signals.
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Figure 7. One-day example of radar- and lidar-observed cirrus clouds at the SACOL on 8 January 2014. (a) KAZR reflectivity; (b) MPL
normalized backscatter intensity; (c) MPL depolarization ratio; (d) radar cloud mask derived by the ARM MMCR algorithm; (e) radar cloud
mask derived by our new method; (f) MPL feature mask. Three windows in (d), (e) and (f) show the zoom-in views of cirrus masks.
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Figure 8. The upper panel shows the number of occurrences of the
detected hydrometeor range bins from the two methods. The solid
line is the number of range gates derived from our method. The
dotted line from the ARM MMCR algorithm. The lower two pan-
els demonstrate the increased percentage of hydrometeor bins from
our method comparing to the ARM MMCR algorithm. The solid
line is calculated by applying both noise reduction and central-pixel
weighting schemes, while the dashed line is calculated by only ap-
plying the central-pixel weighting scheme in our detection method.

The upper two panels in Fig. 8 compare the number of oc-
currences of the detected hydrometeor range bins from our
methods with that from the ARM MMCR algorithm for the

Table 2. Mean values of four quantities for increased KAZR feature
and noise pixels.

Increased KAZR KAZR
feature noise

MPL backscatter 0.15 0.10
MPL depolarization ratio 0.16 0.12
KAZR SNR 3.9 0.1
KAZR LDR −3.0 −0.4

Table 3. Confusion matrix of KAZR mask results from our method
and the ARM MMCR algorithm estimated by MPL observations.

Our method MMCR method

True positive 70.7 % 68.9 %
True negative 95.4 % 95.5 %
False positive 4.6 % 4.5 %
False negative 29.3 % 31.1 %

6 months of data. Generally, one can see that the variations of
the identified hydrometeor numbers with height from the two
techniques are in a good agreement. The distinct discrepan-
cies appear at about 2 km in winter and above 13 km in sum-
mer, when our method apparently identifies more hydrome-
teors. To quantitatively evaluate the two schemes used in our
algorithm and illustrate the improvements of our method, we
plot the percent change of the increased hydrometeors from
our method by comparing it to the ARM MMCR method in
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Figure 9. (a) A comparison of the increased detections with the
MPL observations. (b) The percentage of the cloud pixels identified
by MPL but not by KAZR in the total MPL detected cloud pixels.
The solid line in Fig. 9a is the percentage of increased detections
seen by both KAZR with our method and MPL as compared with
the total increased detections. The dash line in Fig. 9a is the number
of increased detections. The solid lines in Fig. 9b represents for the
algorithm with noise reduction step. The dash line in Fig. 9b is for
the method without noise reduction scheme.

the lower two panels in Fig. 8. As expected from the results
in the test square clouds, our method can identify more sig-
nals. The remarkable feature is that the increased percent-
age is over 20 % at high altitude, indicating that our method
can recognize more cirrus clouds. The increased percent-
age of hydrometeor derived only with the weighting scheme
(dashed line) and with both the noise reduction and weight-
ing schemes (solid line) varies differently with height to
demonstrate the individual contribution of the scheme to the
improvement of our method. In winter, the number of the
detected hydrometeors with only the weighting scheme is al-
most the same as that from the ARM method at layer from
3.5 to 9 km a.g.l., while this number will increase by about
5 % if the noise reduction scheme is involved, indicating that
some hydrometeors with weak SNR values may exit in this
layer. Above and below this atmospheric layer, the increased
percentage is largely determined by the weighting scheme.
In summer, the two lines almost overlap each other between
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Figure 10. PDF of (a) MPL backscatter, (b) MPL depolarization
ratio, (c) KAZR SNR and (d) KAZR LDR for the increased KAZR
detections (solid line) and KAZR noise (dashed line) pixels.

3.5 and 9.5 km with values below 5 %, revealing that the bins
found by our method in the mid-atmospheric layer are mainly
around the boundaries of clouds. We may infer that in sum-
mer season, clouds in the middle level are usually composed
of large droplets with strong SNR values. The two lines are
gradually moving apart with height. This is because hydrom-
eteors in the upper troposphere usually have smaller size that
cause weak SNR values, which will be effectively detected
by the noise reduction scheme.

We also analyzed the data when both KAZR and MPL
observations are available and compared our KAZR cloud
mask with MPL feature detection. Figure 9a shows the per-
centage of the increased detections identified by both KAZR
with our method and MPL observations as normalized to
the KAZR total increased detections. Here we should point
out that MPL has difficulty distinguishing dust from clouds
(especially cirrus clouds). Unfortunately, there exists a large
amount of dust aerosols over the SACOL region. We visu-
ally examined several cases and found that many MPL sig-
nals, which should be clouds, are misidentified as aerosols.
For this reason, we compare the increased KAZR detections
with the features (i.e., cloud and aerosol) detected by MPL
above 3 km. It is obvious that more than 90 % of increased
detections are also detected as features by MPL. Below 3 km,
we calculated the percentage by comparing the KAZR de-
tections only with the cloud pixels detected by MPL since
aerosol is always present in the lowest several kilometers.
To test whether those increased detections that are not iden-
tified as cloud by MPL under 3 km are signal or noise, we
examined the probability distribution functions (PDFs) of
MPL normalized aerosol backscatter and depolarization cor-
responding to the increased KAZR feature and KAZR noise
regions in Fig. 10a and b. The PDFs of MPL backscatter
for the KAZR feature and noise regions are quite different
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(Fig. 10a), with mean backscatter of 0.15 for feature and
0.10 (photoelectrons km−2)/(µs µJ−1) for noise. The mean
of the MPL depolarization ratio is 0.16 for feature and 0.12
for noise although the PDFs are similar (Fig. 10b), because
dust is the main aerosol type over this region. We also plot
the PDFs of KAZR SNR and LDR for the increased feature
and noise pixels (Fig. 10c and d). The PDFs of SNR and
LDR are Gaussian-like for noise pixels and are quite differ-
ent from those for the increased detections. Table 2 shows
the mean values of the four quantities shown in Fig. 10. All
the differences of these mean values between KAZR noise
and increased feature regions pass the significant test at 95 %
confidence level except for the MPL depolarization ratio.
These increased features from our feature mask could thus
be dust (and/or some plankton) but cannot be the false pos-
itive. Figure 9b shows the profile of the false negative (i.e.,
the percentage of the cloud pixels identified by MPL but not
by KAZR in the total MPL-detected cloud pixels). We can
see that our method with the noise reduction has relative
smaller false negatives especially in the layers under 3 km
and between 7 and 10 km. Table 3 is the confusion matrix of
the KAZR feature mask results from both our and the ARM
MMCR methods estimated by MPL cloud feature. Overall,
70.7 % of the cloud mask identified by MPL was also rec-
ognized by the new method, while this percent is 68.9 % for
the algorithm without noise reduction. The difference of false
positive between the two methods is only 0.1 % as shown in
Table 3. These numbers show an improvement of our method
of recognizing weak signals by comparing with the results
from the ARM MMCR method; however, they cannot be
used to assess the accuracy of our method due to the issue
of MPL feature detection.

5 Summary and discussion

Based on image noise reduction technique, we propose a
modified method to detect hydrometeors from cloud radar re-
turn signals. The basic idea is to treat the SNR value of each
range gate as a pixel brightness and suppress the SNR distri-
butions of noise to a narrow range by convolving with a 2-D
bilateral kernel which can effectively avoid blurring the high-
frequency components (i.e., boundaries of a target). After the
noise smoothing process, a special filter with a central-pixel
weighting scheme is used to obtain the final cloud mask. The
detection of the test square clouds shows that there are two
remarkable advantages of our method. First, the noise reduc-
tion scheme of our algorithm can enhance the contrast be-
tween signal and noise, while keeping the cloud boundaries
preserved and detecting more hydrometeors with weak SNR
values. Second, both false positive and failed negative rates
for strong and moderate clouds can be reduced to acceptably
small values. A comparison of radar and lidar observations
further highlight the advantage of our method for recogniz-
ing weak cloud signal in application.
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Appendix A

Figure A1. KAZR reflectivity on 29 January 2014 at the SACOL,
indicating a dust event. The morphology and power level of the re-
turn signal are not apparent for a cloud from the surface to the height
of 5 km between 08:00 and 16:00 UTC.
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