Articles | Volume 17, issue 19
https://doi.org/10.5194/acp-17-12011-2017
https://doi.org/10.5194/acp-17-12011-2017
Research article
 | 
10 Oct 2017
Research article |  | 10 Oct 2017

Using snowflake surface-area-to-volume ratio to model and interpret snowfall triple-frequency radar signatures

Mathias Gergely, Steven J. Cooper, and Timothy J. Garrett

Related authors

A global analysis of the fractal properties of clouds revealing anisotropy of turbulence across scales
Karlie N. Rees, Timothy J. Garrett, Thomas D. DeWitt, Corey Bois, Steven K. Krueger, and Jérôme C. Riedi
Nonlin. Processes Geophys., 31, 497–513, https://doi.org/10.5194/npg-31-497-2024,https://doi.org/10.5194/npg-31-497-2024, 2024
Short summary
Time-resolved measurements of the densities of individual frozen hydrometeors and fresh snowfall
Dhiraj K. Singh, Eric R. Pardyjak, and Timothy J. Garrett
Atmos. Meas. Tech., 17, 4581–4598, https://doi.org/10.5194/amt-17-4581-2024,https://doi.org/10.5194/amt-17-4581-2024, 2024
Short summary
Finite domains cause bias in measured and modeled distributions of cloud sizes
Thomas D. DeWitt and Timothy J. Garrett
Atmos. Chem. Phys., 24, 8457–8472, https://doi.org/10.5194/acp-24-8457-2024,https://doi.org/10.5194/acp-24-8457-2024, 2024
Short summary
Climatologically invariant scale invariance seen in distributions of cloud horizontal sizes
Thomas D. DeWitt, Timothy J. Garrett, Karlie N. Rees, Corey Bois, Steven K. Krueger, and Nicolas Ferlay
Atmos. Chem. Phys., 24, 109–122, https://doi.org/10.5194/acp-24-109-2024,https://doi.org/10.5194/acp-24-109-2024, 2024
Short summary
Lotka's wheel and the long arm of history: how does the distant past determine today's global rate of energy consumption?
Timothy J. Garrett, Matheus R. Grasselli, and Stephen Keen
Earth Syst. Dynam., 13, 1021–1028, https://doi.org/10.5194/esd-13-1021-2022,https://doi.org/10.5194/esd-13-1021-2022, 2022
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Air mass history linked to the development of Arctic mixed-phase clouds
Rebecca J. Murray-Watson and Edward Gryspeerdt
Atmos. Chem. Phys., 24, 11115–11132, https://doi.org/10.5194/acp-24-11115-2024,https://doi.org/10.5194/acp-24-11115-2024, 2024
Short summary
Distinct structure, radiative effects, and precipitation characteristics of deep convection systems in the Tibetan Plateau compared to the tropical Indian Ocean
Yuxin Zhao, Jiming Li, Deyu Wen, Yarong Li, Yuan Wang, and Jianping Huang
Atmos. Chem. Phys., 24, 9435–9457, https://doi.org/10.5194/acp-24-9435-2024,https://doi.org/10.5194/acp-24-9435-2024, 2024
Short summary
The correlation between Arctic sea ice, cloud phase and radiation using A-Train satellites
Grégory V. Cesana, Olivia Pierpaoli, Matteo Ottaviani, Linh Vu, Zhonghai Jin, and Israel Silber
Atmos. Chem. Phys., 24, 7899–7909, https://doi.org/10.5194/acp-24-7899-2024,https://doi.org/10.5194/acp-24-7899-2024, 2024
Short summary
Technical note: Retrieval of the supercooled liquid fraction in mixed-phase clouds from Himawari-8 observations
Ziming Wang, Husi Letu, Huazhe Shang, and Luca Bugliaro
Atmos. Chem. Phys., 24, 7559–7574, https://doi.org/10.5194/acp-24-7559-2024,https://doi.org/10.5194/acp-24-7559-2024, 2024
Short summary
Characterisation of low-base and mid-base clouds and their thermodynamic phase over the Southern Ocean and Arctic marine regions
Barbara Dietel, Odran Sourdeval, and Corinna Hoose
Atmos. Chem. Phys., 24, 7359–7383, https://doi.org/10.5194/acp-24-7359-2024,https://doi.org/10.5194/acp-24-7359-2024, 2024
Short summary

Cited articles

Bohren, C. F. and Huffman, D. R.: Absorption and scattering of light by small particles, ISBN 0-471-05772-X, John Wiley & Sons, Inc., 1983.
Brandes, E. A., Ikeda, K., Zhang, G., Schönhuber, M., and Rasmussen, R. M.: A statistical and physical description of hydrometeor distributions in Colorado snowstorms using a video disdrometer, J. Appl. Meteorol. Climatol., 46, 634–650, https://doi.org/10.1175/JAM2489.1, 2007.
Cooper, S. J., Wood, N. B., and L'Ecuyer, T. S.: A variational technique to estimate snowfall rate from coincident radar, snowflake, and fall-speed observations, Atmos. Meas. Tech., 10, 2557–2571, https://doi.org/10.5194/amt-10-2557-2017, 2017.
Draine, B. T. and Flatau, P. J.: Discrete-dipole approximation for scattering calculations, J. Opt. Soc. Am. A, 11, 1491–1499, https://doi.org/10.1364/JOSAA.11.001491, 1994.
Fontaine, E., Schwarzenboeck, A., Delanoë, J., Wobrock, W., Leroy, D., Dupuy, R., Gourbeyre, C., and Protat, A.: Constraining mass–diameter relations from hydrometeor images and cloud radar reflectivities in tropical continental and oceanic convective anvils, Atmos. Chem. Phys., 14, 11367–11392, https://doi.org/10.5194/acp-14-11367-2014, 2014.
Download
Short summary
This study investigates the importance of snowflake surface-area-to-volume ratio (SAV) for the interpretation of snowfall triple-frequency radar signatures. The results indicate that snowflake SAV has a strong impact on modeled snowfall radar signatures and therefore may be used to further constrain (the large variety and high natural variability of) snowflake shape for snowfall remote sensing, e.g., to distinguish graupel snow from snowfall characterized by large aggregate snowflakes.
Altmetrics
Final-revised paper
Preprint