Articles | Volume 17, issue 13
Atmos. Chem. Phys., 17, 8045–8061, 2017
https://doi.org/10.5194/acp-17-8045-2017

Special issue: The SPARC Reanalysis Intercomparison Project (S-RIP) (ACP/ESSD...

Atmos. Chem. Phys., 17, 8045–8061, 2017
https://doi.org/10.5194/acp-17-8045-2017

Research article 04 Jul 2017

Research article | 04 Jul 2017

Intercomparison of meteorological analyses and trajectories in the Antarctic lower stratosphere with Concordiasi superpressure balloon observations

Lars Hoffmann et al.

Related authors

Using Vertical Phase Differences to Better Resolve 3D Gravity Wave Structure
Corwin J. Wright, Neil P. Hindley, M. Joan Alexander, Laura A. Holt, and Lars Hoffmann
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-93,https://doi.org/10.5194/amt-2021-93, 2021
Preprint under review for AMT
Short summary
Empirical evidence for deep convection related stratospheric cirrus clouds over North America
Ling Zou, Lars Hoffmann, Sabine Griessbach, Reinhold Spang, and Lunche Wang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-90,https://doi.org/10.5194/acp-2021-90, 2021
Revised manuscript under review for ACP
Short summary
Mountain-wave induced polar stratospheric clouds and their representation in the global chemistry model ICON-ART
Michael Weimer, Jennifer Buchmüller, Lars Hoffmann, Ole Kirner, Beiping Luo, Roland Ruhnke, Michael Steiner, Ines Tritscher, and Peter Braesicke
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1156,https://doi.org/10.5194/acp-2020-1156, 2020
Preprint under review for ACP
Short summary
Polar stratospheric clouds initiated by mountain waves in a global chemistry–climate model: a missing piece in fully modelling polar stratospheric ozone depletion
Andrew Orr, J. Scott Hosking, Aymeric Delon, Lars Hoffmann, Reinhold Spang, Tracy Moffat-Griffin, James Keeble, Nathan Luke Abraham, and Peter Braesicke
Atmos. Chem. Phys., 20, 12483–12497, https://doi.org/10.5194/acp-20-12483-2020,https://doi.org/10.5194/acp-20-12483-2020, 2020
Short summary
Superposition of gravity waves with different propagation characteristics observed by airborne and space-borne infrared sounders
Isabell Krisch, Manfred Ern, Lars Hoffmann, Peter Preusse, Cornelia Strube, Jörn Ungermann, Wolfgang Woiwode, and Martin Riese
Atmos. Chem. Phys., 20, 11469–11490, https://doi.org/10.5194/acp-20-11469-2020,https://doi.org/10.5194/acp-20-11469-2020, 2020
Short summary

Related subject area

Subject: Dynamics | Research Activity: Field Measurements | Altitude Range: Stratosphere | Science Focus: Physics (physical properties and processes)
Upward transport into and within the Asian monsoon anticyclone as inferred from StratoClim trace gas observations
Marc von Hobe, Felix Ploeger, Paul Konopka, Corinna Kloss, Alexey Ulanowski, Vladimir Yushkov, Fabrizio Ravegnani, C. Michael Volk, Laura L. Pan, Shawn B. Honomichl, Simone Tilmes, Douglas E. Kinnison, Rolando R. Garcia, and Jonathon S. Wright
Atmos. Chem. Phys., 21, 1267–1285, https://doi.org/10.5194/acp-21-1267-2021,https://doi.org/10.5194/acp-21-1267-2021, 2021
Short summary
Seasonal characteristics of trace gas transport into the extratropical upper troposphere and lower stratosphere
Yoichi Inai, Ryo Fujita, Toshinobu Machida, Hidekazu Matsueda, Yousuke Sawa, Kazuhiro Tsuboi, Keiichi Katsumata, Shinji Morimoto, Shuji Aoki, and Takakiyo Nakazawa
Atmos. Chem. Phys., 19, 7073–7103, https://doi.org/10.5194/acp-19-7073-2019,https://doi.org/10.5194/acp-19-7073-2019, 2019
Gravity waves excited during a minor sudden stratospheric warming
Andreas Dörnbrack, Sonja Gisinger, Natalie Kaifler, Tanja Christina Portele, Martina Bramberger, Markus Rapp, Michael Gerding, Jens Söder, Nedjeljka Žagar, and Damjan Jelić
Atmos. Chem. Phys., 18, 12915–12931, https://doi.org/10.5194/acp-18-12915-2018,https://doi.org/10.5194/acp-18-12915-2018, 2018
Short summary
Mixing and ageing in the polar lower stratosphere in winter 2015–2016
Jens Krause, Peter Hoor, Andreas Engel, Felix Plöger, Jens-Uwe Grooß, Harald Bönisch, Timo Keber, Björn-Martin Sinnhuber, Wolfgang Woiwode, and Hermann Oelhaf
Atmos. Chem. Phys., 18, 6057–6073, https://doi.org/10.5194/acp-18-6057-2018,https://doi.org/10.5194/acp-18-6057-2018, 2018
Short summary
Age and gravitational separation of the stratospheric air over Indonesia
Satoshi Sugawara, Shigeyuki Ishidoya, Shuji Aoki, Shinji Morimoto, Takakiyo Nakazawa, Sakae Toyoda, Yoichi Inai, Fumio Hasebe, Chusaku Ikeda, Hideyuki Honda, Daisuke Goto, and Fanny A. Putri
Atmos. Chem. Phys., 18, 1819–1833, https://doi.org/10.5194/acp-18-1819-2018,https://doi.org/10.5194/acp-18-1819-2018, 2018
Short summary

Cited articles

Baldwin, M. P. and Dunkerton, T. J.: Propagation of the Arctic Oscillation from the stratosphere to the troposphere, J. Geophys. Res., 104, 30937–30946, 1999.
Baldwin, M. P., Thompson, D. W., Shuckburgh, E. F., Norton, W. A., and Gillett, N. P.: Weather from the stratosphere?, Science, 301, 317–319, 2003.
Baumann, K. and Stohl, A.: Validation of a Long-Range Trajectory Model Using Gas Balloon Tracks from the Gordon Bennett Cup 95, J. Appl. Met., 36, 711–720, https://doi.org/10.1175/1520-0450-36.6.711, 1997.
Boccara, G., Hertzog, A., Basdevant, C., and Vial, F.: Accuracy of NCEP/NCAR reanalyses and ECMWF analyses in the lower stratosphere over Antarctica in 2005, J. Geophys. Res., 113, D20115, https://doi.org/10.1029/2008JD010116, 2008.
Download
Short summary
We present an intercomparison of temperatures and horizontal winds of five meteorological data sets (ECMWF operational analysis, ERA-Interim, MERRA, MERRA-2, and NCEP/NCAR) in the Antarctic lower stratosphere. The assessment is based on 19 superpressure balloon flights during the Concordiasi field campaign in September 2010 to January 2011. The balloon data are used to successfully validate trajectory calculations with the new Lagrangian particle dispersion model MPTRAC.
Altmetrics
Final-revised paper
Preprint