Articles | Volume 16, issue 8
https://doi.org/10.5194/acp-16-4915-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-16-4915-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
First continuous ground-based observations of long period oscillations in the vertically resolved wind field of the stratosphere and mesosphere
Rolf Rüfenacht
CORRESPONDING AUTHOR
Institute of Applied Physics, University of Bern, Bern, Switzerland
Klemens Hocke
Institute of Applied Physics, University of Bern, Bern, Switzerland
Niklaus Kämpfer
Institute of Applied Physics, University of Bern, Bern, Switzerland
Related authors
Andreas Plach, Rolf Rüfenacht, Simone Kotthaus, and Markus Leuenberger
EGUsphere, https://doi.org/10.5194/egusphere-2022-1019, https://doi.org/10.5194/egusphere-2022-1019, 2022
Preprint archived
Short summary
Short summary
Greenhouse gases emissions are contributing to global warming and it is essential to better understand where they originate from and how they are transported. In this study we analyze greenhouse gas observations at a Swiss tall tower where measurements are taken more than 200 m above ground and investigate their origin by looking at the condition of the atmosphere at the time of the observations. We find that most pollution at this site is caused from emissions transported from further away.
Hugues Brenot, Nicolas Theys, Lieven Clarisse, Jeroen van Gent, Daniel R. Hurtmans, Sophie Vandenbussche, Nikolaos Papagiannopoulos, Lucia Mona, Timo Virtanen, Andreas Uppstu, Mikhail Sofiev, Luca Bugliaro, Margarita Vázquez-Navarro, Pascal Hedelt, Michelle Maree Parks, Sara Barsotti, Mauro Coltelli, William Moreland, Simona Scollo, Giuseppe Salerno, Delia Arnold-Arias, Marcus Hirtl, Tuomas Peltonen, Juhani Lahtinen, Klaus Sievers, Florian Lipok, Rolf Rüfenacht, Alexander Haefele, Maxime Hervo, Saskia Wagenaar, Wim Som de Cerff, Jos de Laat, Arnoud Apituley, Piet Stammes, Quentin Laffineur, Andy Delcloo, Robertson Lennart, Carl-Herbert Rokitansky, Arturo Vargas, Markus Kerschbaum, Christian Resch, Raimund Zopp, Matthieu Plu, Vincent-Henri Peuch, Michel Van Roozendael, and Gerhard Wotawa
Nat. Hazards Earth Syst. Sci., 21, 3367–3405, https://doi.org/10.5194/nhess-21-3367-2021, https://doi.org/10.5194/nhess-21-3367-2021, 2021
Short summary
Short summary
The purpose of the EUNADICS-AV (European Natural Airborne Disaster Information and Coordination System for Aviation) prototype early warning system (EWS) is to develop the combined use of harmonised data products from satellite, ground-based and in situ instruments to produce alerts of airborne hazards (volcanic, dust, smoke and radionuclide clouds), satisfying the requirement of aviation air traffic management (ATM) stakeholders (https://cordis.europa.eu/project/id/723986).
Eliane Maillard Barras, Alexander Haefele, Liliane Nguyen, Fiona Tummon, William T. Ball, Eugene V. Rozanov, Rolf Rüfenacht, Klemens Hocke, Leonie Bernet, Niklaus Kämpfer, Gerald Nedoluha, and Ian Boyd
Atmos. Chem. Phys., 20, 8453–8471, https://doi.org/10.5194/acp-20-8453-2020, https://doi.org/10.5194/acp-20-8453-2020, 2020
Short summary
Short summary
To determine the part of the variability of the long-term ozone profile trends coming from measurement timing, we estimate microwave radiometer trends for each hour of the day with a multiple linear regression model. The variation in the trend with local solar time is not significant at the 95 % confidence level either in the stratosphere or in the low mesosphere. We conclude that systematic sampling differences between instruments cannot explain significant differences in trend estimates.
Franziska Schranz, Brigitte Tschanz, Rolf Rüfenacht, Klemens Hocke, Mathias Palm, and Niklaus Kämpfer
Atmos. Chem. Phys., 19, 9927–9947, https://doi.org/10.5194/acp-19-9927-2019, https://doi.org/10.5194/acp-19-9927-2019, 2019
Short summary
Short summary
The dynamics of the Arctic middle atmosphere above Ny-Ålesund, Svalbard (79° N, 12° E) is investigated using 3 years of H2O and O3 measurements from ground-based microwave radiometers. We found the signals of atmospheric phenomena like sudden stratospheric warmings, polar vortex shifts, effective descent rates of water vapour and periodicities in our data. Additionally, a comprehensive intercomparison is performed with models and measurements from ground-based, in situ and satellite instruments.
Jonas Hagen, Axel Murk, Rolf Rüfenacht, Sergey Khaykin, Alain Hauchecorne, and Niklaus Kämpfer
Atmos. Meas. Tech., 11, 5007–5024, https://doi.org/10.5194/amt-11-5007-2018, https://doi.org/10.5194/amt-11-5007-2018, 2018
Rolf Rüfenacht, Gerd Baumgarten, Jens Hildebrand, Franziska Schranz, Vivien Matthias, Gunter Stober, Franz-Josef Lübken, and Niklaus Kämpfer
Atmos. Meas. Tech., 11, 1971–1987, https://doi.org/10.5194/amt-11-1971-2018, https://doi.org/10.5194/amt-11-1971-2018, 2018
Short summary
Short summary
Wind information throughout the middle-atmosphere is crucial for the understanding of atmospheric dynamics but became available only recently, thanks to developments in remote sensing and modelling approaches. We present the first thorough assessment of the quality of the wind estimates by comparing co-located observations from lidar and microwave radiometry and opposing them to the major atmospheric models. Moreover we evaluated a new approach for measuring mesopause region wind by radiometry.
Susana Fernandez, Rolf Rüfenacht, Niklaus Kämpfer, Thierry Portafaix, Françoise Posny, and Guillaume Payen
Atmos. Chem. Phys., 16, 7531–7543, https://doi.org/10.5194/acp-16-7531-2016, https://doi.org/10.5194/acp-16-7531-2016, 2016
Short summary
Short summary
We present a new ground based microwave radiometer for campaigns, GROMOS-C. It measures the vertical distribution of ozone in the middle atmosphere by observing spectra at 110.836 GHz. The paper presents a validation campaign that took place on La Réunion Island. The ozone retrieved profiles are validated against ozone profiles from the Microwave Limb Sounder, the ozone lidar located in the observatory, ozone profiles from weekly radiosondes and with ECMWF model data.
R. Rüfenacht, A. Murk, N. Kämpfer, P. Eriksson, and S. A. Buehler
Atmos. Meas. Tech., 7, 4491–4505, https://doi.org/10.5194/amt-7-4491-2014, https://doi.org/10.5194/amt-7-4491-2014, 2014
Short summary
Short summary
Only very few techniques for wind measurements in the upper stratosphere and lower mesosphere exist. Moreover, none of these instruments is running on a continuous basis. This paper describes the development of ground-based microwave Doppler radiometry. Time series of daily wind profile measurements from four different locations at polar, mid- and tropical latitudes are presented. The agreement with ECMWF model data is good in the stratosphere, but discrepancies were found in the mesosphere.
Andreas Plach, Rolf Rüfenacht, Simone Kotthaus, and Markus Leuenberger
EGUsphere, https://doi.org/10.5194/egusphere-2022-1019, https://doi.org/10.5194/egusphere-2022-1019, 2022
Preprint archived
Short summary
Short summary
Greenhouse gases emissions are contributing to global warming and it is essential to better understand where they originate from and how they are transported. In this study we analyze greenhouse gas observations at a Swiss tall tower where measurements are taken more than 200 m above ground and investigate their origin by looking at the condition of the atmosphere at the time of the observations. We find that most pollution at this site is caused from emissions transported from further away.
Hugues Brenot, Nicolas Theys, Lieven Clarisse, Jeroen van Gent, Daniel R. Hurtmans, Sophie Vandenbussche, Nikolaos Papagiannopoulos, Lucia Mona, Timo Virtanen, Andreas Uppstu, Mikhail Sofiev, Luca Bugliaro, Margarita Vázquez-Navarro, Pascal Hedelt, Michelle Maree Parks, Sara Barsotti, Mauro Coltelli, William Moreland, Simona Scollo, Giuseppe Salerno, Delia Arnold-Arias, Marcus Hirtl, Tuomas Peltonen, Juhani Lahtinen, Klaus Sievers, Florian Lipok, Rolf Rüfenacht, Alexander Haefele, Maxime Hervo, Saskia Wagenaar, Wim Som de Cerff, Jos de Laat, Arnoud Apituley, Piet Stammes, Quentin Laffineur, Andy Delcloo, Robertson Lennart, Carl-Herbert Rokitansky, Arturo Vargas, Markus Kerschbaum, Christian Resch, Raimund Zopp, Matthieu Plu, Vincent-Henri Peuch, Michel Van Roozendael, and Gerhard Wotawa
Nat. Hazards Earth Syst. Sci., 21, 3367–3405, https://doi.org/10.5194/nhess-21-3367-2021, https://doi.org/10.5194/nhess-21-3367-2021, 2021
Short summary
Short summary
The purpose of the EUNADICS-AV (European Natural Airborne Disaster Information and Coordination System for Aviation) prototype early warning system (EWS) is to develop the combined use of harmonised data products from satellite, ground-based and in situ instruments to produce alerts of airborne hazards (volcanic, dust, smoke and radionuclide clouds), satisfying the requirement of aviation air traffic management (ATM) stakeholders (https://cordis.europa.eu/project/id/723986).
Leonie Bernet, Elmar Brockmann, Thomas von Clarmann, Niklaus Kämpfer, Emmanuel Mahieu, Christian Mätzler, Gunter Stober, and Klemens Hocke
Atmos. Chem. Phys., 20, 11223–11244, https://doi.org/10.5194/acp-20-11223-2020, https://doi.org/10.5194/acp-20-11223-2020, 2020
Short summary
Short summary
With global warming, water vapour increases in the atmosphere. Water vapour is an important gas because it is a natural greenhouse gas and affects the formation of clouds, rain and snow. How much water vapour increases can vary in different regions of the world. To verify if it increases as expected on a regional scale, we analysed water vapour measurements in Switzerland. We found that water vapour generally increases as expected from temperature changes, except in winter.
Franziska Schranz, Jonas Hagen, Gunter Stober, Klemens Hocke, Axel Murk, and Niklaus Kämpfer
Atmos. Chem. Phys., 20, 10791–10806, https://doi.org/10.5194/acp-20-10791-2020, https://doi.org/10.5194/acp-20-10791-2020, 2020
Short summary
Short summary
We measured middle-atmospheric ozone, water vapour and zonal and meridional wind with two ground-based microwave radiometers which are located at Ny-Alesund, Svalbard, in the Arctic. In this article we present measurements of the small-scale horizontal ozone gradients during winter 2018/2019. We found a distinct seasonal variation of the ozone gradients which is linked to the planetary wave activity. We further present the signatures of the SSW in the ozone, water vapour and wind measurements.
Eliane Maillard Barras, Alexander Haefele, Liliane Nguyen, Fiona Tummon, William T. Ball, Eugene V. Rozanov, Rolf Rüfenacht, Klemens Hocke, Leonie Bernet, Niklaus Kämpfer, Gerald Nedoluha, and Ian Boyd
Atmos. Chem. Phys., 20, 8453–8471, https://doi.org/10.5194/acp-20-8453-2020, https://doi.org/10.5194/acp-20-8453-2020, 2020
Short summary
Short summary
To determine the part of the variability of the long-term ozone profile trends coming from measurement timing, we estimate microwave radiometer trends for each hour of the day with a multiple linear regression model. The variation in the trend with local solar time is not significant at the 95 % confidence level either in the stratosphere or in the low mesosphere. We conclude that systematic sampling differences between instruments cannot explain significant differences in trend estimates.
Jonas Hagen, Klemens Hocke, Gunter Stober, Simon Pfreundschuh, Axel Murk, and Niklaus Kämpfer
Atmos. Chem. Phys., 20, 2367–2386, https://doi.org/10.5194/acp-20-2367-2020, https://doi.org/10.5194/acp-20-2367-2020, 2020
Short summary
Short summary
The middle atmosphere (30 to 70 km altitude) is stratified and, despite very strong horizontal winds, there is less mixing between the horizontal layers. An important driver for the energy exchange between the layers in this regime is atmospheric tides, which are waves that are driven by the diurnal cycle of solar heating. We measure these tides in the wind field for the first time using a ground-based passive instrument. Ultimately, such measurements could be used to improve atmospheric models.
Christine Aebi, Julian Gröbner, Stelios Kazadzis, Laurent Vuilleumier, Antonis Gkikas, and Niklaus Kämpfer
Atmos. Meas. Tech., 13, 907–923, https://doi.org/10.5194/amt-13-907-2020, https://doi.org/10.5194/amt-13-907-2020, 2020
Short summary
Short summary
Clouds are one of the largest sources of uncertainties in climate models. The current study estimates the cloud optical thickness (COT), the effective droplet radius and the single scattering albedo of stratus–altostratus and cirrus–cirrostratus clouds in Payerne, Switzerland, by combining ground- and satellite-based measurements and radiative transfer models. The estimated values are thereafter compared with data retrieved from other methods. The mean COT is distinct for different seasons.
Klemens Hocke, Leonie Bernet, Jonas Hagen, Axel Murk, Matthias Renker, and Christian Mätzler
Atmos. Chem. Phys., 19, 12083–12090, https://doi.org/10.5194/acp-19-12083-2019, https://doi.org/10.5194/acp-19-12083-2019, 2019
Short summary
Short summary
The Tropospheric Water Radiometer (TROWARA) observed an enhanced intensity of short-term integrated water vapour (IWV) fluctuations during daytime in summer. These IWV fluctuations are possibly related to latent heat flux and thermal convective activity in the lower troposphere. The observed climatology and spectra of IWV fluctuations might be useful for modelling studies of water vapour convection in the atmospheric boundary layer at mid latitudes.
Franziska Schranz, Brigitte Tschanz, Rolf Rüfenacht, Klemens Hocke, Mathias Palm, and Niklaus Kämpfer
Atmos. Chem. Phys., 19, 9927–9947, https://doi.org/10.5194/acp-19-9927-2019, https://doi.org/10.5194/acp-19-9927-2019, 2019
Short summary
Short summary
The dynamics of the Arctic middle atmosphere above Ny-Ålesund, Svalbard (79° N, 12° E) is investigated using 3 years of H2O and O3 measurements from ground-based microwave radiometers. We found the signals of atmospheric phenomena like sudden stratospheric warmings, polar vortex shifts, effective descent rates of water vapour and periodicities in our data. Additionally, a comprehensive intercomparison is performed with models and measurements from ground-based, in situ and satellite instruments.
Klemens Hocke, Jonas Hagen, Franziska Schranz, and Leonie Bernet
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-630, https://doi.org/10.5194/acp-2019-630, 2019
Preprint withdrawn
Short summary
Short summary
The dense sampling of geopotential height (GPH) profiles of the microwave limb sounder (MLS) on NASA's satellite Aura is appropriate for detection of mesospheric gravity waves. Up to now, the global distribution of mesospheric gravity wave activity is relatively unknown. The study focuses on the relation of mesospheric gravity waves to major sudden stratospheric warmings.
Martin Lainer, Klemens Hocke, Ellen Eckert, and Niklaus Kämpfer
Atmos. Chem. Phys., 19, 6611–6620, https://doi.org/10.5194/acp-19-6611-2019, https://doi.org/10.5194/acp-19-6611-2019, 2019
Short summary
Short summary
A middle atmospheric water vapor time series of more than 11 years (April 2007 to May 2018) from the NDACC microwave remote sensing site at Bern (Switzerland) is investigated to estimate the trend by means of a robust multilinear parametric trend model. Between 61 and 72 km altitude a significant decline in water vapor could be detected. The reduction of water vapor maximizes to about −12 % per decade at 72 km altitude.
Jinghua Li, Guanyi Ma, Klemens Hocke, Qingtao Wan, Jiangtao Fan, and Xiaolan Wang
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2019-64, https://doi.org/10.5194/angeo-2019-64, 2019
Revised manuscript not accepted
Short summary
Short summary
Local occurrence rate (LOR) is defined to clarify the characteristics of ionospheric irregularities together with monthly occurrence rate (MOR) at 20–29° N in solar minimum, medium and maximum years of 2008, 2003 and 2014. MOR of irregularities in May/June is larger than that in equinoxes, which is different with the equatorial plasma bubbles. LOR shows that the irregularities at 26–29° N in May/June are more frequently happened and have smaller spatiotemporal scales than those at lower latitudes.
Klemens Hocke, Huixin Liu, Nicholas Pedatella, and Guanyi Ma
Ann. Geophys., 37, 235–242, https://doi.org/10.5194/angeo-37-235-2019, https://doi.org/10.5194/angeo-37-235-2019, 2019
Short summary
Short summary
The GPS radio occultation data of the COSMIC-FORMOSAT-3 mission are used to visualize the global distribution of ionospheric irregularities in the F2 region during a geomagnetic storm, at solar minimum, and at solar maximum.
Leonie Bernet, Thomas von Clarmann, Sophie Godin-Beekmann, Gérard Ancellet, Eliane Maillard Barras, René Stübi, Wolfgang Steinbrecht, Niklaus Kämpfer, and Klemens Hocke
Atmos. Chem. Phys., 19, 4289–4309, https://doi.org/10.5194/acp-19-4289-2019, https://doi.org/10.5194/acp-19-4289-2019, 2019
Short summary
Short summary
After severe ozone depletion, upper stratospheric ozone has started to recover in recent years. However, stratospheric ozone trends from various data sets still show differences. To partly explain such differences, we investigate how the trends are affected by different factors, for example, anomalies in the data. We show how trend estimates can be improved by considering such anomalies and present updated stratospheric ozone trends from ground data measured in central Europe.
Christine Aebi, Julian Gröbner, and Niklaus Kämpfer
Atmos. Meas. Tech., 11, 5549–5563, https://doi.org/10.5194/amt-11-5549-2018, https://doi.org/10.5194/amt-11-5549-2018, 2018
Short summary
Short summary
A newly developed hemispherical thermal infrared cloud camera (IRCCAM) is presented. The IRCCAM allows automatic cloud detection during the day and at night-time. The cloud fraction determined from the IRCCAM is compared with the cloud fraction determined from other instruments over a time period of 2 years. The IRCCAM has an agreement of +/- 2 oktas cloud fraction in 90 % of the data compared to other instruments. There are no significant differences between seasons or different times of day.
Jonas Hagen, Axel Murk, Rolf Rüfenacht, Sergey Khaykin, Alain Hauchecorne, and Niklaus Kämpfer
Atmos. Meas. Tech., 11, 5007–5024, https://doi.org/10.5194/amt-11-5007-2018, https://doi.org/10.5194/amt-11-5007-2018, 2018
Martin Lainer, Klemens Hocke, and Niklaus Kämpfer
Atmos. Chem. Phys., 18, 12061–12074, https://doi.org/10.5194/acp-18-12061-2018, https://doi.org/10.5194/acp-18-12061-2018, 2018
Short summary
Short summary
A long continuous record (in total 7 years) of middle atmospheric water vapor at the midlatitude NDACC station in Bern is investigated to study quasi 2-day wave oscillations (Q2DWs). We present monthly climatologies of the wave amplitudes and show the periods that the Q2DWs developed. What we observe is very-high-frequency variability. An autobicoherence analysis revealed nonlinear phase couplings between Q2DWs and other atmospheric waves. Our results are useful for model validation purposes.
Rolf Rüfenacht, Gerd Baumgarten, Jens Hildebrand, Franziska Schranz, Vivien Matthias, Gunter Stober, Franz-Josef Lübken, and Niklaus Kämpfer
Atmos. Meas. Tech., 11, 1971–1987, https://doi.org/10.5194/amt-11-1971-2018, https://doi.org/10.5194/amt-11-1971-2018, 2018
Short summary
Short summary
Wind information throughout the middle-atmosphere is crucial for the understanding of atmospheric dynamics but became available only recently, thanks to developments in remote sensing and modelling approaches. We present the first thorough assessment of the quality of the wind estimates by comparing co-located observations from lidar and microwave radiometry and opposing them to the major atmospheric models. Moreover we evaluated a new approach for measuring mesopause region wind by radiometry.
Franziska Schranz, Susana Fernandez, Niklaus Kämpfer, and Mathias Palm
Atmos. Chem. Phys., 18, 4113–4130, https://doi.org/10.5194/acp-18-4113-2018, https://doi.org/10.5194/acp-18-4113-2018, 2018
Short summary
Short summary
We present 1 year of ozone measurements form two ground-based microwave radiometers located at Ny-Ålesund, Svalbard. The ozone measurements cover an altitude range of 25–70 km altitude and have a high time resolution of 1–2 h. With these datasets and model data a comprehensive analysis of the ozone diurnal cycle in the Arctic is performed for the different insolation conditions throughout the year. In the stratosphere we find a diurnal cycle which persists over the whole polar day.
Martin Lainer, Klemens Hocke, Rolf Rüfenacht, and Niklaus Kämpfer
Atmos. Chem. Phys., 17, 14905–14917, https://doi.org/10.5194/acp-17-14905-2017, https://doi.org/10.5194/acp-17-14905-2017, 2017
Short summary
Short summary
We report on middle-atmospheric water vapor measurements above Bern from the ground-based microwave radiometer MIAWARA (NDACC affiliated) during two winter periods of 6 months. Quasi 18 h oscillations of mesospheric water vapor above 0.1 hPa are observed. Further, the 18 h wave is seen in a zonal wind data set from the Doppler wind radiometer WIRA. Inertia-gravity-wave-induced fluctuations or a nonlinear coupling between tides and quasi 2-day waves are considered as possible drivers.
Gerald E. Nedoluha, Michael Kiefer, Stefan Lossow, R. Michael Gomez, Niklaus Kämpfer, Martin Lainer, Peter Forkman, Ole Martin Christensen, Jung Jin Oh, Paul Hartogh, John Anderson, Klaus Bramstedt, Bianca M. Dinelli, Maya Garcia-Comas, Mark Hervig, Donal Murtagh, Piera Raspollini, William G. Read, Karen Rosenlof, Gabriele P. Stiller, and Kaley A. Walker
Atmos. Chem. Phys., 17, 14543–14558, https://doi.org/10.5194/acp-17-14543-2017, https://doi.org/10.5194/acp-17-14543-2017, 2017
Short summary
Short summary
As part of the second SPARC (Stratosphere–troposphere Processes And their Role in Climate) water vapor assessment (WAVAS-II), we present measurements taken from or coincident with seven sites from which ground-based microwave instruments measure water vapor in the middle atmosphere. In the lower mesosphere, we quantify instrumental differences in the observed trends and annual variations at six sites. We then present a range of observed trends in water vapor over the past 20 years.
Christine Aebi, Julian Gröbner, Niklaus Kämpfer, and Laurent Vuilleumier
Atmos. Meas. Tech., 10, 4587–4600, https://doi.org/10.5194/amt-10-4587-2017, https://doi.org/10.5194/amt-10-4587-2017, 2017
Short summary
Short summary
The current study analyses the cloud radiative effect during the daytime depending on cloud fraction and cloud type at two stations in Switzerland over a time period of 3–5 years. Information about fractional cloud coverage and cloud type is retrieved from images taken by visible all-sky cameras. Cloud cover, cloud type and other atmospheric parameters have an influence on the magnitude of the longwave cloud effect as well as on the shortwave.
Francisco Navas-Guzmán, Niklaus Kämpfer, Franziska Schranz, Wolfgang Steinbrecht, and Alexander Haefele
Atmos. Chem. Phys., 17, 14085–14104, https://doi.org/10.5194/acp-17-14085-2017, https://doi.org/10.5194/acp-17-14085-2017, 2017
Short summary
Short summary
The paper presents assessment of the stratospheric measurements of a relatively new temperature radiometer (TEMPERA) at 60 GHz. The temperature profiles from TEMPERA have been compared with measurements from different techniques such as radiosondes, MLS satellite and Rayleigh lidar and with the temperature outputs from the SD-WACCM model. The results showed absolute biases and standard deviations lower than 2 K for most of the altitudes and comparisons, proving the good performance of TEMPERA.
Leonie Bernet, Francisco Navas-Guzmán, and Niklaus Kämpfer
Atmos. Meas. Tech., 10, 4421–4437, https://doi.org/10.5194/amt-10-4421-2017, https://doi.org/10.5194/amt-10-4421-2017, 2017
Short summary
Short summary
Microwave radiometry is a suitable technique to measure atmospheric temperature profiles during clear sky and cloudy conditions. However clouds can influence the temperature measurements. In this study we analyse the influence of clouds on temperature measurements in the troposphere from a microwave radiometer. We found that the effect of clouds on the temperature measurements is important and that the measurements can be improved substantially by considering clouds in the retrieval process.
Klemens Hocke, Francisco Navas-Guzmán, Lorena Moreira, Leonie Bernet, and Christian Mätzler
Atmos. Chem. Phys., 17, 12121–12131, https://doi.org/10.5194/acp-17-12121-2017, https://doi.org/10.5194/acp-17-12121-2017, 2017
Short summary
Short summary
We derive the annual and semi-annual oscillations in cloud fraction (CF), integrated liquid water (ILW) and integrated water vapour (IWV) from the long-term measurements of the TROWARA radiometer in Bern, Switzerland. Further, we find a weekly cycle of CF and ILW from June to September with increased values on Saturday, Sunday and Monday.
Wolfgang Steinbrecht, Lucien Froidevaux, Ryan Fuller, Ray Wang, John Anderson, Chris Roth, Adam Bourassa, Doug Degenstein, Robert Damadeo, Joe Zawodny, Stacey Frith, Richard McPeters, Pawan Bhartia, Jeannette Wild, Craig Long, Sean Davis, Karen Rosenlof, Viktoria Sofieva, Kaley Walker, Nabiz Rahpoe, Alexei Rozanov, Mark Weber, Alexandra Laeng, Thomas von Clarmann, Gabriele Stiller, Natalya Kramarova, Sophie Godin-Beekmann, Thierry Leblanc, Richard Querel, Daan Swart, Ian Boyd, Klemens Hocke, Niklaus Kämpfer, Eliane Maillard Barras, Lorena Moreira, Gerald Nedoluha, Corinne Vigouroux, Thomas Blumenstock, Matthias Schneider, Omaira García, Nicholas Jones, Emmanuel Mahieu, Dan Smale, Michael Kotkamp, John Robinson, Irina Petropavlovskikh, Neil Harris, Birgit Hassler, Daan Hubert, and Fiona Tummon
Atmos. Chem. Phys., 17, 10675–10690, https://doi.org/10.5194/acp-17-10675-2017, https://doi.org/10.5194/acp-17-10675-2017, 2017
Short summary
Short summary
Thanks to the 1987 Montreal Protocol and its amendments, ozone-depleting chlorine (and bromine) in the stratosphere has declined slowly since the late 1990s. Improved and extended long-term ozone profile observations from satellites and ground-based stations confirm that ozone is responding as expected and has increased by about 2 % per decade since 2000 in the upper stratosphere, around 40 km altitude. At lower altitudes, however, ozone has not changed significantly since 2000.
Lorena Moreira, Klemens Hocke, and Niklaus Kämpfer
Atmos. Chem. Phys., 17, 10259–10268, https://doi.org/10.5194/acp-17-10259-2017, https://doi.org/10.5194/acp-17-10259-2017, 2017
Short summary
Short summary
GROMOS (GROund-based Millimeter-wave Ozone Spectrometer) has provided ozone profiles for the Network for the Detection of Atmospheric Composition Change since 1994. A new retrieval version for ozone profiles aims to improve the altitude range of profiles. We performed a comparison between coincident profiles of GROMOS and Aura MLS, resulting in agreement within 2% in
the mid- and upper stratosphere from 2009 to 2016. We also observed extensions of the tertiary ozone maximum at midlatitudes.
Klemens Hocke, Franziska Schranz, Eliane Maillard Barras, Lorena Moreira, and Niklaus Kämpfer
Atmos. Chem. Phys., 17, 3445–3452, https://doi.org/10.5194/acp-17-3445-2017, https://doi.org/10.5194/acp-17-3445-2017, 2017
Short summary
Short summary
Observation and simulation show an Atlantic ozone streamer along the edge region of the polar vortex in the northern middle stratosphere during winter. The Atlantic streamer has wind speeds of about 100 m/s and turns equatorward at a vortex erosion region. We compare the fields of stratospheric ozone and water vapour from ground- and space-based microwave radiometry and SD-WACCM simulations for a better understanding of non-linear transport processes in the middle atmosphere.
Francisco Navas-Guzmán, Niklaus Kämpfer, and Alexander Haefele
Atmos. Meas. Tech., 9, 4587–4600, https://doi.org/10.5194/amt-9-4587-2016, https://doi.org/10.5194/amt-9-4587-2016, 2016
Short summary
Short summary
The paper presents the assessment of the tropospheric measurements of a new temperature radiometer (TEMPERA) at 60 GHz. The temperature profiles from TEMPERA are compared with independent in situ radiosonde measurements. The TEMPERA performance is also compared with that of a commercial microwave radiometer (HATPRO). In addition, the brightness temperatures from both microwave radiometers are compared with the ones simulated using a radiative transfer model, ARTS.
Klemens Hocke, Martin Lainer, Lorena Moreira, Jonas Hagen, Susana Fernandez Vidal, and Franziska Schranz
Ann. Geophys., 34, 781–788, https://doi.org/10.5194/angeo-34-781-2016, https://doi.org/10.5194/angeo-34-781-2016, 2016
Short summary
Short summary
The dense horizontal sampling of atmospheric temperature profiles by the microwave limb sounder MLS on the NASA satellite AURA permit the estimation of global distributions of inertia-gravity waves (IGWs) in the middle atmosphere. We present and discuss the estimated global distributions of IGWs for July 2015 and January 2016. A dependence on the zonal wind distribution is obvious. The distributions of IGWs are a bit similar to the global distributions of small-scale gravity waves.
Lorena Moreira, Klemens Hocke, Francisco Navas-Guzmán, Ellen Eckert, Thomas von Clarmann, and Niklaus Kämpfer
Atmos. Chem. Phys., 16, 10455–10467, https://doi.org/10.5194/acp-16-10455-2016, https://doi.org/10.5194/acp-16-10455-2016, 2016
Short summary
Short summary
The GROMOS radiometer in Bern has been part of the NDACC since 1994. Our time series of stratospheric ozone profiles allow the assessment of natural oscillations, which are essential for the evaluation of detected stratospheric ozone trends. Among our new findings are the link between the upper stratospheric O3-SAO and the polar stratopause warmings in winter. We have also detected a strong peak amplitude of 5 % related to the solar activity cycle and the ENSO effect in ozone at midlatitudes.
Susana Fernandez, Rolf Rüfenacht, Niklaus Kämpfer, Thierry Portafaix, Françoise Posny, and Guillaume Payen
Atmos. Chem. Phys., 16, 7531–7543, https://doi.org/10.5194/acp-16-7531-2016, https://doi.org/10.5194/acp-16-7531-2016, 2016
Short summary
Short summary
We present a new ground based microwave radiometer for campaigns, GROMOS-C. It measures the vertical distribution of ozone in the middle atmosphere by observing spectra at 110.836 GHz. The paper presents a validation campaign that took place on La Réunion Island. The ozone retrieved profiles are validated against ozone profiles from the Microwave Limb Sounder, the ozone lidar located in the observatory, ozone profiles from weekly radiosondes and with ECMWF model data.
L. Moreira, K. Hocke, E. Eckert, T. von Clarmann, and N. Kämpfer
Atmos. Chem. Phys., 15, 10999–11009, https://doi.org/10.5194/acp-15-10999-2015, https://doi.org/10.5194/acp-15-10999-2015, 2015
Short summary
Short summary
GROMOS (GROund-based Millimeter-wave Ozone Spectrometer) has provided ozone profiles for the NDACC (Network for the Detection of Atmospheric Composition Change) at Bern since 1994. We performed a trend analysis of our 20-year time series of stratospheric ozone profiles with a multilinear parametric trend estimation method. With our estimated ozone trends we are able to support the stratospheric ozone turnaround, besides a statistically significant negative trend in the lower mesosphere.
M. Lainer, N. Kämpfer, B. Tschanz, G. E. Nedoluha, S. Ka, and J. J. Oh
Atmos. Chem. Phys., 15, 9711–9730, https://doi.org/10.5194/acp-15-9711-2015, https://doi.org/10.5194/acp-15-9711-2015, 2015
Short summary
Short summary
We use water vapor profiles from ground-based microwave radiometers at five locations distributed over the Northern Hemisphere and operated in the frame of NDACC (Network for the Detection of Atmospheric Composition Change) to generate hemispheric water vapor maps based on the so-called trajectory mapping technique. The novelty is to show that a mini network of instruments is capable of providing information about the hemispheric distribution of water vapor under most conditions.
S. Fernandez, A. Murk, and N. Kämpfer
Atmos. Meas. Tech., 8, 2649–2662, https://doi.org/10.5194/amt-8-2649-2015, https://doi.org/10.5194/amt-8-2649-2015, 2015
K. Hocke, M. Lainer, and A. Schanz
Ann. Geophys., 33, 783–788, https://doi.org/10.5194/angeo-33-783-2015, https://doi.org/10.5194/angeo-33-783-2015, 2015
Short summary
Short summary
The composite analysis of major sudden stratospheric warmings (SSW) showed changes in atmospheric parameters at mid-latitudes about 1-2 months before the central date of the SSW. Polar ozone is enhanced during the half year after the SSW event.
B. Tschanz and N. Kämpfer
Atmos. Chem. Phys., 15, 5099–5108, https://doi.org/10.5194/acp-15-5099-2015, https://doi.org/10.5194/acp-15-5099-2015, 2015
F. Navas-Guzmán, N. Kämpfer, A. Murk, R. Larsson, S. A. Buehler, and P. Eriksson
Atmos. Meas. Tech., 8, 1863–1874, https://doi.org/10.5194/amt-8-1863-2015, https://doi.org/10.5194/amt-8-1863-2015, 2015
Short summary
Short summary
In this work we study the Zeeman effect on stratospheric O2 using ground-based microwave radiometer measurements. The interaction of the Earth magnetic field with the oxygen dipole leads to a splitting of O2 energy states which polarizes the emission spectra. A special campaign was carried out in order to measure for the first time the polarization state of the radiation due to the Zeeman effect in the main isotopologue of oxygen from ground-based microwave measurements.
A. Schanz, K. Hocke, N. Kämpfer, S. Chabrillat, A. Inness, M. Palm, J. Notholt, I. Boyd, A. Parrish, and Y. Kasai
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-14-32667-2014, https://doi.org/10.5194/acpd-14-32667-2014, 2014
Revised manuscript not accepted
Short summary
Short summary
The manuscript describes novel findings in the diurnal variation of stratospheric ozone by means of the MACC reanalysis, the ERA-Interim reanalysis and the WACCM model. The diurnal variation in ozone has dynamical and photochemical origins which lead to substantial amplitudes especially in the polar, stratospheric regions. The unprecedented, global view on diurnal ozone variation strengthens the implication to correct diurnally sampled satellite observations used for ozone trend estimates.
R. Rüfenacht, A. Murk, N. Kämpfer, P. Eriksson, and S. A. Buehler
Atmos. Meas. Tech., 7, 4491–4505, https://doi.org/10.5194/amt-7-4491-2014, https://doi.org/10.5194/amt-7-4491-2014, 2014
Short summary
Short summary
Only very few techniques for wind measurements in the upper stratosphere and lower mesosphere exist. Moreover, none of these instruments is running on a continuous basis. This paper describes the development of ground-based microwave Doppler radiometry. Time series of daily wind profile measurements from four different locations at polar, mid- and tropical latitudes are presented. The agreement with ECMWF model data is good in the stratosphere, but discrepancies were found in the mesosphere.
A. Schanz, K. Hocke, and N. Kämpfer
Atmos. Chem. Phys., 14, 7645–7663, https://doi.org/10.5194/acp-14-7645-2014, https://doi.org/10.5194/acp-14-7645-2014, 2014
D. Scheiben, B. Tschanz, K. Hocke, N. Kämpfer, S. Ka, and J. J. Oh
Atmos. Chem. Phys., 14, 6511–6522, https://doi.org/10.5194/acp-14-6511-2014, https://doi.org/10.5194/acp-14-6511-2014, 2014
S. Studer, K. Hocke, A. Schanz, H. Schmidt, and N. Kämpfer
Atmos. Chem. Phys., 14, 5905–5919, https://doi.org/10.5194/acp-14-5905-2014, https://doi.org/10.5194/acp-14-5905-2014, 2014
F. Navas-Guzmán, O. Stähli, and N. Kämpfer
Atmos. Meas. Tech., 7, 1619–1628, https://doi.org/10.5194/amt-7-1619-2014, https://doi.org/10.5194/amt-7-1619-2014, 2014
F. Cossu and K. Hocke
Geosci. Model Dev., 7, 147–160, https://doi.org/10.5194/gmd-7-147-2014, https://doi.org/10.5194/gmd-7-147-2014, 2014
O. Stähli, A. Murk, N. Kämpfer, C. Mätzler, and P. Eriksson
Atmos. Meas. Tech., 6, 2477–2494, https://doi.org/10.5194/amt-6-2477-2013, https://doi.org/10.5194/amt-6-2477-2013, 2013
D. Scheiben, A. Schanz, B. Tschanz, and N. Kämpfer
Atmos. Chem. Phys., 13, 6877–6886, https://doi.org/10.5194/acp-13-6877-2013, https://doi.org/10.5194/acp-13-6877-2013, 2013
B. Tschanz, C. Straub, D. Scheiben, K. A. Walker, G. P. Stiller, and N. Kämpfer
Atmos. Meas. Tech., 6, 1725–1745, https://doi.org/10.5194/amt-6-1725-2013, https://doi.org/10.5194/amt-6-1725-2013, 2013
S. Studer, K. Hocke, M. Pastel, S. Godin-Beekmann, and N. Kämpfer
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amtd-6-6097-2013, https://doi.org/10.5194/amtd-6-6097-2013, 2013
Revised manuscript has not been submitted
K. Hocke, S. Studer, O. Martius, D. Scheiben, and N. Kämpfer
Ann. Geophys., 31, 755–764, https://doi.org/10.5194/angeo-31-755-2013, https://doi.org/10.5194/angeo-31-755-2013, 2013
Related subject area
Subject: Dynamics | Research Activity: Remote Sensing | Altitude Range: Mesosphere | Science Focus: Physics (physical properties and processes)
Upper-atmosphere responses to the 2022 Hunga Tonga–Hunga Ha′apai volcanic eruption via acoustic gravity waves and air–sea interaction
Influences of sudden stratospheric warmings on the ionosphere above Okinawa
Gravity waves generated by the Hunga Tonga–Hunga Ha′apai volcanic eruption and their global propagation in the mesosphere/lower thermosphere observed by meteor radars and modeled with the High-Altitude general Mechanistic Circulation Model
Long-term studies of the summer wind in the mesosphere and lower thermosphere at middle and high latitudes over Europe
Progress in investigating long-term trends in the mesosphere, thermosphere, and ionosphere
Aura/MLS observes and SD-WACCM-X simulates the seasonality, quasi-biennial oscillation and El Niño–Southern Oscillation of the migrating diurnal tide driving upper mesospheric CO primarily through vertical advection
Hydroxyl airglow observations for investigating atmospheric dynamics: results and challenges
Signatures of gravity wave-induced instabilities in balloon lidar soundings of polar mesospheric clouds
Sources of concentric gravity waves generated by a moving mesoscale convective system in southern Brazil
How do gravity waves triggered by a typhoon propagate from the troposphere to the upper atmosphere?
Interhemispheric differences of mesosphere–lower thermosphere winds and tides investigated from three whole-atmosphere models and meteor radar observations
The semiannual oscillation (SAO) in the tropical middle atmosphere and its gravity wave driving in reanalyses and satellite observations
Mesospheric gravity wave activity estimated via airglow imagery, multistatic meteor radar, and SABER data taken during the SIMONe–2018 campaign
Interhemispheric transport of metallic ions within ionospheric sporadic E layers by the lower thermospheric meridional circulation
Formation of an additional density peak in the bottom side of the sodium layer associated with the passage of multiple mesospheric frontal systems
Gravity-wave-perturbed wind shears derived from SABER temperature observations
Comparative study between ground-based observations and NAVGEM-HA analysis data in the mesosphere and lower thermosphere region
Analysis of 24 years of mesopause region OH rotational temperature observations at Davis, Antarctica – Part 2: Evidence of a quasi-quadrennial oscillation (QQO) in the polar mesosphere
The MATS satellite mission – gravity wave studies by Mesospheric Airglow/Aerosol Tomography and Spectroscopy
Winter 2018 major sudden stratospheric warming impact on midlatitude mesosphere from microwave radiometer measurements
Climatology of the mesopause relative density using a global distribution of meteor radars
Observations of OH airglow from ground, aircraft, and satellite: investigation of wave-like structures before a minor stratospheric warming
Mesospheric semidiurnal tides and near-12 h waves through jointly analyzing observations of five specular meteor radars from three longitudinal sectors at boreal midlatitudes
Statistical climatology of mid-latitude mesospheric summer echoes characterised by OSWIN (Ostsee-Wind) radar observations
Can VHF radars at polar latitudes measure mean vertical winds in the presence of PMSE?
The global climatology of the intensity of the ionospheric sporadic E layer
Long-term lidar observations of the gravity wave activity near the mesopause at Arecibo
Characterization of flow recirculation zones at the Perdigão site using multi-lidar measurements
Solar 27-day signatures in standard phase height measurements above central Europe
Mesospheric bores at southern midlatitudes observed by ISS-IMAP/VISI: a first report of an undulating wave front
Simultaneous observations of NLCs and MSEs at midlatitudes: implications for formation and advection of ice particles
Long-term observation of midlatitude quasi 2-day waves by a water vapor radiometer
Climatology of mesopause region nocturnal temperature, zonal wind and sodium density observed by sodium lidar over Hefei, China (32° N, 117° E)
Multi-static spatial and angular studies of polar mesospheric summer echoes combining MAARSY and KAIRA
Observation of Kelvin–Helmholtz instabilities and gravity waves in the summer mesopause above Andenes in Northern Norway
Temporal variability of tidal and gravity waves during a record long 10-day continuous lidar sounding
Quasi 18 h wave activity in ground-based observed mesospheric H2O over Bern, Switzerland
Winds and temperatures of the Arctic middle atmosphere during January measured by Doppler lidar
Short-period mesospheric gravity waves and their sources at the South Pole
Long-term dynamics of OH * temperatures over central Europe: trends and solar correlations
MIPAS observations of longitudinal oscillations in the mesosphere and the lower thermosphere: climatology of odd-parity daily frequency modes
Neutral atmosphere temperature trends and variability at 90 km, 70 °N, 19 °E, 2003–2014
Response of OH airglow emissions to mesospheric gravity waves and comparisons with full-wave model simulation at a low-latitude Indian station
Semi-annual oscillation (SAO) of the nighttime ionospheric D region as detected through ground-based VLF receivers
Meteor radar quasi 2-day wave observations over 10 years at Collm (51.3° N, 13.0° E)
Observations of planetary waves in the mesosphere-lower thermosphere during stratospheric warming events
Evidence for tropospheric wind shear excitation of high-phase-speed gravity waves reaching the mesosphere using the ray-tracing technique
The quasi 16-day wave in mesospheric water vapor during boreal winter 2011/2012
Quantification of waves in lidar observations of noctilucent clouds at scales from seconds to minutes
Mean winds in the MLT, the SQBO and MSAO over Ascension Island (8° S, 14° W)
Qinzeng Li, Jiyao Xu, Aditya Riadi Gusman, Hanli Liu, Wei Yuan, Weijun Liu, Yajun Zhu, and Xiao Liu
Atmos. Chem. Phys., 24, 8343–8361, https://doi.org/10.5194/acp-24-8343-2024, https://doi.org/10.5194/acp-24-8343-2024, 2024
Short summary
Short summary
The 2022 Hunga Tonga–Hunga Ha’apai (HTHH) volcanic eruption not only triggered broad-spectrum atmospheric waves but also generated unusual tsunamis which can generate atmospheric gravity waves (AGWs). Multiple strong atmospheric waves were observed in the far-field area of the 2022 HTHH volcano eruption in the upper atmosphere by a ground-based airglow imager network. AGWs caused by tsunamis can propagate to the mesopause region; there is a good match between atmospheric waves and tsunamis.
Klemens Hocke, Wenyue Wang, and Guanyi Ma
Atmos. Chem. Phys., 24, 5837–5846, https://doi.org/10.5194/acp-24-5837-2024, https://doi.org/10.5194/acp-24-5837-2024, 2024
Short summary
Short summary
We find a sudden stratospheric warming (SSW) effect in the F2 critical frequency (foF2) series for Okinawa. Across 29 SSW events, the amplitude of the semidiurnal cycle of foF2 peaks at the SSW onset in the SSW years. In these years, we find, for the first time, a lunar terdiurnal component with a relative amplitude of about 5 %, and lunar diurnal and semidiurnal components have relative amplitudes of about 10 %. The periods of lunar ionospheric tidal variations align with those of ocean tides.
Gunter Stober, Sharon L. Vadas, Erich Becker, Alan Liu, Alexander Kozlovsky, Diego Janches, Zishun Qiao, Witali Krochin, Guochun Shi, Wen Yi, Jie Zeng, Peter Brown, Denis Vida, Neil Hindley, Christoph Jacobi, Damian Murphy, Ricardo Buriti, Vania Andrioli, Paulo Batista, John Marino, Scott Palo, Denise Thorsen, Masaki Tsutsumi, Njål Gulbrandsen, Satonori Nozawa, Mark Lester, Kathrin Baumgarten, Johan Kero, Evgenia Belova, Nicholas Mitchell, Tracy Moffat-Griffin, and Na Li
Atmos. Chem. Phys., 24, 4851–4873, https://doi.org/10.5194/acp-24-4851-2024, https://doi.org/10.5194/acp-24-4851-2024, 2024
Short summary
Short summary
On 15 January 2022, the Hunga Tonga-Hunga Ha‘apai volcano exploded in a vigorous eruption, causing many atmospheric phenomena reaching from the surface up to space. In this study, we investigate how the mesospheric winds were affected by the volcanogenic gravity waves and estimated their propagation direction and speed. The interplay between model and observations permits us to gain new insights into the vertical coupling through atmospheric gravity waves.
Juliana Jaen, Toralf Renkwitz, Huixin Liu, Christoph Jacobi, Robin Wing, Aleš Kuchař, Masaki Tsutsumi, Njål Gulbrandsen, and Jorge L. Chau
Atmos. Chem. Phys., 23, 14871–14887, https://doi.org/10.5194/acp-23-14871-2023, https://doi.org/10.5194/acp-23-14871-2023, 2023
Short summary
Short summary
Investigation of winds is important to understand atmospheric dynamics. In the summer mesosphere and lower thermosphere, there are three main wind flows: the mesospheric westward, the mesopause southward (equatorward), and the lower-thermospheric eastward wind. Combining almost 2 decades of measurements from different radars, we study the trend, their interannual oscillations, and the effects of the geomagnetic activity over these wind maxima.
Jan Laštovička
Atmos. Chem. Phys., 23, 5783–5800, https://doi.org/10.5194/acp-23-5783-2023, https://doi.org/10.5194/acp-23-5783-2023, 2023
Short summary
Short summary
Increasing concentration of greenhouse gases, particularly of CO2, in the atmosphere causes well-known heating of the troposphere and surface. However, the increasing concentration of CO2 also affects higher levels of the atmosphere, the stratosphere, mesosphere, thermosphere, and ionosphere, where it results in remarkable long-term trends. This article reviews significant progress in investigations of long-term trends in the mesosphere, thermosphere, and ionosphere during the period 2018–2022.
Cornelius Csar Jude H. Salinas, Dong L. Wu, Jae N. Lee, Loren C. Chang, Liying Qian, and Hanli Liu
Atmos. Chem. Phys., 23, 1705–1730, https://doi.org/10.5194/acp-23-1705-2023, https://doi.org/10.5194/acp-23-1705-2023, 2023
Short summary
Short summary
Upper mesospheric carbon monoxide's (CO) photochemical lifetime is longer than dynamical timescales. This work uses satellite observations and model simulations to establish that the migrating diurnal tide and its seasonal and interannual variabilities drive CO primarily through vertical advection. Vertical advection is a transport process that is currently difficult to observe. This work thus shows that we can use CO as a tracer for vertical advection across seasonal and interannual timescales.
Sabine Wüst, Michael Bittner, Patrick J. Espy, W. John R. French, and Frank J. Mulligan
Atmos. Chem. Phys., 23, 1599–1618, https://doi.org/10.5194/acp-23-1599-2023, https://doi.org/10.5194/acp-23-1599-2023, 2023
Short summary
Short summary
Ground-based OH* airglow measurements have been carried out for almost 100 years. Advanced detector technology has greatly simplified the automatic operation of OH* airglow observing instruments and significantly improved the temporal and/or spatial resolution. Studies based on long-term measurements or including a network of instruments are reviewed, especially in the context of deriving gravity wave properties. Scientific and technical challenges for the next few years are described.
Natalie Kaifler, Bernd Kaifler, Markus Rapp, and David C. Fritts
Atmos. Chem. Phys., 23, 949–961, https://doi.org/10.5194/acp-23-949-2023, https://doi.org/10.5194/acp-23-949-2023, 2023
Short summary
Short summary
We used a lidar to measure polar mesospheric clouds from a balloon floating in the upper stratosphere. The thin-layered ice clouds at 83 km altitude are perturbed by waves. The high-resolution lidar soundings reveal small-scale structures induced by the breaking of those waves. We study these patterns and find that they occur very often. We show their morphology and discuss associated dynamical physical processes, which help to interpret case studies and to guide modelling.
Prosper K. Nyassor, Cristiano M. Wrasse, Igo Paulino, Eliah F. M. T. São Sabbas, José V. Bageston, Kleber P. Naccarato, Delano Gobbi, Cosme A. O. B. Figueiredo, Toyese T. Ayorinde, Hisao Takahashi, and Diego Barros
Atmos. Chem. Phys., 22, 15153–15177, https://doi.org/10.5194/acp-22-15153-2022, https://doi.org/10.5194/acp-22-15153-2022, 2022
Short summary
Short summary
This work investigates the sources of concentric gravity waves (CGWs) excited by a moving system of clouds with several overshooting regions on 1–2 October 2019 at São Martinho da Serra. The parameters of these waves were estimated using 2D spectral analysis and their source locations identified using backward ray tracing. Furthermore, the sources of these waves were properly identified by tracking the individual overshooting regions in space and time since the system of clouds was moving.
Qinzeng Li, Jiyao Xu, Hanli Liu, Xiao Liu, and Wei Yuan
Atmos. Chem. Phys., 22, 12077–12091, https://doi.org/10.5194/acp-22-12077-2022, https://doi.org/10.5194/acp-22-12077-2022, 2022
Short summary
Short summary
We use ground-based airglow network observations, reanalysis data, and satellite observations to explore the propagation process of concentric gravity waves (CGWs) excited by a typhoon between the troposphere, stratosphere, mesosphere, and thermosphere. We find that CGWs in the mesosphere are generated directly by the typhoon but the CGW observed in the thermosphere may be excited by CGW dissipation in the mesosphere, rather than directly excited by a typhoon and propagated to the thermosphere.
Gunter Stober, Ales Kuchar, Dimitry Pokhotelov, Huixin Liu, Han-Li Liu, Hauke Schmidt, Christoph Jacobi, Kathrin Baumgarten, Peter Brown, Diego Janches, Damian Murphy, Alexander Kozlovsky, Mark Lester, Evgenia Belova, Johan Kero, and Nicholas Mitchell
Atmos. Chem. Phys., 21, 13855–13902, https://doi.org/10.5194/acp-21-13855-2021, https://doi.org/10.5194/acp-21-13855-2021, 2021
Short summary
Short summary
Little is known about the climate change of wind systems in the mesosphere and lower thermosphere at the edge of space at altitudes from 70–110 km. Meteor radars represent a well-accepted remote sensing technique to measure winds at these altitudes. Here we present a state-of-the-art climatological interhemispheric comparison using continuous and long-lasting observations from worldwide distributed meteor radars from the Arctic to the Antarctic and sophisticated general circulation models.
Manfred Ern, Mohamadou Diallo, Peter Preusse, Martin G. Mlynczak, Michael J. Schwartz, Qian Wu, and Martin Riese
Atmos. Chem. Phys., 21, 13763–13795, https://doi.org/10.5194/acp-21-13763-2021, https://doi.org/10.5194/acp-21-13763-2021, 2021
Short summary
Short summary
Details of the driving of the semiannual oscillation (SAO) of the tropical winds in the middle atmosphere are still not known. We investigate the SAO and its driving by small-scale gravity waves (GWs) using satellite data and different reanalyses. In a large altitude range, GWs mainly drive the SAO westerlies, but in the upper mesosphere GWs seem to drive both SAO easterlies and westerlies. Reanalyses reproduce some features of the SAO but are limited by model-inherent damping at upper levels.
Fabio Vargas, Jorge L. Chau, Harikrishnan Charuvil Asokan, and Michael Gerding
Atmos. Chem. Phys., 21, 13631–13654, https://doi.org/10.5194/acp-21-13631-2021, https://doi.org/10.5194/acp-21-13631-2021, 2021
Short summary
Short summary
We study large- and small-scale gravity wave cases observed in both airglow imagery and meteor radar data obtained during the SIMONe campaign carried out in early November 2018. We calculate the intrinsic features of several waves and estimate their impact in the mesosphere and lower thermosphere region via transferring energy and momentum to the atmosphere. We also associate cases of large-scale waves with secondary wave generation in the stratosphere.
Bingkun Yu, Xianghui Xue, Christopher J. Scott, Jianfei Wu, Xinan Yue, Wuhu Feng, Yutian Chi, Daniel R. Marsh, Hanli Liu, Xiankang Dou, and John M. C. Plane
Atmos. Chem. Phys., 21, 4219–4230, https://doi.org/10.5194/acp-21-4219-2021, https://doi.org/10.5194/acp-21-4219-2021, 2021
Short summary
Short summary
A long-standing mystery of metal ions within Es layers in the Earth's upper atmosphere is the marked seasonal dependence, with a summer maximum and a winter minimum. We report a large-scale winter-to-summer transport of metal ions from 6-year multi-satellite observations and worldwide ground-based stations. A global atmospheric circulation is responsible for the phenomenon. Our results emphasise the effect of this atmospheric circulation on the transport of composition in the upper atmosphere.
Viswanathan Lakshmi Narayanan, Satonori Nozawa, Shin-Ichiro Oyama, Ingrid Mann, Kazuo Shiokawa, Yuichi Otsuka, Norihito Saito, Satoshi Wada, Takuya D. Kawahara, and Toru Takahashi
Atmos. Chem. Phys., 21, 2343–2361, https://doi.org/10.5194/acp-21-2343-2021, https://doi.org/10.5194/acp-21-2343-2021, 2021
Short summary
Short summary
In the past, additional sodium peaks occurring above the main sodium layer of the upper mesosphere were discussed. Here, formation of an additional sodium peak below the main sodium layer peak is discussed in detail. The event coincided with passage of multiple mesospheric bores, which are step-like disturbances occurring in the upper mesosphere. Hence, this work highlights the importance of such mesospheric bores in causing significant changes to the minor species concentration in a short time.
Xiao Liu, Jiyao Xu, Jia Yue, and Hanli Liu
Atmos. Chem. Phys., 20, 14437–14456, https://doi.org/10.5194/acp-20-14437-2020, https://doi.org/10.5194/acp-20-14437-2020, 2020
Short summary
Short summary
Large wind shears in the mesosphere and lower thermosphere are recognized as a common phenomenon. Simulation and ground-based observations show that the main contributor of large wind shears is gravity waves. We present a method of deriving wind shears induced by gravity waves according to the linear theory and using the global temperature observations by SABER (Sounding of the Atmosphere using Broadband Emission Radiometry). Our results agree well with observations and model simulations.
Gunter Stober, Kathrin Baumgarten, John P. McCormack, Peter Brown, and Jerry Czarnecki
Atmos. Chem. Phys., 20, 11979–12010, https://doi.org/10.5194/acp-20-11979-2020, https://doi.org/10.5194/acp-20-11979-2020, 2020
Short summary
Short summary
This paper presents a first cross-comparison of meteor ground-based observations and a meteorological analysis (NAVGEM-HA) to compare a seasonal climatology of winds and temperatures at the mesosphere/lower thermosphere. The validation is insofar unique as we not only compare the mean state but also provide a detailed comparison of the short time variability of atmospheric tidal waves. Our analysis questions previous results claiming the importance of lunar tides.
W. John R. French, Andrew R. Klekociuk, and Frank J. Mulligan
Atmos. Chem. Phys., 20, 8691–8708, https://doi.org/10.5194/acp-20-8691-2020, https://doi.org/10.5194/acp-20-8691-2020, 2020
Short summary
Short summary
We explore a quasi-quadrennial oscillation (QQO; 3–4 K amplitude, ~ 4-year period) in mesopause region temperatures observed in 24 years of hydroxyl airglow measurements over Davis, Antarctica (68° S, 78° E). Correlation and composite analysis using meteorological reanalysis and satellite data reveals complex patterns on the QQO timescale in both hemispheres. Modulation of the meridional circulation, linked to the propagation of gravity waves, plays a significant role in producing the QQO response.
Jörg Gumbel, Linda Megner, Ole Martin Christensen, Nickolay Ivchenko, Donal P. Murtagh, Seunghyuk Chang, Joachim Dillner, Terese Ekebrand, Gabriel Giono, Arvid Hammar, Jonas Hedin, Bodil Karlsson, Mikael Krus, Anqi Li, Steven McCallion, Georgi Olentšenko, Soojong Pak, Woojin Park, Jordan Rouse, Jacek Stegman, and Georg Witt
Atmos. Chem. Phys., 20, 431–455, https://doi.org/10.5194/acp-20-431-2020, https://doi.org/10.5194/acp-20-431-2020, 2020
Short summary
Short summary
Gravity waves can link together atmospheric conditions over large distances. MATS is a new Swedish satellite that will study gravity waves at altitudes around 80–110 km. MATS will take images of emissions from excited molecules, so-called airglow, and of the highest clouds in our atmosphere, so-called noctilucent clouds. These measurements will be analysed to provide three-dimensional wave structures and a comprehensive picture of wave interactions in the atmosphere.
Yuke Wang, Valerii Shulga, Gennadi Milinevsky, Aleksey Patoka, Oleksandr Evtushevsky, Andrew Klekociuk, Wei Han, Asen Grytsai, Dmitry Shulga, Valery Myshenko, and Oleksandr Antyufeyev
Atmos. Chem. Phys., 19, 10303–10317, https://doi.org/10.5194/acp-19-10303-2019, https://doi.org/10.5194/acp-19-10303-2019, 2019
Short summary
Short summary
The major sudden stratospheric warming (SSW) dramatically changed atmospheric conditions. This event is accompanied by a sharp increase in the polar stratosphere temperature, zonal wind reverse, and strong changes in the polar mesosphere. These changes affect even the midlatitude mesosphere, which is not widely covered by observations. Our newly installed microwave radiometer allowed for studying mesospheric zonal wind and CO variations to understand the SSW 2018 effects at midlatitudes.
Wen Yi, Xianghui Xue, Iain M. Reid, Damian J. Murphy, Chris M. Hall, Masaki Tsutsumi, Baiqi Ning, Guozhu Li, Robert A. Vincent, Jinsong Chen, Jianfei Wu, Tingdi Chen, and Xiankang Dou
Atmos. Chem. Phys., 19, 7567–7581, https://doi.org/10.5194/acp-19-7567-2019, https://doi.org/10.5194/acp-19-7567-2019, 2019
Short summary
Short summary
The seasonal variations in the mesopause densities, especially with regard to its global structure, are still unclear. In this study, we report the climatology of the mesopause density estimated using multiyear observations from nine meteor radars from Arctic to Antarctic latitudes. The results reveal a significant AO and SAO in mesopause density, an asymmetry between the two polar regions and evidence of intraseasonal oscillations (ISOs), perhaps associated with the ISOs of the troposphere.
Sabine Wüst, Carsten Schmidt, Patrick Hannawald, Michael Bittner, Martin G. Mlynczak, and James M. Russell III
Atmos. Chem. Phys., 19, 6401–6418, https://doi.org/10.5194/acp-19-6401-2019, https://doi.org/10.5194/acp-19-6401-2019, 2019
Short summary
Short summary
In winter 2016, the camera system FAIM derived information about the OH* airglow at ca. 86 km height during six flights on board the research aircraft FALCON in northern Scandinavia. Coincident ground- and satellite-based measurements (GRIPS and TIMED-SABER) complete the data set. The data are analysed with respect to the temporal and spatial evolution of small-scale atmospheric dynamics just before a minor stratospheric warming. Special emphasis is placed on possible instability features.
Maosheng He and Jorge Luis Chau
Atmos. Chem. Phys., 19, 5993–6006, https://doi.org/10.5194/acp-19-5993-2019, https://doi.org/10.5194/acp-19-5993-2019, 2019
Short summary
Short summary
We propose an approach to resolve waves with multiple spatial scales at a given frequency using ground-based detectors from few longitudinal sectors. The approach is used to investigate near-12 h waves. Results suggest that broadly reported enhancements of two solar nonmigrating tides during sudden stratospheric warming events are just low-frequency-resolved signatures of two neighboring waves. The tides do not enhance.
Dimitry Pokhotelov, Gunter Stober, and Jorge Luis Chau
Atmos. Chem. Phys., 19, 5251–5258, https://doi.org/10.5194/acp-19-5251-2019, https://doi.org/10.5194/acp-19-5251-2019, 2019
Short summary
Short summary
Twelve years of radar observations from a mid-latitude location in Kühlungsborn, Germany have been analysed to study characteristics of mesospheric summer echoes (MSEs). The statistical analysis shows that MSEs have a strong daytime preference and early summer seasonal preference. It is demonstrated that the meridional wind transport from polar regions is the important controlling factor for MSEs, while no clear connection to geomagnetic and solar activity is found.
Nikoloz Gudadze, Gunter Stober, and Jorge L. Chau
Atmos. Chem. Phys., 19, 4485–4497, https://doi.org/10.5194/acp-19-4485-2019, https://doi.org/10.5194/acp-19-4485-2019, 2019
Short summary
Short summary
We show a possibility of measuring mean vertical winds during the summer months using polar mesosphere summer echo (PMSE) observations. Middle Atmosphere Alomar Radar System observations of PMSE five-beam radial velocities are analysed to obtain the results. We found that sampling issues are the reason for bias in vertical wind measurements at the edges of PMSE altitudes. However, the PMSE is a good tracer for the mean vertical wind estimation at the central altitudes with its peak occurrence.
Bingkun Yu, Xianghui Xue, Xin'an Yue, Chengyun Yang, Chao Yu, Xiankang Dou, Baiqi Ning, and Lianhuan Hu
Atmos. Chem. Phys., 19, 4139–4151, https://doi.org/10.5194/acp-19-4139-2019, https://doi.org/10.5194/acp-19-4139-2019, 2019
Short summary
Short summary
It reports the long-term climatology of the intensity of Es layers from COSMIC satellites. The global Es maps present high-resolution spatial distributions and seasonal dependence. It mainly occurs at mid-latitudes and polar regions. Based on wind shear theory, simulation results indicate the convergence of vertical ion velocity could partially explain the Es seasonal dependence and some disagreements between observations and simulations suggest other processes play roles in the Es variations.
Xianchang Yue, Jonathan S. Friedman, Qihou Zhou, Xiongbin Wu, and Jens Lautenbach
Atmos. Chem. Phys., 19, 3207–3221, https://doi.org/10.5194/acp-19-3207-2019, https://doi.org/10.5194/acp-19-3207-2019, 2019
Short summary
Short summary
Using 11 years of lidar temperature data, the seasonal variations (SVs) of gravity waves (GWs) are addressed in the tropical mesopause region, shown to be clearly associated with the SVs of zonal winds reported in the literature. The SVs of GWs are determined by the filtering effect of the local background wind. The altitudes of GW potential energy have a close relation to the upper mesospheric temperature inversion layers (TILs), which provides support for the formation mechanism of TILs.
Robert Menke, Nikola Vasiljević, Jakob Mann, and Julie K. Lundquist
Atmos. Chem. Phys., 19, 2713–2723, https://doi.org/10.5194/acp-19-2713-2019, https://doi.org/10.5194/acp-19-2713-2019, 2019
Short summary
Short summary
This research utilizes several months of lidar measurements from the Perdigão 2017 campaign to investigate flow recirculation zones that occur at the two parallel ridges at the measurement site in Portugal. We found that recirculation occurs in over 50 % of the time when the wind direction is perpendicular to the direction of the ridges. Moreover, we show three-dimensional changes of the zones along the ridges and the implications of recirculation on wind turbines that are operating downstream.
Christian von Savigny, Dieter H. W. Peters, and Günter Entzian
Atmos. Chem. Phys., 19, 2079–2093, https://doi.org/10.5194/acp-19-2079-2019, https://doi.org/10.5194/acp-19-2079-2019, 2019
Short summary
Short summary
This study investigates solar effects in radio reflection height observations in the ionospheric D region at an altitude of about 80 km at northern midlatitudes. The analyzed time series covers almost six solar cycles. Statistically significant solar 27-day and 11-year signatures are identified. However, the driving mechanisms are not fully understood. We also provide evidence for dynamical effects on the radio reflection heights with periods close to the solar rotational cycle.
Yuta Hozumi, Akinori Saito, Takeshi Sakanoi, Atsushi Yamazaki, and Keisuke Hosokawa
Atmos. Chem. Phys., 18, 16399–16407, https://doi.org/10.5194/acp-18-16399-2018, https://doi.org/10.5194/acp-18-16399-2018, 2018
Short summary
Short summary
Spatial structures of wave disturbances in the upper atmosphere were investigated with space-borne imaging from the International Space Station. The wave disturbance occurred around an altitude of 100 km, and is called a mesospheric bore. The large-scale structure of mesospheric bores has not been fully captured by previous ground-based imagers, but the space-borne imaging captured a bore with a wide field of view, and showed that bores can have a large undulating wave front as long as 2000 km.
Michael Gerding, Jochen Zöllner, Marius Zecha, Kathrin Baumgarten, Josef Höffner, Gunter Stober, and Franz-Josef Lübken
Atmos. Chem. Phys., 18, 15569–15580, https://doi.org/10.5194/acp-18-15569-2018, https://doi.org/10.5194/acp-18-15569-2018, 2018
Short summary
Short summary
We describe the first comparative study of noctilucent clouds (NLCs) and mesospheric summer echoes at midlatitudes. Therefore, this study compares fresh clouds (small particles) with fully evolved clouds in the mesosphere, hinting at their evolution. It is shown that, in contrast to higher latitudes, here only a thin layer of fresh particles exist above the NLCs. This gives evidence that NLCs are not formed locally but are typically advected. This needs to be acknowledged in trend studies.
Martin Lainer, Klemens Hocke, and Niklaus Kämpfer
Atmos. Chem. Phys., 18, 12061–12074, https://doi.org/10.5194/acp-18-12061-2018, https://doi.org/10.5194/acp-18-12061-2018, 2018
Short summary
Short summary
A long continuous record (in total 7 years) of middle atmospheric water vapor at the midlatitude NDACC station in Bern is investigated to study quasi 2-day wave oscillations (Q2DWs). We present monthly climatologies of the wave amplitudes and show the periods that the Q2DWs developed. What we observe is very-high-frequency variability. An autobicoherence analysis revealed nonlinear phase couplings between Q2DWs and other atmospheric waves. Our results are useful for model validation purposes.
Tao Li, Chao Ban, Xin Fang, Jing Li, Zhaopeng Wu, Wuhu Feng, John M. C. Plane, Jiangang Xiong, Daniel R. Marsh, Michael J. Mills, and Xiankang Dou
Atmos. Chem. Phys., 18, 11683–11695, https://doi.org/10.5194/acp-18-11683-2018, https://doi.org/10.5194/acp-18-11683-2018, 2018
Short summary
Short summary
A total of 154 nights of observations by the USTC Na temperature and wind lidar (32° N, 117° E) suggest significant seasonal variability in the mesopause. Chemistry plays an important role in Na atom formation. More than half of the observed gravity wave (GW) momentum flux (MF), whose divergence determines the GW forcing, is induced by short-period (10 min–2 h) waves. The anticorrelation between MF and zonal wind (U) suggests strong filtering of short-period GWs by semiannual oscillation U.
Jorge L. Chau, Derek McKay, Juha P. Vierinen, Cesar La Hoz, Thomas Ulich, Markku Lehtinen, and Ralph Latteck
Atmos. Chem. Phys., 18, 9547–9560, https://doi.org/10.5194/acp-18-9547-2018, https://doi.org/10.5194/acp-18-9547-2018, 2018
Short summary
Short summary
Combining a phased-array power radar and a phased-array radio telescope, we have been able to identify and characterized horizontal structures and movement of noctilucent clouds, but at 3 m scales instead of optical scales. As a byproduct of our observations, we have studied their angular dependence. We show a new alternative to study these clouds on routine basis and therefore study the atmospheric dynamics that modulate them.
Gunter Stober, Svenja Sommer, Carsten Schult, Ralph Latteck, and Jorge L. Chau
Atmos. Chem. Phys., 18, 6721–6732, https://doi.org/10.5194/acp-18-6721-2018, https://doi.org/10.5194/acp-18-6721-2018, 2018
Kathrin Baumgarten, Michael Gerding, Gerd Baumgarten, and Franz-Josef Lübken
Atmos. Chem. Phys., 18, 371–384, https://doi.org/10.5194/acp-18-371-2018, https://doi.org/10.5194/acp-18-371-2018, 2018
Short summary
Short summary
Gravity waves (GWs) as well as solar tides are a key driving mechanism for the circulation in the Earth's atmosphere. The temporal variation of these waves is studied using a record long 10-day continuous Rayleigh–Mie–Raman lidar sounding at midlatitudes. This data set shows a large variability of these waves on timescales of a few days and therefore provides new insights into wave intermittency phenomena, which can help to improve model simulations.
Martin Lainer, Klemens Hocke, Rolf Rüfenacht, and Niklaus Kämpfer
Atmos. Chem. Phys., 17, 14905–14917, https://doi.org/10.5194/acp-17-14905-2017, https://doi.org/10.5194/acp-17-14905-2017, 2017
Short summary
Short summary
We report on middle-atmospheric water vapor measurements above Bern from the ground-based microwave radiometer MIAWARA (NDACC affiliated) during two winter periods of 6 months. Quasi 18 h oscillations of mesospheric water vapor above 0.1 hPa are observed. Further, the 18 h wave is seen in a zonal wind data set from the Doppler wind radiometer WIRA. Inertia-gravity-wave-induced fluctuations or a nonlinear coupling between tides and quasi 2-day waves are considered as possible drivers.
Jens Hildebrand, Gerd Baumgarten, Jens Fiedler, and Franz-Josef Lübken
Atmos. Chem. Phys., 17, 13345–13359, https://doi.org/10.5194/acp-17-13345-2017, https://doi.org/10.5194/acp-17-13345-2017, 2017
Short summary
Short summary
We present altitude profiles of winds and temperatures in the Arctic strato- and mesosphere obtained during three Januaries. The data show large year-to-year variations. We compare the observations to model data. For monthly mean profiles we find good agreement below 55 km altitude but also differences of up to 20 K and 20 m s-1 above. The fluctuations during single nights indicate gravity waves. The kinetic energy of such waves is typically 5 to 10 times larger than their potential energy.
Dhvanit Mehta, Andrew J. Gerrard, Yusuke Ebihara, Allan T. Weatherwax, and Louis J. Lanzerotti
Atmos. Chem. Phys., 17, 911–919, https://doi.org/10.5194/acp-17-911-2017, https://doi.org/10.5194/acp-17-911-2017, 2017
Short summary
Short summary
This paper presents an investigation into the sources of atmospheric gravity waves observed at 90 km above Amundsen-Scott South Pole Station, Antarctica. By combining gravity wave characteristics obtained from imager data and a numerical model for 3-D wave propagation through the atmosphere, we find that the development of baroclinic instabilities via displacement of the polar vortex is a significant and unique source of vertically propagating, short-period (< 1 h) gravity waves in the region.
Christoph Kalicinsky, Peter Knieling, Ralf Koppmann, Dirk Offermann, Wolfgang Steinbrecht, and Johannes Wintel
Atmos. Chem. Phys., 16, 15033–15047, https://doi.org/10.5194/acp-16-15033-2016, https://doi.org/10.5194/acp-16-15033-2016, 2016
Short summary
Short summary
The analysis of temperatures in the mesopause region between 1988 to 2015 shows, besides the known correlation with the 11-year solar activity cycle, a trend reversal in 2008 that can be described by a long-term oscillation. Understanding such long periodic oscillations in the atmosphere is of prime importance for climate modelling and predictions of future trends.
Maya García-Comas, Francisco González-Galindo, Bernd Funke, Angela Gardini, Aythami Jurado-Navarro, Manuel López-Puertas, and William E. Ward
Atmos. Chem. Phys., 16, 11019–11041, https://doi.org/10.5194/acp-16-11019-2016, https://doi.org/10.5194/acp-16-11019-2016, 2016
Short summary
Short summary
In this paper, for the first time, temperature longitudinal oscillations are derived from 20 to 150 km from a single instrument. A climatology of amplitudes and phases of zonal waves with odd daily frequencies is presented on a global scale. The interannual variability in amplitudes of the migrating modes shows a QBO in the MLT, which is probably originated in the stratosphere. The results are useful for testing general circulation models considering tidal effects in the MLT region.
Silje Eriksen Holmen, Chris M. Hall, and Masaki Tsutsumi
Atmos. Chem. Phys., 16, 7853–7866, https://doi.org/10.5194/acp-16-7853-2016, https://doi.org/10.5194/acp-16-7853-2016, 2016
Short summary
Short summary
Atmospheric temperatures at 90 km height above Tromsø, Norway, from 2003 to 2014 have been determined using meteor radar. Periodic oscillations ranging from ~ 9 days to a year were found in the dataset, which were related to the large-scale circulation in the middle atmosphere and with wave activity. A trend analysis was performed, revealing an overall weak cooling trend from 2003 to 2014, which is in line with other recent studies on mesopause region (~ 90 km) temperature trends.
Rupesh N. Ghodpage, Michael P. Hickey, Alok K. Taori, Devendraa Siingh, and Parashram T. Patil
Atmos. Chem. Phys., 16, 5611–5621, https://doi.org/10.5194/acp-16-5611-2016, https://doi.org/10.5194/acp-16-5611-2016, 2016
Short summary
Short summary
Gravity-wave-induced oscillations have been characterized over Kolhapur (16.8°N and 74.2°E), India, using the adiabatic variations in OH airglow intensity and temperature data. The results show that there exist large deviations from one investigation to the other. We also use a full-wave model to simulate the response of OH emission to the wave motion and compare the results with observed values. This report discusses the observed wave characteristics and cause of the noted difference.
Israel Silber, Colin Price, and Craig J. Rodger
Atmos. Chem. Phys., 16, 3279–3288, https://doi.org/10.5194/acp-16-3279-2016, https://doi.org/10.5194/acp-16-3279-2016, 2016
Short summary
Short summary
We report for the first time that the semi-annual oscillation (SAO) is one of the dominant oscillations in the nighttime lower ionosphere, using ground-based measurements of VLF signals reflected off the lower part of the ionosphere. We conclude that the origins of this oscillation are oscillatory changes of the D region's electrical characteristics, driven by NOx transport from the lower thermosphere. This oscillation should be considered in lower ionospheric and VLF wave propagation models.
F. Lilienthal and Ch. Jacobi
Atmos. Chem. Phys., 15, 9917–9927, https://doi.org/10.5194/acp-15-9917-2015, https://doi.org/10.5194/acp-15-9917-2015, 2015
Short summary
Short summary
The quasi 2-day wave (QTDW), one of the most striking features in the mesosphere/lower thermosphere, is analyzed using meteor radar measurements at Collm (51°N, 13°E) during 2004-2014. The QTDW has periods lasting between 43 and 52h during strong summer bursts, and weaker enhancements are found during winter. A correlation between QTDW amplitudes and wind shear suggests baroclinic instability to be a likely forcing mechanism.
N. H. Stray, Y. J. Orsolini, P. J. Espy, V. Limpasuvan, and R. E. Hibbins
Atmos. Chem. Phys., 15, 4997–5005, https://doi.org/10.5194/acp-15-4997-2015, https://doi.org/10.5194/acp-15-4997-2015, 2015
Short summary
Short summary
Planetary wave activity measured in the mesosphere to lower thermosphere is shown to increase drastically after strong stratospheric polar cap wind reversals associated with sudden stratospheric warmings. In addition, a moderate but significant correlation was found between planetary wave enhancement in the mesosphere to lower thermosphere and all stratospheric polar cap wind reversals, irrespective of the strength of the reversal.
M. Pramitha, M. Venkat Ratnam, A. Taori, B. V. Krishna Murthy, D. Pallamraju, and S. Vijaya Bhaskar Rao
Atmos. Chem. Phys., 15, 2709–2721, https://doi.org/10.5194/acp-15-2709-2015, https://doi.org/10.5194/acp-15-2709-2015, 2015
Short summary
Short summary
Sources and propagation characteristics of high-frequency gravity waves observed in the mesosphere using airglow emissions from Gadanki and Hyderabad, India, are investigated using reverse ray tracing. Wave amplitudes are also traced back, including both radiative and diffusive damping. Interestingly, large vertical shears in the horizontal wind are noticed near the ray terminal points (at 10-12km altitude) and are thus identified to be the source for generating the observed gravity waves.
D. Scheiben, B. Tschanz, K. Hocke, N. Kämpfer, S. Ka, and J. J. Oh
Atmos. Chem. Phys., 14, 6511–6522, https://doi.org/10.5194/acp-14-6511-2014, https://doi.org/10.5194/acp-14-6511-2014, 2014
N. Kaifler, G. Baumgarten, J. Fiedler, and F.-J. Lübken
Atmos. Chem. Phys., 13, 11757–11768, https://doi.org/10.5194/acp-13-11757-2013, https://doi.org/10.5194/acp-13-11757-2013, 2013
K. A. Day and N. J. Mitchell
Atmos. Chem. Phys., 13, 9515–9523, https://doi.org/10.5194/acp-13-9515-2013, https://doi.org/10.5194/acp-13-9515-2013, 2013
Cited articles
Alexander, S. P. and Shepherd, M. G.: Planetary wave activity in the polar lower stratosphere, Atmos. Chem. Phys., 10, 707–718, https://doi.org/10.5194/acp-10-707-2010, 2010.
Allan, D.: Statistics of atomic frequency standards, P. IEEE, 54, 221–230, https://doi.org/10.1109/PROC.1966.4634, 1966.
Araújo, L. R., Lima, L. M., Batista, P. P., Clemesha, B. R., and Takahashi, H.: Planetary wave seasonality from meteor wind measurements at 7.4° S and 22.7° S, Ann. Geophys., 32, 519–531, https://doi.org/10.5194/angeo-32-519-2014, 2014.
Baldwin, M. P., Stephenson, D. B., Thompson, D. W. J., Dunkerton, T. J., Charlton, A. J., and O'Neill, A.: Stratospheric memory and skill of extended-range weather forecasts, Science, 301, 636–640, https://doi.org/10.1126/science.1087143, 2003a.
Baldwin, M. P., Thompson, D. W. J., Shuckburgh, E. F., Norton, W. A., and Gillett, N. P.: Weather from the stratosphere?, Science, 301, 317–319, https://doi.org/10.1126/science.1085688, 2003b.
Baumgarten, G.: Doppler Rayleigh/Mie/Raman lidar for wind and temperature measurements in the middle atmosphere up to 80 km, Atmos. Meas. Tech., 3, 1509–1518, https://doi.org/10.5194/amt-3-1509-2010, 2010.
Blanc, E., Charlton-Perez, A., Keckhut, P., Evers, L., Heinrich, P., Le Pichon, A., and Hauchecorne, A.: The ARISE project: dynamics of the atmosphere and climat, Our Common Future Under Climate Change, International Scientific Coference, available at: https://hal-insu.archives-ouvertes.fr/insu-01183228 (last access: 20 February 2016), poster, 2015.
Brasseur, B. H. and Solomon, S.: Aeronomy of the Middle Atmosphere, Springer, 3rd Edn., 2005.
Charlton, A. J., O'Neill, A., Lahoz, W. A., and Massacand, A. C.: Sensitivity of tropospheric forecasts to stratospheric initial conditions, Q. J. Roy. Meteor. Soc., 130, 1771–1792, https://doi.org/10.1256/qj.03.167, 2004.
Day, K. A., Hibbins, R. E., and Mitchell, N. J.: Aura MLS observations of the westward-propagating s = 1, 16-day planetary wave in the stratosphere, mesosphere and lower thermosphere, Atmos. Chem. Phys., 11, 4149–4161, https://doi.org/10.5194/acp-11-4149-2011, 2011.
Day, K. A., Taylor, M. J., and Mitchell, N. J.: Mean winds, temperatures and the 16- and 5-day planetary waves in the mesosphere and lower thermosphere over Bear Lake Observatory (42° N, 111° W), Atmos. Chem. Phys., 12, 1571–1585, https://doi.org/10.5194/acp-12-1571-2012, 2012.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Dragani, R. and McNally, A. P.: Operational assimilation of ozone-sensitive infrared radiances at ECMWF, Q. J. Roy. Meteor. Soc., 139, 2068–2080, https://doi.org/10.1002/qj.2106, 2013.
ECMWF: available at: http://www.ecmwf.int/en/forecasts/documentation-and-support/changes-ecmwf-model, last access: 15 June 2015.
ECMWF: https://software.ecmwf.int/wiki/display/IFS/Official+IFS+Documentation, last access: 15 February 2016.
Engelen, R. J. and Bauer, P.: The use of variable CO2 in the data assimilation of AIRS and IASI radiances, Q. J. Roy. Meteor. Soc., 140, 958–965, https://doi.org/10.1002/qj.919, 2014.
Eriksson, P., Jimenez, C., and Buehler, S.: Qpack, a general tool for instrument simulation and retrieval work, J. Quant. Spectrosc. Ra., 91, 47–64, https://doi.org/10.1016/j.jqsrt.2004.05.050, 2005.
Eriksson, P., Buehler, S., Davis, C., Emde, C., and Lemke, O.: ARTS, the atmospheric radiative transfer simulator, version 2, J. Quant. Spectrosc. Ra., 112, 1551–1558, https://doi.org/10.1016/j.jqsrt.2011.03.001, 2011.
Fedulina, I. N., Pogoreltsev, A. I., and Vaughan, G.: Seasonal, interannual and short-term variability of planetary waves in Met Office stratospheric assimilated fields, Q. J. Roy. Meteor. Soc., 130, 2445–2458, https://doi.org/10.1256/qj.02.200, 2004.
Guharay, A., Batista, P., Clemesha, B., and Buriti, R.: Observations of the intraseasonal oscillations over two Brazilian low latitude stations: a comparative study , J. Atmos. Sol.-Terr. Phy., 120, 62–69, https://doi.org/10.1016/j.jastp.2014.08.016, 2014.
Hardiman, S. C., Butchart, N., Charlton-Perez, A. J., Shaw, T. A., Akiyoshi, H., Baumgaertner, A., Bekki, S., Braesicke, P., Chipperfield, M., Dameris, M., Garcia, R. R., Michou, M., Pawson, S., Rozanov, E., and Shibata, K.: Improved predictability of the troposphere using stratospheric final warmings, J. Geophys. Res.-Atmos., 116, D18113, https://doi.org/10.1029/2011JD015914, 2011.
Harris, F. J.: On the use of windows for harmonic analysis with the discrete Fourier transform, P. IEEE, 66, 51–83, https://doi.org/10.1109/PROC.1978.10837, 1978.
Hildebrand, J., Baumgarten, G., Fiedler, J., Hoppe, U.-P., Kaifler, B., Lübken, F.-J., and Williams, B. P.: Combined wind measurements by two different lidar instruments in the Arctic middle atmosphere, Atmos. Meas. Tech., 5, 2433–2445, https://doi.org/10.5194/amt-5-2433-2012, 2012.
Hirota, I. and Hirooka, T.: Normal Mode Rossby Waves Observed in the Upper Stratosphere. Part I: First Symmetric Modes of Zonal Wavenumbers 1 and 2, J. Atmos. Sci., 41, 1253–1267, https://doi.org/10.1175/1520-0469(1984)041<1253:NMRWOI>2.0.CO;2, 1984.
Hirooka, T. and Hirota, I.: Normal Mode Rossby Waves Observed in the Upper Stratosphere. Part II: Second Antisymmetric and Symmetric Modes of Zonal Wavenumbers 1 and 2, J. Atmos. Sci., 42, 536–548, https://doi.org/10.1175/1520-0469(1985)042<0536:NMRWOI>2.0.CO;2, 1985.
Hocke, K.: Phase estimation with the Lomb–Scargle periodogram method, Ann. Geophys., 16, 356–358, 1998.
Hocke, K., Studer, S., Martius, O., Scheiben, D., and Kämpfer, N.: A 20-day period standing oscillation in the northern winter stratosphere, Ann. Geophys., 31, 755–764, https://doi.org/10.5194/angeo-31-755-2013, 2013.
Huang, K. M., Liu, A. Z., Zhang, S. D., Yi, F., Huang, C. M., Gan, Q., Gong, Y., Zhang, Y. H., and Wang, R.: Observational evidence of quasi-27-day oscillation propagating from the lower atmosphere to the mesosphere over 20° N, Ann. Geophys., 33, 1321–1330, https://doi.org/10.5194/angeo-33-1321-2015, 2015.
Keckhut, P.: Mid-latitude summer response of the middle atmosphere to short-term solar UV changes, Ann. Geophys., 13, 641–647, https://doi.org/10.1007/s00585-995-0641-7, 1995.
Koshyk, J. N., Boville, B. A., Hamilton, K., Manzini, E., and Shibata, K.: Kinetic energy spectrum of horizontal motions in middle-atmosphere models, J. Geophys. Res.-Atmos., 104, 27177–27190, https://doi.org/10.1029/1999JD900814, 1999.
Le Pichon, A., Assink, J. D., Heinrich, P., Blanc, E., Charlton-Perez, A., Lee, C. F., Keckhut, P., Hauchecorne, A., Rüfenacht, R., Kämpfer, N., Drob, D. P., Smets, P. S. M., Evers, L. G., Ceranna, L., Pilger, C., Ross, O., and Claud, C.: Comparison of co-located independent ground-based middle-atmospheric wind and temperature measurements with numerical weather prediction models, J. Geophys. Res.-Atmos., 120, 8318–8331, https://doi.org/10.1002/2015JD023273, 2015.
Lomb, N. R.: Least-squares frequency analysis of unequally spaced data, Astrophys. Space Sci., 39, 447–462, https://doi.org/10.1007/BF00648343, 1976.
Luo, Y., Manson, A. H., Meek, C. E., Thayaparan, T., MacDougall, J., and Hocking, W. K.: Extra long period (20–40 day) oscillations in the mesospheric and lower thermospheric winds: observations in Canada, Europe and Japan, and considerations of possible solar influences, J. Atmos. Sol.-Terr. Phy., 63, 835–852, https://doi.org/10.1016/S1364-6826(00)00206-6, 2001.
Luo, Y., Manson, A. H., Meek, C. E., Thayaparan, T., MacDougall, J., and Hocking, W. K.: The 16-day wave in the mesosphere and lower thermosphere: simultaneous observations at Saskatoon (52° N, 107° W) and London (43° N, 81° W), Canada, J. Atmos. Sol.-Terr. Phy., 64, 1287–1307, https://doi.org/10.1016/S1364-6826(02)00042-1, 2002.
McIntyre, M. E. and Palmer, T. N.: Breaking planetary waves in the stratosphere, Nature, 305, 593–600, https://doi.org/10.1038/305593a0, 1983.
Müllemann, A. and Lübken, F.-J.: Horizontal winds in the mesosphere at high latitudes, coupling processes in the MLT region, Adv. Space Res., 35, 1890–1894, https://doi.org/10.1016/j.asr.2004.11.014, 2005.
National Research Council: United States Space Science Program: Report to COSPAR, Ninth Meeting, National Academy of Sciences, 1966.
Orr, A., Bechtold, P., Scinocca, J., Ern, M., and Janiskova, M.: Improved middle atmosphere climate and forecasts in the ECMWF model through a nonorographic gravity wave drag parameterization, J. Climate, 23, 5905–5926, https://doi.org/10.1175/2010JCLI3490.1, 2010.
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P.: Numerical Recipes in Fortran 77: The Art of Scientific Computing, 2nd Edn., Cambridge University Press, New York, NY, USA, 2001.
Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E., Bosilovich, M. G., Schubert, S. D., Takacs, L., Kim, G.-K., Bloom, S., Chen, J., Collins, D., Conaty, A., da Silva, A., Gu, W., Joiner, J., Koster, R. D., Lucchesi, R., Molod, A., Owens, T., Pawson, S., Pegion, P., Redder, C. R., Reichle, R., Robertson, F. R., Ruddick, A. G., Sienkiewicz, M., and Woollen, J.: MERRA: NASA's Modern-Era Retrospective Analysis for Research and Applications, J. Climate, 24, 3624–3648, https://doi.org/10.1175/JCLI-D-11-00015.1, 2011.
Rodgers, C. D.: Inverse Methods for Atmospheric Sounding: Theory and Practice, Vol. 2 of Series on Atmospheric, Oceanic and Planetary Physics, World Scientific, Singapore, reprint 2008, 2000.
Rüfenacht, R., Kämpfer, N., and Murk, A.: First middle-atmospheric zonal wind profile measurements with a new ground-based microwave Doppler-spectro-radiometer, Atmos. Meas. Tech., 5, 2647–2659, https://doi.org/10.5194/amt-5-2647-2012, 2012.
Rüfenacht, R., Murk, A., Kämpfer, N., Eriksson, P., and Buehler, S. A.: Middle-atmospheric zonal and meridional wind profiles from polar, tropical and midlatitudes with the ground-based microwave Doppler wind radiometer WIRA, Atmos. Meas. Tech., 7, 4491–4505, https://doi.org/10.5194/amt-7-4491-2014, 2014.
Salby, M. L.: Rossby normal modes in nonuniform background configurations. Part I: Simple fields, J. Atmos. Sci., 38, 1803–1826, https://doi.org/10.1175/1520-0469(1981)038<1803:RNMINB>2.0.CO;2, 1981a.
Salby, M. L.: Rossby normal modes in nonuniform background configurations. Part II. Equinox and solstice conditions, J. Atmos. Sci., 38, 1827–1840, https://doi.org/10.1175/1520-0469(1981)038<1827:RNMINB>2.0.CO;2, 1981b.
Scargle, J. D.: Studies in astronomical time-series analysis. II. Statistical aspects of spectral-analysis of unevenly spaced data, Astrophys, J., 263, 835–853, https://doi.org/10.1086/160554, 1982.
Scheiben, D., Tschanz, B., Hocke, K., Kämpfer, N., Ka, S., and Oh, J. J.: The quasi 16-day wave in mesospheric water vapor during boreal winter 2011/2012, Atmos. Chem. Phys., 14, 6511–6522, https://doi.org/10.5194/acp-14-6511-2014, 2014.
Shepherd, T. G., Koshyk, J. N., and Ngan, K.: On the nature of large-scale mixing in the stratosphere and mesosphere, J. Geophys. Res.-Atmos., 105, 12433–12446, https://doi.org/10.1029/2000JD900133, 2000.
Sigmond, M., Scinocca, J. F., Kharin, V. V., and Shepherd, T. G.: Enhanced seasonal forecast skill following stratospheric sudden warmings, Nat. Geosci., 6, 98–102, https://doi.org/10.1038/NGEO1698, 2013.
Studer, S., Hocke, K., and Kämpfer, N.: Intraseasonal oscillations of stratospheric ozone above Switzerland, J. Atmos. Sol.-Terr. Phy., 74, 189–198, https://doi.org/10.1016/j.jastp.2011.10.020, 2012.
Williams, C. R. and Avery, S. K.: Analysis of long-period waves using the mesosphere-stratosphere-troposphere radar at Poker Flat, Alaska, J. Geophys. Res.-Atmos., 97, 20855–20861, https://doi.org/10.1038/305593a0, 1992.
Short summary
We quantitatively analyze oscillations with periods from 5 to 50 days in horizontal wind profiles between mid-stratosphere and mesopause based on more than 44 months of data from high, mid- and low latitudes measured by a novel instrument. For the first time, long time series of continuous wind measurements allow direct observations of dynamics throughout this altitude range. The observations agree remarkably well with the ECMWF model in the stratosphere but discrepancies exist in the mesosphere.
We quantitatively analyze oscillations with periods from 5 to 50 days in horizontal wind...
Altmetrics
Final-revised paper
Preprint