S1 Attached data
A folder is attached with modeled snowflake backscatterscsestions and dual-wavelength ratios of snowfall equintakdar

reflectivity factors for representing individual snowflakey collections of randomly distributed ice spheres, asritesd and
discussed in the main text. Data are given as .txt files. S&&DREE file and comment lines in data files for detalils.

5 S2 Additional figures
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Figure S1.Non-logarithmic version of Fig. 3: 2D histogram of snowflaki@meterD and complexityy for bin sizes ofAD = 0.1 mm,

Ax = 0.01. Mean complexity values per size bin are indicatedyhyA D for snowflake data collected at Alta and at Barrow separately
Snowflake complexity—diameter relationship&D) for the data sets collected at Alta and at Barrow are detexuinily the non-linear least
squares method for fitting Eq. (2) to the valueg@i\ D and characterized by the power-law exportent
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Figure S2.Impact of the numben of realizations of random ice sphere collections on theayebackscatter cross section(D; &) =
mean(ob,1(D;€),...,00a(D;&)) for a given(D; &) configuration. Here, ice sphere collections are specifiethéyespective (single) mass-
equivalent ice sphere radius, and by the numbeN., = £¢3 of constituent ice spheres. Calculated percent differentéhe average values
of o, (D; &) are shown at frequencies of 10 and 94 GHz, i.e., at the lowestree highest frequency included in the analysis.
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Figure S3.Modeled snowflake backscatter cross sectiondor collections ofl < N, < 125 randomly distributed ice spheres inside a
spherical bounding volume of diametér, corresponding to normalized surface-area-to-volumegaif 1 < ¢ < 5; for the self-similar
Rayleigh—Gans approximation (SSRGA) applied to N13 and @4Veggregate snowflakes following the parameterizatiomengby
Hogan et al. (2017); and for soft spheres and oblate spleevwitt aspect ratios a = 1 anda = 0.6 and 0.2, respectively.
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Figure S4.0verview of modeled snowfall (equivalent) radar refletyifactorsZ. based on the backscatter cross sections shown in Fig. S3
and for exponential size distributiodé(D) with exponential slope parameters®s < A < 5.0 mm~* according to Eq. (1). Modeled.

are given as ratio relative to thg. value calculated for the corresponding size distributibsaft spheres and in units of dB, equivalent
to dBZ. differences indicated a&dBZ.. Presented’. ratios and dB. differences are independent of the constant scaling faggoin

Eq. (1).
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Figure S5.Impact of normalized surface-area-to-volume ragtion dual-wavelength ratio©{VRs) of modeled snowfall radar reflectivity
factors for exponential size distributiod§( D) with snowflake diameters dD < 23.6 mm and exponential slope parameter§ &f < A <
5.0 mm~*. ShownADWR curves indicate the maximum difference in deri®@@/Rs in Fig. 7 that is associated with the rangd of ¢ < 5,
corresponding to collections af< N, < 125 randomly distributed ice spheres inside the spherical #ake/bounding volume.
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Figure S6. Snowfall triple-frequency curves determined for the 3D pghamodels of strongly rimed snowflakes presented by
Leinonen and Szyrmer (2015) according to their riming mdleind for an effective liquid water path of 1 kgTh. The triple-frequency
radar signatures were derived for exponential size digiohs characterized by snowflake diameterd)of D,.x and exponential slope
parameters af.3 < A < 5.0 mm~!. Asin Fig. 7, colored rectangles are adapted from Kneifal §2015) and roughly outline regions asso-
ciated with the presence of large aggregate snowflakes)eyahrimed snowflakes (graupel; magenta), inferred byirgjanowfall triple-
frequency radar reflectivity measurements at X, Ka, and Witarcoincident in situ snowflake observations. Snowflake diztributions
truncated at smalled,,.x yield flatter triple-frequency curves. This flattening effeeads to modeled triple-frequency curves (here illdstta
for Dimax = 5.0 and 3.0 mm) within the range of triple-frequency radar sigres related to snowflake riming by Kneifel et al. (2015)t No
included in the derivation of the shown triple-frequencywves are backscatter cross sections of small snowflakegwithl .5 mm that were
calculated by Leinonen and Szyrmer (2015) for soft spheroiracterized by the radius of gyration. A comparison @stiown curves for
Dmax = 22.0 mm with the corresponding triple-frequency curves of Le@o and Szyrmer (2015) indicates that ignoring snowflakés wi
D < 1.5 mm cuts off lowDWR Ka/W < 4.5 dB and slightly shifts the curves toward lowg¥WR X/Ka andDWR Ku/Ka by 1-2 dB. The
overall trend of flatter modeled triple-frequency curvessioowflake size distributions truncated at smaller.., however, does not depend
on whether soft spheroids with < 1.5 mm are included in the analysis or ignored.
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Figure S7.Modeled snowfall triple-frequency radar signatures asgn'F, but derived for exponential size distributions liettto snowflake
diameters ofD < Dyyax = 10.0 mm.
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Figure S8.Modeled snowfall triple-frequency radar signatures asgn&7, but derived for exponential size distributions tewito snowflake
diameters ofD < D2 = 5.0 mm.
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Figure S9.Modeled snowfall triple-frequency radar signatures asgn&, but derived for exponential size distributions liettto snowflake
diameters ofD < Dyax = 10.0 mm.
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Figure S10.Impact of the parameterization of snowflake mass on modeledfsll triple-frequency radar signatures for expondrgiae
distributions with snowflake diameters 8f < D,,.. = 23.6 mm and exponential slope parameter§3f< A < 5.0 mm~*. In this study,
snowflake densitys(D) and massn¢(D) are calculated from snowflake diametBraccording to Heymsfield et al. (2004), indicated
as ps(D)_HO04. The impact of the parameterization of snowflake mass on leddmowfall radar signatures is evaluated by uniformly
increasing and decreasipg(D)_HO04, and thusn¢(D) given by Egs. (3) and (4), by 25 % and by 50 %. Modeling reswoitsbllections of
Na =1, 27, 125 randomly distributed ice spheres inside the spherical #ake/bounding volume correspond to normalized surfaca-are
to-volume ratios of = 1, 3, 5, respectively.
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Figure S11.Modeled snowfall triple-frequency radar signatures asim B10, but derived for exponential size distributionsited to
snowflake diameters dd < D, = 10.0 mm.

——HO04, D, = 23.6 mm
; ; ; ; ; ; ——LH74 lump graupel, D, = 23.6 mm
12F - TR EETERTETE s eeneees . 12ff=——H04, D, = 5.0 mm
: : : : : : ——LH74 lump graupel, D, = 5.0 mm
—_ .5. B B B B B B
S 9 S 9
g g
X S
o 6 X 6
o
= =
[a)]
3 3f-
0 0
DWR Ka/W [dB] DWR Ka/W [dB]

Figure S12.Comparison of modeled snowfall triple-frequency radanatgres determined for the HO4 snowflake density—diameter r
lationship with modeled snowfall triple-frequency radaymsitures determined for a snowflake mass—diameter regdtip of m¢(D) =
0.078D?*® [m;s in mg, D in mm] which was derived by Locatelli and Hobbs (1974, LH7@ylescribe (dense) lump graupel, calculated for
a normalized snowflake surface-area-to-volume rati®-efl (No; = 1) and for exponential size distributions with snowflake ditere of

D < Dpax.
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Figure S13.Relation between snowflake diamef@rand the mean diameté.; of 500 mass- and SAV-equivalent collections of randomly
distributed ice spheres inside a spherical bounding voloihagameterD, determined for collections d¥,; = £* = 4, 16, 64 ice spheres.
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Figure S14.lllustration of the (weak) correlation between the caltedebackscatter cross sectien for collections of randomly distributed
ice spheres inside a spherical bounding volume of diam®téb = x-axis limit in each plot, 500 ice sphere collections pertjpénd the
diameterD,, of the generated ice sphere collections. (a)—(d) 10 GHz(I{P4 GHz; (a,eD = 4.84 mm, N, = &% = 4; (b,f) D = 4.84 mm,
N =€ =64; (c,9) D =23.6 mm, N = 4; (d,h) D =23.6 mm, N., = 64. Gray boxes indicate the corresponding (linear) corretati
coefficients and red lines show moving means calculatedusfssets of 50 ice sphere collections.
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Figure S15.Influence of the choice of diameteD(vs. D.;) on snowfall triple-frequency radar signatures modelameting to Sect. 3.4 for
exponential size distributions with snowflake diameterBof D,.. = 23.6 mm and exponential slope parameter8.8f< A < 5.0 mm~!.

Solid colored lines show triple-frequency curves deriveddollections of N, = &% = 4, 16, 64 ice spheres when snowflake diamef@r
is used in Eg. (10), which is done throughout this study. Bdstolored lines indicate the corresponding triple-fremyecurves when the

mean diameteD,, of the generated ice sphere collections is used in Eq. (56aa ofD.
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