Articles | Volume 17, issue 3
Atmos. Chem. Phys., 17, 2347–2357, 2017
https://doi.org/10.5194/acp-17-2347-2017
Atmos. Chem. Phys., 17, 2347–2357, 2017
https://doi.org/10.5194/acp-17-2347-2017

Research article 14 Feb 2017

Research article | 14 Feb 2017

Formation of secondary organic aerosols from the ozonolysis of dihydrofurans

Yolanda Diaz-de-Mera et al.

Related subject area

Subject: Aerosols | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Effects of liquid–liquid phase separation and relative humidity on the heterogeneous OH oxidation of inorganic–organic aerosols: insights from methylglutaric acid and ammonium sulfate particles
Hoi Ki Lam, Rongshuang Xu, Jack Choczynski, James F. Davies, Dongwan Ham, Mijung Song, Andreas Zuend, Wentao Li, Ying-Lung Steve Tse, and Man Nin Chan
Atmos. Chem. Phys., 21, 2053–2066, https://doi.org/10.5194/acp-21-2053-2021,https://doi.org/10.5194/acp-21-2053-2021, 2021
Short summary
Measurement report: Sulfuric acid nucleation and experimental conditions in a photolytic flow reactor
David R. Hanson, Seakh Menheer, Michael Wentzel, and Joan Kunz
Atmos. Chem. Phys., 21, 1987–2001, https://doi.org/10.5194/acp-21-1987-2021,https://doi.org/10.5194/acp-21-1987-2021, 2021
Short summary
Ozonolysis of fatty acid monolayers at the air–water interface: organic films may persist at the surface of atmospheric aerosols
Benjamin Woden, Maximilian W. A. Skoda, Adam Milsom, Curtis Gubb, Armando Maestro, James Tellam, and Christian Pfrang
Atmos. Chem. Phys., 21, 1325–1340, https://doi.org/10.5194/acp-21-1325-2021,https://doi.org/10.5194/acp-21-1325-2021, 2021
Short summary
Quantification of the role of stabilized Criegee intermediates in the formation of aerosols in limonene ozonolysis
Yiwei Gong and Zhongming Chen
Atmos. Chem. Phys., 21, 813–829, https://doi.org/10.5194/acp-21-813-2021,https://doi.org/10.5194/acp-21-813-2021, 2021
Short summary
Photochemical degradation of iron(III) citrate/citric acid aerosol quantified with the combination of three complementary experimental techniques and a kinetic process model
Jing Dou, Peter A. Alpert, Pablo Corral Arroyo, Beiping Luo, Frederic Schneider, Jacinta Xto, Thomas Huthwelker, Camelia N. Borca, Katja D. Henzler, Jörg Raabe, Benjamin Watts, Hartmut Herrmann, Thomas Peter, Markus Ammann, and Ulrich K. Krieger
Atmos. Chem. Phys., 21, 315–338, https://doi.org/10.5194/acp-21-315-2021,https://doi.org/10.5194/acp-21-315-2021, 2021
Short summary

Cited articles

Alwe, H. D., Walavalkar, M. P., Sharma, Dhanya, A. S., and Naik P. D.: Tropospheric oxidation of cyclic unsaturated ethers in the day-time: Comparison of the reactions with Cl, OH and O3 based on the determination of their rate coefficients at 298 K, Atmos. Environ., 82, 113–120, 2014.
Anglada, J. M., González, J., and Torrent-Sucarrat, M.: Effects of the substituents on the reactivity of carbonyl oxides. A theoretical study on the reaction of substituted carbonyl oxides with water, Phys. Chem. Chem. Phys., 13, 13034–13045, 2011.
Aranda, A, Díaz-de-Mera, Y., Notario, A., Rodríguez D., and Rodríguez, A.: Fine and ultrafine particles in small cities. A case study in the south of Europe, Environ. Sci. Pollut. R., 22, 18477–18486, 2015.
Bartlett, R. J.: Coupled-cluster approach to molecular structure and spectra: a step toward predictive quantum chemistry, J. Phys. Chem., 93, 1697–1708, 1989.
Berndt, T, Jokinen, T., Sipilä, M., Mauldin, R. L., Herrmann, H., Stratmann, F., Junninen, H., and Kulmala, M.: H2SO4 formation from the gas-phase reaction of stabilized Criegee Intermediates with SO2: Influence of water vapour content and temperature, Atmos. Environ., 89, 603–612, 2014a.
Download
Short summary
Criegee intermediates are involved in the formation of secondary organic aerosols. How? Recent works show that they contribute to the oxidation of SO2 to SO3. We have found that the studied ozonolysis reactions only led to nucleation in the presence of SO2, which behaved as a catalyst. So the role of SO2 to form SOA depends on the structure of the alkene. For these reactions, the formation of low-volatility organic acid is expected to be responsible for nucleation, since SO3 was not released.
Altmetrics
Final-revised paper
Preprint