Articles | Volume 17, issue 12
https://doi.org/10.5194/acp-17-7291-2017
https://doi.org/10.5194/acp-17-7291-2017
Research article
 | 
17 Jun 2017
Research article |  | 17 Jun 2017

WRF-Chem simulation of aerosol seasonal variability in the San Joaquin Valley

Longtao Wu, Hui Su, Olga V. Kalashnikova, Jonathan H. Jiang, Chun Zhao, Michael J. Garay, James R. Campbell, and Nanpeng Yu

Related authors

Atmospheric motion vector (AMV) error characterization and bias correction by leveraging independent lidar data: a simulation using an observing system simulation experiment (OSSE) and optical flow AMVs
Hai Nguyen, Derek Posselt, Igor Yanovsky, Longtao Wu, and Svetla Hristova-Veleva
Atmos. Meas. Tech., 17, 3103–3119, https://doi.org/10.5194/amt-17-3103-2024,https://doi.org/10.5194/amt-17-3103-2024, 2024
Short summary
Simulated multispectral temperature and atmospheric composition retrievals for the JPL GEO-IR Sounder
Vijay Natraj, Ming Luo, Jean-Francois Blavier, Vivienne H. Payne, Derek J. Posselt, Stanley P. Sander, Zhao-Cheng Zeng, Jessica L. Neu, Denis Tremblay, Longtao Wu, Jacola A. Roman, Yen-Hung Wu, and Leonard I. Dorsky
Atmos. Meas. Tech., 15, 1251–1267, https://doi.org/10.5194/amt-15-1251-2022,https://doi.org/10.5194/amt-15-1251-2022, 2022
Short summary
Using machine learning to model uncertainty for water vapor atmospheric motion vectors
Joaquim V. Teixeira, Hai Nguyen, Derek J. Posselt, Hui Su, and Longtao Wu
Atmos. Meas. Tech., 14, 1941–1957, https://doi.org/10.5194/amt-14-1941-2021,https://doi.org/10.5194/amt-14-1941-2021, 2021
Short summary
Impacts of aerosols on seasonal precipitation and snowpack in California based on convection-permitting WRF-Chem simulations
Longtao Wu, Yu Gu, Jonathan H. Jiang, Hui Su, Nanpeng Yu, Chun Zhao, Yun Qian, Bin Zhao, Kuo-Nan Liou, and Yong-Sang Choi
Atmos. Chem. Phys., 18, 5529–5547, https://doi.org/10.5194/acp-18-5529-2018,https://doi.org/10.5194/acp-18-5529-2018, 2018
Impact of environmental moisture on tropical cyclone intensification
L. Wu, H. Su, R. G. Fovell, T. J. Dunkerton, Z. Wang, and B. H. Kahn
Atmos. Chem. Phys., 15, 14041–14053, https://doi.org/10.5194/acp-15-14041-2015,https://doi.org/10.5194/acp-15-14041-2015, 2015

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Exploring the aerosol activation properties in coastal shallow convection using cloud- and particle-resolving models
Ge Yu, Yueya Wang, Zhe Wang, and Xiaoming Shi
Atmos. Chem. Phys., 25, 7527–7542, https://doi.org/10.5194/acp-25-7527-2025,https://doi.org/10.5194/acp-25-7527-2025, 2025
Short summary
Machine-learning-assisted inference of the particle charge fraction and the ion-induced nucleation rates during new particle formation events
Pan Wang, Yue Zhao, Jiandong Wang, Veli-Matti Kerminen, Jingkun Jiang, and Chenxi Li
Atmos. Chem. Phys., 25, 7431–7446, https://doi.org/10.5194/acp-25-7431-2025,https://doi.org/10.5194/acp-25-7431-2025, 2025
Short summary
Modeling CMAQ dry deposition treatment over the western Pacific: a distinct characteristic of mineral dust and anthropogenic aerosols
Steven Soon-Kai Kong, Joshua S. Fu, Neng-Huei Lin, Guey-Rong Sheu, and Wei-Syun Huang
Atmos. Chem. Phys., 25, 7245–7268, https://doi.org/10.5194/acp-25-7245-2025,https://doi.org/10.5194/acp-25-7245-2025, 2025
Short summary
Impact of post-monsoon crop residue burning on PM2.5 over northern India: optimizing emissions using a high-density in situ surface observation network
Mizuo Kajino, Kentaro Ishijima, Joseph Ching, Kazuyo Yamaji, Rio Ishikawa, Tomoki Kajikawa, Tanbir Singh, Tomoki Nakayama, Yutaka Matsumi, Koyo Kojima, Taisei Machida, Takashi Maki, Prabir K. Patra, and Sachiko Hayashida
Atmos. Chem. Phys., 25, 7137–7160, https://doi.org/10.5194/acp-25-7137-2025,https://doi.org/10.5194/acp-25-7137-2025, 2025
Short summary
Modeling simulation of aerosol light absorption over the Beijing–Tianjin–Hebei region: the impact of mixing state and aging processes
Huiyun Du, Jie Li, Xueshun Chen, Gabriele Curci, Fangqun Yu, Yele Sun, Xu Dao, Song Guo, Zhe Wang, Wenyi Yang, Lianfang Wei, and Zifa Wang
Atmos. Chem. Phys., 25, 5665–5681, https://doi.org/10.5194/acp-25-5665-2025,https://doi.org/10.5194/acp-25-5665-2025, 2025
Short summary

Cited articles

AERONET (AErosol RObotic NETwork): AERONET observation, NASA and PHOTONS, available at: https://aeronet.gsfc.nasa.gov/, last access: 8 June 2017.
AIRS Science Team/Joao Texeira: AIRS/Aqua L3 Monthly Support Product (AIRS-only) 1 degree x 1 degree V006, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC), https://doi.org/10.5067/AQUA/AIRS/DATA324, 2013.
Ångström, A.: On the atmospheric transmission of Sun radiation and on dust in the air, Geogr. Ann., 11, 156–166, 1929.
Archer-Nicholls, S., Lowe, D., Darbyshire, E., Morgan, W. T., Bela, M. M., Pereira, G., Trembath, J., Kaiser, J. W., Longo, K. M., Freitas, S. R., Coe, H., and McFiggans, G.: Characterising Brazilian biomass burning emissions using WRF-Chem with MOSAIC sectional aerosol, Geosci. Model Dev., 8, 549–577, https://doi.org/10.5194/gmd-8-549-2015, 2015.
ASDC: CALIPSO Data and Information, available at: https://eosweb.larc.nasa.gov/project/calipso/calipso_table, last access: 8 June 2017.
Download
Short summary
The WRF-Chem simulation successfully captures aerosol variations in the cold season in the San Joaquin Valley (SJV) but has poor performance in the warm season. High-resolution model simulation can better resolve nonhomogeneous distribution of anthropogenic emissions in urban areas, resulting in better simulation of aerosols in the cold season in the SJV. Poor performance of the WRF-Chem model in the warm season in the SJV is mainly due to misrepresentation of dust emission and vertical mixing.
Share
Altmetrics
Final-revised paper
Preprint