Articles | Volume 17, issue 3
https://doi.org/10.5194/acp-17-2347-2017
https://doi.org/10.5194/acp-17-2347-2017
Research article
 | 
14 Feb 2017
Research article |  | 14 Feb 2017

Formation of secondary organic aerosols from the ozonolysis of dihydrofurans

Yolanda Diaz-de-Mera, Alfonso Aranda, Larisa Bracco, Diana Rodriguez, and Ana Rodriguez

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by ALFONSO ARANDA on behalf of the Authors (29 Dec 2016)  Author's response    Manuscript
ED: Referee Nomination & Report Request started (02 Jan 2017) by V. Faye McNeill
RR by Anonymous Referee #1 (19 Jan 2017)
ED: Publish as is (19 Jan 2017) by V. Faye McNeill
Download
Short summary
Criegee intermediates are involved in the formation of secondary organic aerosols. How? Recent works show that they contribute to the oxidation of SO2 to SO3. We have found that the studied ozonolysis reactions only led to nucleation in the presence of SO2, which behaved as a catalyst. So the role of SO2 to form SOA depends on the structure of the alkene. For these reactions, the formation of low-volatility organic acid is expected to be responsible for nucleation, since SO3 was not released.
Altmetrics
Final-revised paper
Preprint