Articles | Volume 16, issue 15
https://doi.org/10.5194/acp-16-9711-2016
https://doi.org/10.5194/acp-16-9711-2016
Research article
 | 
02 Aug 2016
Research article |  | 02 Aug 2016

Physics of Stratocumulus Top (POST): turbulence characteristics

Imai Jen-La Plante, Yongfeng Ma, Katarzyna Nurowska, Hermann Gerber, Djamal Khelif, Katarzyna Karpinska, Marta K. Kopec, Wojciech Kumala, and Szymon P. Malinowski

Related authors

High-resolution temperature profiling in the Π Chamber: variability of statistical properties of temperature fluctuations
Robert Grosz, Kamal Kant Chandrakar, Raymond A. Shaw, Jesse C. Anderson, Will Cantrell, and Szymon P. Malinowski
EGUsphere, https://doi.org/10.5194/egusphere-2024-2051,https://doi.org/10.5194/egusphere-2024-2051, 2024
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
The ratio of transverse to longitudinal turbulent velocity statistics for aircraft measurements
Jakub L. Nowak, Marie Lothon, Donald H. Lenschow, and Szymon P. Malinowski
EGUsphere, https://doi.org/10.5194/egusphere-2024-1366,https://doi.org/10.5194/egusphere-2024-1366, 2024
Short summary
Coupled mesoscale–microscale modeling of air quality in a polluted city using WRF-LES-Chem
Yuting Wang, Yong-Feng Ma, Domingo Muñoz-Esparza, Jianing Dai, Cathy Wing Yi Li, Pablo Lichtig, Roy Chun-Wang Tsang, Chun-Ho Liu, Tao Wang, and Guy Pierre Brasseur
Atmos. Chem. Phys., 23, 5905–5927, https://doi.org/10.5194/acp-23-5905-2023,https://doi.org/10.5194/acp-23-5905-2023, 2023
Short summary
Applicability of the low-cost OPC-N3 optical particle counter for microphysical measurements of fog
Katarzyna Nurowska, Moein Mohammadi, Szymon Malinowski, and Krzysztof Markowicz
Atmos. Meas. Tech., 16, 2415–2430, https://doi.org/10.5194/amt-16-2415-2023,https://doi.org/10.5194/amt-16-2415-2023, 2023
Short summary
Contactless optical hygrometry in LACIS-T
Jakub L. Nowak, Robert Grosz, Wiebke Frey, Dennis Niedermeier, Jędrzej Mijas, Szymon P. Malinowski, Linda Ort, Silvio Schmalfuß, Frank Stratmann, Jens Voigtländer, and Tadeusz Stacewicz
Atmos. Meas. Tech., 15, 4075–4089, https://doi.org/10.5194/amt-15-4075-2022,https://doi.org/10.5194/amt-15-4075-2022, 2022
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Clouds and precipitation in the initial phase of marine cold-air outbreaks as observed by airborne remote sensing
Imke Schirmacher, Sabrina Schnitt, Marcus Klingebiel, Nina Maherndl, Benjamin Kirbus, André Ehrlich, Mario Mech, and Susanne Crewell
Atmos. Chem. Phys., 24, 12823–12842, https://doi.org/10.5194/acp-24-12823-2024,https://doi.org/10.5194/acp-24-12823-2024, 2024
Short summary
Estimating the snow density using collocated Parsivel and Micro-Rain Radar measurements: a preliminary study from ICE-POP 2017/2018
Wei-Yu Chang, Yung-Chuan Yang, Chen-Yu Hung, Kwonil Kim, Gyuwon Lee, and Ali Tokay
Atmos. Chem. Phys., 24, 11955–11979, https://doi.org/10.5194/acp-24-11955-2024,https://doi.org/10.5194/acp-24-11955-2024, 2024
Short summary
Technical note: On the ice microphysics of isolated thunderstorms and non-thunderstorms in southern China – a radar polarimetric perspective
Chuanhong Zhao, Yijun Zhang, Dong Zheng, Haoran Li, Sai Du, Xueyan Peng, Xiantong Liu, Pengguo Zhao, Jiafeng Zheng, and Juan Shi
Atmos. Chem. Phys., 24, 11637–11651, https://doi.org/10.5194/acp-24-11637-2024,https://doi.org/10.5194/acp-24-11637-2024, 2024
Short summary
Distinctive aerosol–cloud–precipitation interactions in marine boundary layer clouds from the ACE-ENA and SOCRATES aircraft field campaigns
Xiaojian Zheng, Xiquan Dong, Baike Xi, Timothy Logan, and Yuan Wang
Atmos. Chem. Phys., 24, 10323–10347, https://doi.org/10.5194/acp-24-10323-2024,https://doi.org/10.5194/acp-24-10323-2024, 2024
Short summary
Drivers of droplet formation in east Mediterranean orographic clouds
Romanos Foskinis, Ghislain Motos, Maria I. Gini, Olga Zografou, Kunfeng Gao, Stergios Vratolis, Konstantinos Granakis, Ville Vakkari, Kalliopi Violaki, Andreas Aktypis, Christos Kaltsonoudis, Zongbo Shi, Mika Komppula, Spyros N. Pandis, Konstantinos Eleftheriadis, Alexandros Papayannis, and Athanasios Nenes
Atmos. Chem. Phys., 24, 9827–9842, https://doi.org/10.5194/acp-24-9827-2024,https://doi.org/10.5194/acp-24-9827-2024, 2024
Short summary

Cited articles

Bodenschatz, E., Malinowski, S. P., Shaw, R. A., and Stratmann, F.: Can we understand clouds without turbulence?, Science, 327, 970–971, https://doi.org/10.1126/science.1185138, 2010.
Brost, R. A., Wyngaard, J. C., and Lenschow, D. H.: Marine Stratocumulus Layers. Part II: Turbulence Budgets, J. Atmos. Sci., 39, 818–836, https://doi.org/10.1175/1520-0469(1982)039<0818:MSLPIT>2.0.CO;2, 1982.
Brucker, K. A. and Sarkar, S.: Evolution of an initially stratified turbulent shear layer, Phys. Fluids, 19, 105105, https://doi.org/10.1063/1.2756581, 2007.
Carman, J. K., Rossiter, D. L., Khelif, D., Jonsson, H. H., Faloona, I. C., and Chuang, P. Y.: Observational constraints on entrainment and the entrainment interface layer in stratocumulus, Atmos. Chem. Phys., 12, 11135–11152, https://doi.org/10.5194/acp-12-11135-2012, 2012.
Caughey, S. J., Crease, B. A., and Roach, W. T.: A field study of nocturnal stratocumulus: II. Turbulence structure and entrainment, Q. J. Roy. Meteor. Soc., 108, 125–144, https://doi.org/10.1002/qj.49710845508, 1982.
Download
Short summary
Using airborne data from of Physics of Stratocumulus Top campaign we analysed turbulence at the interface between free troposphere and cloud top. We found turbulence in temperature inversion capping cloud as well as in adjacent cloud top layer very anisotropic. Eddies are elongated horizontally by wind shear and flattened by static stability. These properties of turbulence at the cloud top were overlooked so far, which explains problems with understanding of entrainment at stratocumulus top.
Altmetrics
Final-revised paper
Preprint