Articles | Volume 17, issue 19
https://doi.org/10.5194/acp-17-12011-2017
https://doi.org/10.5194/acp-17-12011-2017
Research article
 | 
10 Oct 2017
Research article |  | 10 Oct 2017

Using snowflake surface-area-to-volume ratio to model and interpret snowfall triple-frequency radar signatures

Mathias Gergely, Steven J. Cooper, and Timothy J. Garrett

Related authors

Quantification and parameterization of snowflake fall speeds in the atmospheric surface-layer
Spencer Donovan, Dhiraj K. Singh, Timothy J. Garrett, and Eric R. Pardyjak
EGUsphere, https://doi.org/10.5194/egusphere-2025-3060,https://doi.org/10.5194/egusphere-2025-3060, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
A global analysis of the fractal properties of clouds revealing anisotropy of turbulence across scales
Karlie N. Rees, Timothy J. Garrett, Thomas D. DeWitt, Corey Bois, Steven K. Krueger, and Jérôme C. Riedi
Nonlin. Processes Geophys., 31, 497–513, https://doi.org/10.5194/npg-31-497-2024,https://doi.org/10.5194/npg-31-497-2024, 2024
Short summary
Time-resolved measurements of the densities of individual frozen hydrometeors and fresh snowfall
Dhiraj K. Singh, Eric R. Pardyjak, and Timothy J. Garrett
Atmos. Meas. Tech., 17, 4581–4598, https://doi.org/10.5194/amt-17-4581-2024,https://doi.org/10.5194/amt-17-4581-2024, 2024
Short summary
Finite domains cause bias in measured and modeled distributions of cloud sizes
Thomas D. DeWitt and Timothy J. Garrett
Atmos. Chem. Phys., 24, 8457–8472, https://doi.org/10.5194/acp-24-8457-2024,https://doi.org/10.5194/acp-24-8457-2024, 2024
Short summary
Climatologically invariant scale invariance seen in distributions of cloud horizontal sizes
Thomas D. DeWitt, Timothy J. Garrett, Karlie N. Rees, Corey Bois, Steven K. Krueger, and Nicolas Ferlay
Atmos. Chem. Phys., 24, 109–122, https://doi.org/10.5194/acp-24-109-2024,https://doi.org/10.5194/acp-24-109-2024, 2024
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Impact of weather systems on observed precipitation at Ny-Ålesund (Svalbard)
Kerstin Ebell, Christian Buhren, Rosa Gierens, Giovanni Chellini, Melanie Lauer, Andreas Walbröl, Sandro Dahlke, Pavel Krobot, and Mario Mech
Atmos. Chem. Phys., 25, 7315–7342, https://doi.org/10.5194/acp-25-7315-2025,https://doi.org/10.5194/acp-25-7315-2025, 2025
Short summary
Analysis of ship emission effects on clouds over the southeastern Atlantic using geostationary satellite observations
Nikos Benas, Jan Fokke Meirink, Rob Roebeling, and Martin Stengel
Atmos. Chem. Phys., 25, 6957–6973, https://doi.org/10.5194/acp-25-6957-2025,https://doi.org/10.5194/acp-25-6957-2025, 2025
Short summary
Relationship between latent and radiative heating fields of tropical cloud systems using synergistic satellite observations
Xiaoting Chen, Claudia J. Stubenrauch, and Giulio Mandorli
Atmos. Chem. Phys., 25, 6857–6880, https://doi.org/10.5194/acp-25-6857-2025,https://doi.org/10.5194/acp-25-6857-2025, 2025
Short summary
Shallow cloud variability in Houston, Texas, during the ESCAPE and TRACER field experiments
Zackary Mages, Pavlos Kollias, Bernat Puigdomènech Treserras, Paloma Borque, and Mariko Oue
Atmos. Chem. Phys., 25, 6025–6045, https://doi.org/10.5194/acp-25-6025-2025,https://doi.org/10.5194/acp-25-6025-2025, 2025
Short summary
How does the lifetime of detrained cirrus impact the high-cloud radiative effect in the tropics?
George Horner and Edward Gryspeerdt
Atmos. Chem. Phys., 25, 5617–5631, https://doi.org/10.5194/acp-25-5617-2025,https://doi.org/10.5194/acp-25-5617-2025, 2025
Short summary

Cited articles

Bohren, C. F. and Huffman, D. R.: Absorption and scattering of light by small particles, ISBN 0-471-05772-X, John Wiley & Sons, Inc., 1983.
Brandes, E. A., Ikeda, K., Zhang, G., Schönhuber, M., and Rasmussen, R. M.: A statistical and physical description of hydrometeor distributions in Colorado snowstorms using a video disdrometer, J. Appl. Meteorol. Climatol., 46, 634–650, https://doi.org/10.1175/JAM2489.1, 2007.
Cooper, S. J., Wood, N. B., and L'Ecuyer, T. S.: A variational technique to estimate snowfall rate from coincident radar, snowflake, and fall-speed observations, Atmos. Meas. Tech., 10, 2557–2571, https://doi.org/10.5194/amt-10-2557-2017, 2017.
Draine, B. T. and Flatau, P. J.: Discrete-dipole approximation for scattering calculations, J. Opt. Soc. Am. A, 11, 1491–1499, https://doi.org/10.1364/JOSAA.11.001491, 1994.
Fontaine, E., Schwarzenboeck, A., Delanoë, J., Wobrock, W., Leroy, D., Dupuy, R., Gourbeyre, C., and Protat, A.: Constraining mass–diameter relations from hydrometeor images and cloud radar reflectivities in tropical continental and oceanic convective anvils, Atmos. Chem. Phys., 14, 11367–11392, https://doi.org/10.5194/acp-14-11367-2014, 2014.
Download
Short summary
This study investigates the importance of snowflake surface-area-to-volume ratio (SAV) for the interpretation of snowfall triple-frequency radar signatures. The results indicate that snowflake SAV has a strong impact on modeled snowfall radar signatures and therefore may be used to further constrain (the large variety and high natural variability of) snowflake shape for snowfall remote sensing, e.g., to distinguish graupel snow from snowfall characterized by large aggregate snowflakes.
Share
Altmetrics
Final-revised paper
Preprint