Interactive comment on “Formation of secondary organic aerosols from the ozonolysis of dihydrofurans” by Yolanda Díaz de Mera et al.

Yolanda Díaz de Mera et al.
alfonso.aranda@uclm.es
Received and published: 13 December 2016

Answer to referee#1. We sincerely thank the comments of the referee. Additional information is now included together with data from new experiments carried out during these few weeks in line with the requirements of the referee. The mechanism for scI reaction with SO2 to generate organic acids and SO2 is not really new. Other studies have found the formation of an acid and the release of SO2 from the secondary ozonide as the most energetically favourable reaction channel for even smaller scI, (Kurten, 2011; Vereecken, 2012). The experimental results obtained in this study support those previous theoretical works. “Table 1 does not indicate which experiments include water”: All the experiment summarised in Table 1 were carried out with HR=0. It was stated in page 7, line 10. For sake of clarity now this information is included also in the table in the revised manuscript. As suggested by the referee, the energy of the reactants (alkene + SO2) and the primary ozonide have been included in table 2 and in figure 5. Due to the exothermic nature of the ozonolysis, unimolecular decomposition and stabilisation through collision would compete in the formation of scI. A comment in this sense has been included in the manuscript. Concerning to water concentrations, we have RH meters but their ranges are not useful for RH below 1%. The stated water ratio from the cylinder is 1-2ppm (Praxair). We have tried to calculate the water concentration in the synthetic air after drying it through a LN2 trap with molecular sieve 5A using a mass spectrometer but the residual H2O signal from chamber degas is too high to enable quantification. We have also tried with a FTIR but the purge instability in the FTIR was above the expected changes in the water signal. From the literature-available data for ice, passing the synthetic air through the LN2 trap, the vapour pressure is expected to fall well below 10-7Pa (Murphy and Koop, 2005) and thus the expected concentration in the dried synthetic air would be below 1x107molecule cm-3. Since residual concentrations could be higher, we have conducted a series of experiments to test the possibility of SO3–water reaction in the reactor and to estimate the water concentration. We have used a degassed sample of solid sulfur trioxide (99.5%, stabilized, Aldrich) contained in a glass flask to obtain different SO3 concentrations in the reactor (as it was done in previous studies (Jayne, 1997). Freshly dried synthetic air was mixed with SO3 in the teflon reactor and the mixture was continuously monitored by the CPC for 40 minutes. The figure shows the results for experiments with SO3 concentration in the range 1 to 12ppb. No particles could be observed for experiments with low initial SO3 concentrations. On the other hand, NPF was observed for the experiments with SO3 in the range 6 to 12 ppb. Under these experimental conditions, nucleation is attributed to the formation of H2SO4 from the reaction of SO3 and the residual H2O. The overall gas-phase reaction H2O + SO3 → H2SO4 exhibits a second-order dependence on water vapor concentration, the first-order rate coefficient for the SO3 loss being k= 3.90x10-41exp(6830.6/T)[H2O]2 (Jayne, 1997). Taking into account that the approximate H2SO4 gas phase concentration able to nucleate is around 5x106molecule cm-3 (Metzger, 2010), the concentration...
of water in the reactor may be obtained by simulating the SO3 and H2SO4 profiles for different guessed H2O profiles. Thus for example, since no NPF was observed for the experiment with 2ppb of SO3, the water concentration must be below 15ppb. On the other hand from the experiment with 6ppb of SO3, a 20 ppb water concentration is required to reproduce the observed nucleation. From all the experiments carried out, we estimate that water concentration in the reactor is 20±10ppb. To check for permeation through the reactor wall, some experiments have been also carried out with dry air after 1 hour in the reactor. The results were similar to those carried out with freshly dried air.

Figure 1
This figure and the related discussion has been included in the supporting information.

According to the SO2 comments, direct measurements of SO2 are included in this reply and in the revised manuscript. Furthermore, these weeks we had an ozone analyser available that provided additional information concerning the gas phase (Figure 2). The experimental and simulated profiles of ozone (based on the literature ozonolysis rate constant) are in good agreement and so ozone is not quantitatively lost through other reactions. Figure 2

We have carried out new experiments with lower SO2 concentrations in the range 10-20ppb. In all cases the profile of SO2 remained neatly constant. For example it was 10.0±0.2 ppb during the whole experiment for the experiments with 10ppb of SO2. A first order loss rate constant may be derived from the SO2 profile: k= 8.5x10-6s-1. Thus, SO2 losses (if they occur) are very low. See the figure.

Figure 3 To check the possibility of SO3 production, we can assume a simple mechanism where any lost SO2 molecule would be converted exclusively into SO3: SO2 → SO3 k= 8.5x10-6s-1 [SO2]o = 10ppb And then SO3 would exclusively react with water to produce H2SO4: H2O + SO3 → H2SO4 k= 3.90x10-41exp(6830.6/T)[H2O]2
(Jayne, 1997)

Simulating the SO2, SO3 and H2O profiles for a 20ppb water concentration and for 10ppb initial SO2 concentration, it would require more than 1 hour to generate 5x106molecule cm-3 of H2SO4, which is the approximate concentration able to nucleate (Metzger, 2010). For 20ppb initial SO2 concentration it would require 28 minutes. Nevertheless, for these experiment nucleation was visible at 2minutes (almost instantaneous if we take away the mixing time of reactants). Thus, considering the low levels of water vapour in the reactor and the observation of nearly constant SO2 for the experiments with lower SO2 concentrations, the contribution of SO3-H2SO4 pathway to NPF seems to be minor and unable to lead to nucleation by itself. In this sense the catalytic pathway releasing SO2, which is thermodynamic- favourable, may be the key to NPF.

Main changes in the manuscript. Page 1, line 14. It has been rewritten. Water presence at ppb-ppm concentration may have an effect on SOA production. Nevertheless, for higher concentrations, no effect was found. Page 1, line 18. SO3 role is not overall ruled out. SO2 catalysed reactions are suggested as an additional pathway to NPF. Page 1, line 18. SO3 is not excluded as a possible intermediate to produce SOA. Page 3, line 31. The term “completely dry conditions” has been removed. Page 4, line 4. The estimated water concentration inside the reactor is stated. Page 4, line 22. The experiments carried out with the ozone analyser are introduced. Page 6. Line 9. New data and discussion about SO2, SO3 and sulfuric acid is introduced. Page 7, line 21. New data and discussion about SO2, SO3 and sulfuric acid is introduced. Page 9, line 29. The energy of the first step of the ozonolysis is introduced. Page 10, line 18. From the results of this study, (R4) is suggested as the probable pathway to NPF. Page 10, line 24. Vapour pressure estimates are given. Page 11, line 14. SO3 role is not overall ruled out. The statements concerning SO2 are restricted to low SO2 concentration conditions. Table 2. The optimized energies of the reactants and first ozonides are included in the table. Figure 2 includes experimental gas-phase profiles for SO2 and O3. Figure 3 includes the O3 experimental profile. Figure 5a. Reactants and the first ozonides have been included in the mechanism scheme. New figures, S1 and S3,
have been introduced in the supporting information.


Please also note the supplement to this comment: http://www.atmos-chem-phys-discuss.net/acp-2016-891/acp-2016-891-AC1-supplement.pdf

Interactive comment on Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-891, 2016.
Fig. 2. Figure 2

C7

Fig. 3. Figure 3

C8