Articles | Volume 17, issue 19
https://doi.org/10.5194/acp-17-12011-2017
https://doi.org/10.5194/acp-17-12011-2017
Research article
 | 
10 Oct 2017
Research article |  | 10 Oct 2017

Using snowflake surface-area-to-volume ratio to model and interpret snowfall triple-frequency radar signatures

Mathias Gergely, Steven J. Cooper, and Timothy J. Garrett

Related authors

Time-resolved measurements of the densities of individual frozen hydrometeors and of fresh snowfall
Dhiraj Kumar Singh, Eric Pardyjak, and Timothy Garrett
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-148,https://doi.org/10.5194/amt-2023-148, 2023
Preprint under review for AMT
Short summary
Observations of climatologically invariant scale-invariance describing cloud horizontal sizes
Thomas D. DeWitt, Timothy J. Garrett, Karlie N. Rees, Corey Bois, and Steven K. Krueger
EGUsphere, https://doi.org/10.5194/egusphere-2023-943,https://doi.org/10.5194/egusphere-2023-943, 2023
Short summary
Lotka's wheel and the long arm of history: how does the distant past determine today's global rate of energy consumption?
Timothy J. Garrett, Matheus R. Grasselli, and Stephen Keen
Earth Syst. Dynam., 13, 1021–1028, https://doi.org/10.5194/esd-13-1021-2022,https://doi.org/10.5194/esd-13-1021-2022, 2022
Short summary
Idealized simulation study of the relationship of disdrometer sampling statistics with the precision of precipitation rate measurement
Karlie N. Rees and Timothy J. Garrett
Atmos. Meas. Tech., 14, 7681–7691, https://doi.org/10.5194/amt-14-7681-2021,https://doi.org/10.5194/amt-14-7681-2021, 2021
Short summary
A differential emissivity imaging technique for measuring hydrometeor mass and type
Dhiraj K. Singh, Spencer Donovan, Eric R. Pardyjak, and Timothy J. Garrett
Atmos. Meas. Tech., 14, 6973–6990, https://doi.org/10.5194/amt-14-6973-2021,https://doi.org/10.5194/amt-14-6973-2021, 2021
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Rapid saturation of cloud water adjustments to shipping emissions
Peter Manshausen, Duncan Watson-Parris, Matthew W. Christensen, Jukka-Pekka Jalkanen, and Philip Stier
Atmos. Chem. Phys., 23, 12545–12555, https://doi.org/10.5194/acp-23-12545-2023,https://doi.org/10.5194/acp-23-12545-2023, 2023
Short summary
Sensitivities of cloud radiative effects to large-scale meteorology and aerosols from global observations
Hendrik Andersen, Jan Cermak, Alyson Douglas, Timothy A. Myers, Peer Nowack, Philip Stier, Casey J. Wall, and Sarah Wilson Kemsley
Atmos. Chem. Phys., 23, 10775–10794, https://doi.org/10.5194/acp-23-10775-2023,https://doi.org/10.5194/acp-23-10775-2023, 2023
Short summary
Distinct secondary ice production processes observed in radar Doppler spectra: insights from a case study
Anne-Claire Billault-Roux, Paraskevi Georgakaki, Josué Gehring, Louis Jaffeux, Alfons Schwarzenboeck, Pierre Coutris, Athanasios Nenes, and Alexis Berne
Atmos. Chem. Phys., 23, 10207–10234, https://doi.org/10.5194/acp-23-10207-2023,https://doi.org/10.5194/acp-23-10207-2023, 2023
Short summary
Investigating the development of clouds within marine cold-air outbreaks
Rebecca J. Murray-Watson, Edward Gryspeerdt, and Tom Goren
Atmos. Chem. Phys., 23, 9365–9383, https://doi.org/10.5194/acp-23-9365-2023,https://doi.org/10.5194/acp-23-9365-2023, 2023
Short summary
Detection of large-scale cloud microphysical changes within a major shipping corridor after implementation of the International Maritime Organization 2020 fuel sulfur regulations
Michael S. Diamond
Atmos. Chem. Phys., 23, 8259–8269, https://doi.org/10.5194/acp-23-8259-2023,https://doi.org/10.5194/acp-23-8259-2023, 2023
Short summary

Cited articles

Bohren, C. F. and Huffman, D. R.: Absorption and scattering of light by small particles, ISBN 0-471-05772-X, John Wiley & Sons, Inc., 1983.
Brandes, E. A., Ikeda, K., Zhang, G., Schönhuber, M., and Rasmussen, R. M.: A statistical and physical description of hydrometeor distributions in Colorado snowstorms using a video disdrometer, J. Appl. Meteorol. Climatol., 46, 634–650, https://doi.org/10.1175/JAM2489.1, 2007.
Cooper, S. J., Wood, N. B., and L'Ecuyer, T. S.: A variational technique to estimate snowfall rate from coincident radar, snowflake, and fall-speed observations, Atmos. Meas. Tech., 10, 2557–2571, https://doi.org/10.5194/amt-10-2557-2017, 2017.
Draine, B. T. and Flatau, P. J.: Discrete-dipole approximation for scattering calculations, J. Opt. Soc. Am. A, 11, 1491–1499, https://doi.org/10.1364/JOSAA.11.001491, 1994.
Fontaine, E., Schwarzenboeck, A., Delanoë, J., Wobrock, W., Leroy, D., Dupuy, R., Gourbeyre, C., and Protat, A.: Constraining mass–diameter relations from hydrometeor images and cloud radar reflectivities in tropical continental and oceanic convective anvils, Atmos. Chem. Phys., 14, 11367–11392, https://doi.org/10.5194/acp-14-11367-2014, 2014.
Download
Short summary
This study investigates the importance of snowflake surface-area-to-volume ratio (SAV) for the interpretation of snowfall triple-frequency radar signatures. The results indicate that snowflake SAV has a strong impact on modeled snowfall radar signatures and therefore may be used to further constrain (the large variety and high natural variability of) snowflake shape for snowfall remote sensing, e.g., to distinguish graupel snow from snowfall characterized by large aggregate snowflakes.
Altmetrics
Final-revised paper
Preprint