Articles | Volume 16, issue 5
https://doi.org/10.5194/acp-16-3171-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-16-3171-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Development of a vehicle emission inventory with high temporal–spatial resolution based on NRT traffic data and its impact on air pollution in Beijing – Part 2: Impact of vehicle emission on urban air quality
Jianjun He
The College of Environmental Science and Engineering, Nankai
University, Tianjin, China
Lin Wu
The College of Environmental Science and Engineering, Nankai
University, Tianjin, China
Hongjun Mao
CORRESPONDING AUTHOR
The College of Environmental Science and Engineering, Nankai
University, Tianjin, China
Hongli Liu
CORRESPONDING AUTHOR
Chinese Academy of Meteorological Sciences, China Meteorological
Administration, Beijing, China
Boyu Jing
The College of Environmental Science and Engineering, Nankai
University, Tianjin, China
Ye Yu
Cold and Arid Regions Environmental and Engineering Research
Institute, Chinese Academy of Sciences, Lanzhou, China
Peipei Ren
The College of Environmental Science and Engineering, Nankai
University, Tianjin, China
Cheng Feng
Tianjin Vehicle Emission Control Center, Tianjin, China
Xuehao Liu
Tianjin Vehicle Emission Control Center, Tianjin, China
Related authors
Boyu Jing, Lin Wu, Hongjun Mao, Sunning Gong, Jianjun He, Chao Zou, Guohua Song, Xiaoyu Li, and Zhong Wu
Atmos. Chem. Phys., 16, 3161–3170, https://doi.org/10.5194/acp-16-3161-2016, https://doi.org/10.5194/acp-16-3161-2016, 2016
Short summary
Short summary
This paper presents a bottom-up methodology based on the local emission factors, complemented with the widely used emission factors of COPERT model and near-real-time (NRT) traffic data on road segments to develop a high temporal/spatial resolution vehicle emission inventory (HTSVE) for the urban Beijing area. The results show that the vehicle emissions of NOx, CO, HC and PM were 10.54 × 104, 42.51 × 104 and 2.13 × 104 and 0.41 × 104 Mg respectively.
Boyu Jing, Lin Wu, Hongjun Mao, Sunning Gong, Jianjun He, Chao Zou, Guohua Song, Xiaoyu Li, and Zhong Wu
Atmos. Chem. Phys., 16, 3161–3170, https://doi.org/10.5194/acp-16-3161-2016, https://doi.org/10.5194/acp-16-3161-2016, 2016
Short summary
Short summary
This paper presents a bottom-up methodology based on the local emission factors, complemented with the widely used emission factors of COPERT model and near-real-time (NRT) traffic data on road segments to develop a high temporal/spatial resolution vehicle emission inventory (HTSVE) for the urban Beijing area. The results show that the vehicle emissions of NOx, CO, HC and PM were 10.54 × 104, 42.51 × 104 and 2.13 × 104 and 0.41 × 104 Mg respectively.
P. Wang, H. Wang, Y. Q. Wang, X. Y. Zhang, S. L. Gong, M. Xue, C. H. Zhou, H. L. Liu, X. Q. An, T. Niu, and Y. L. Cheng
Atmos. Chem. Phys., 16, 989–1002, https://doi.org/10.5194/acp-16-989-2016, https://doi.org/10.5194/acp-16-989-2016, 2016
Short summary
Short summary
An ensemble optimal interpolation (EnOI) data assimilation technique is used to investigate the possibility of optimally recovering the spatially resolved emissions bias of BC. The inversed emission over China in January is 240.1 Gg, and annual emission is about 2539 Gg. Even though only monthly mean BC measurements are employed to inverse the emissions, the accuracy of the daily model simulation improves. We finds that EnOI is a useful and computation-free method to make top-down estimation.
X. Y. Zhang, J. Z. Wang, Y. Q. Wang, H. L. Liu, J. Y. Sun, and Y. M. Zhang
Atmos. Chem. Phys., 15, 12935–12952, https://doi.org/10.5194/acp-15-12935-2015, https://doi.org/10.5194/acp-15-12935-2015, 2015
Short summary
Short summary
No obvious changes were found in annual mean concentrations of major chemical components and PM10 in 2013, relative to 2012. But wintertime mass were quite different; approximately 60% of the winter mass increase from 2012 to 2013 can be attributed to severe meteorological conditions in the HBP area, and mass of chemical components exhibited a decline during 2006 to 2010, and then a rise till 2013. Coal-combustion was still the largest anthropogenic source of aerosol pollution in 2013 in China.
J. Chen, Y. Hu, Y. Yu, and S. Lü
Atmos. Chem. Phys., 15, 9929–9944, https://doi.org/10.5194/acp-15-9929-2015, https://doi.org/10.5194/acp-15-9929-2015, 2015
Short summary
Short summary
The ergodic theorem of stationary random processes is introduced to analyse and verify the ergodicity of atmospheric turbulence measured using the eddy-covariance technique with two sets of field observational data. The results show that the ergodicity of atmospheric turbulence in atmospheric boundary layer is relative not only to the atmospheric stratification but also to the eddy scale of atmospheric turbulence.
H. Wang, M. Xue, X. Y. Zhang, H. L. Liu, C. H. Zhou, S. C. Tan, H. Z. Che, B. Chen, and T. Li
Atmos. Chem. Phys., 15, 3257–3275, https://doi.org/10.5194/acp-15-3257-2015, https://doi.org/10.5194/acp-15-3257-2015, 2015
Related subject area
Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Predicting hygroscopic growth of organosulfur aerosol particles using COSMOtherm
Dust aerosol from the Aralkum Desert influences the radiation budget and atmospheric dynamics of Central Asia
Global modeling of aerosol nucleation with a semi-explicit chemical mechanism for highly oxygenated organic molecules (HOMs)
Synergistic effects of the winter North Atlantic Oscillation (NAO) and El Niño–Southern Oscillation (ENSO) on dust activities in North China during the following spring
Aerosol composition, air quality, and boundary layer dynamics in the urban background of Stuttgart in winter
Measurement report: Source attribution and estimation of black carbon levels in an urban hotspot of the central Po Valley – an integrated approach combining high-resolution dispersion modelling and micro-aethalometers
Microphysical modelling of aerosol scavenging by different types of clouds: description and validation of the approach
Insights into the sources of ultrafine particle numbers at six European urban sites obtained by investigating COVID-19 lockdowns
In-plume and out-of-plume analysis of aerosol–cloud interactions derived from the 2014–2015 Holuhraun volcanic eruption
Impacts of atmospheric circulation patterns and cloud inhibition on aerosol radiative effect and boundary layer structure during winter air pollution in Sichuan Basin, China
Investigating the sign of stratocumulus adjustments to aerosols in the ICON global storm-resolving model
A model study investigating the sensitivity of aerosol forcing to the volatilities of semi-volatile organic compounds
Decomposing the effective radiative forcing of anthropogenic aerosols based on CMIP6 Earth system models
Modeling impacts of dust mineralogy on fast climate response
Representation of iron aerosol size distributions is critical in evaluating atmospheric soluble iron input to the ocean
Uncertainties in laboratory-measured shortwave refractive indices of mineral dust aerosols and derived optical properties: a theoretical assessment
Diagnosing uncertainties in global biomass burning emission inventories and their impact on modeled air pollutants
Role of atmospheric aerosols in severe winter fog over the Indo-Gangetic Plain of India: a case study
Long-term variability in black carbon emissions constrained by gap-filled absorption aerosol optical depth and associated premature mortality in China
Intercomparison of aerosol optical depths from four reanalyses and their multi-reanalysis consensus
Global aviation contrail climate effects from 2019 to 2021
Multi-model effective radiative forcing of the 2020 sulphur cap for shipping
Rapid iodine oxoacid nucleation enhanced by dimethylamine in broad marine regions
Simulations of the impact of cloud condensation nuclei and ice-nucleating particles perturbations on the microphysics and radar reflectivity factor of stratiform mixed-phase clouds
Warming effects of reduced sulfur emissions from shipping
Aerosols in the central Arctic cryosphere: satellite and model integrated insights during Arctic spring and summer
Observationally constrained regional variations of shortwave absorption by iron oxides emphasize the cooling effect of dust
Droplet collection efficiencies inferred from satellite retrievals constrain effective radiative forcing of aerosol–cloud interactions
Global aerosol-type classification using a new hybrid algorithm and Aerosol Robotic Network data
Simulated phase state and viscosity of secondary organic aerosols over China
Comparing the simulated influence of biomass burning plumes on low-level clouds over the southeastern Atlantic under varying smoke conditions
A global dust emission dataset for estimating dust radiative forcings in climate models
Improved simulations of biomass burning aerosol optical properties and lifetimes in the NASA GEOS Model during the ORACLES-I campaign
Retrieval of refractive index and water content for the coating materials of aged black carbon aerosol based on optical properties: a theoretical analysis
Revealing dominant patterns of aerosols regimes in the lower troposphere and their evolution from preindustrial times to the future in global climate model simulations
Sharp increase in Saharan dust intrusions over the western Euro-Mediterranean in February–March 2020–2022 and associated atmospheric circulation
Temporal and spatial variations in dust activity in Australia based on remote sensing and reanalysis datasets
Sensitivity of global direct aerosol shortwave radiative forcing to uncertainties in aerosol optical properties
Molecular-level study on the role of methanesulfonic acid in iodine oxoacid nucleation
Improving estimation of a record breaking East Asian dust storm emission with lagged aerosol Ångström Exponent observations
Regional to global distributions, trends, and drivers of biogenic volatile organic compound emission from 2001 to 2020
Impacts of ice-nucleating particles on cirrus clouds and radiation derived from global model simulations with MADE3 in EMAC
Seasonal characteristics of emission, distribution, and radiative effect of marine organic aerosols over the western Pacific Ocean: an investigation with a coupled regional climate aerosol model
Fire–precipitation interactions amplify the quasi-biennial variability in fires over southern Mexico and Central America
Improved estimates of smoke exposure during Australia fire seasons: importance of quantifying plume injection heights
New particle formation induced by anthropogenic–biogenic interactions on the southeastern Tibetan Plateau
Investigation of observed dust trends over the Middle East region in NASA Goddard Earth Observing System (GEOS) model simulations
Impact of Biomass Burning Aerosols (BBA) on the tropical African climate in an ocean-atmosphere-aerosols coupled climate model
A new process-based and scale-aware desert dust emission scheme for global climate models – Part II: Evaluation in the Community Earth System Model version 2 (CESM2)
The key role of atmospheric absorption in the Asian Summer Monsoon response to dust emissions in CMIP6 models
Zijun Li, Angela Buchholz, and Noora Hyttinen
Atmos. Chem. Phys., 24, 11717–11725, https://doi.org/10.5194/acp-24-11717-2024, https://doi.org/10.5194/acp-24-11717-2024, 2024
Short summary
Short summary
Evaluating organosulfur (OS) hygroscopicity is important for assessing aerosol–cloud climate interactions in the post-fossil-fuel future, when SO2 emissions decrease and OS compounds become increasingly important. Here a state-of-the-art quantum-chemistry-based method was used to predict the hygroscopic growth factors (HGFs) of a group of atmospherically relevant OS compounds and their mixtures with (NH4)2SO4. A good agreement was observed between their model-estimated and experimental HGFs.
Jamie R. Banks, Bernd Heinold, and Kerstin Schepanski
Atmos. Chem. Phys., 24, 11451–11475, https://doi.org/10.5194/acp-24-11451-2024, https://doi.org/10.5194/acp-24-11451-2024, 2024
Short summary
Short summary
The Aralkum is a new desert in Central Asia formed by the desiccation of the Aral Sea. This has created a source of atmospheric dust, with implications for the balance of solar and thermal radiation. Simulating these effects using a dust transport model, we find that Aralkum dust adds radiative cooling effects to the surface and atmosphere on average but also adds heating events. Increases in surface pressure due to Aralkum dust strengthen the Siberian High and weaken the summer Asian heat low.
Xinyue Shao, Minghuai Wang, Xinyi Dong, Yaman Liu, Wenxiang Shen, Stephen R. Arnold, Leighton A. Regayre, Meinrat O. Andreae, Mira L. Pöhlker, Duseong S. Jo, Man Yue, and Ken S. Carslaw
Atmos. Chem. Phys., 24, 11365–11389, https://doi.org/10.5194/acp-24-11365-2024, https://doi.org/10.5194/acp-24-11365-2024, 2024
Short summary
Short summary
Highly oxygenated organic molecules (HOMs) play an important role in atmospheric new particle formation (NPF). By semi-explicitly coupling the chemical mechanism of HOMs and a comprehensive nucleation scheme in a global climate model, the updated model shows better agreement with measurements of nucleation rate, growth rate, and NPF event frequency. Our results reveal that HOM-driven NPF leads to a considerable increase in particle and cloud condensation nuclei burden globally.
Falei Xu, Shuang Wang, Yan Li, and Juan Feng
Atmos. Chem. Phys., 24, 10689–10705, https://doi.org/10.5194/acp-24-10689-2024, https://doi.org/10.5194/acp-24-10689-2024, 2024
Short summary
Short summary
This study examines how the winter North Atlantic Oscillation (NAO) and El Niño–Southern Oscillation (ENSO) affect dust activities in North China during the following spring. The results show that the NAO and ENSO, particularly in their negative phases, greatly influence dust activities. When both are negative, their combined effect on dust activities is even greater. This research highlights the importance of these climate patterns in predicting spring dust activities in North China.
Hengheng Zhang, Wei Huang, Xiaoli Shen, Ramakrishna Ramisetty, Junwei Song, Olga Kiseleva, Christopher Claus Holst, Basit Khan, Thomas Leisner, and Harald Saathoff
Atmos. Chem. Phys., 24, 10617–10637, https://doi.org/10.5194/acp-24-10617-2024, https://doi.org/10.5194/acp-24-10617-2024, 2024
Short summary
Short summary
Our study unravels how stagnant winter conditions elevate aerosol levels in Stuttgart. Cloud cover at night plays a pivotal role, impacting morning air quality. Validating a key model, our findings aid accurate air quality predictions, crucial for effective pollution mitigation in urban areas.
Giorgio Veratti, Alessandro Bigi, Michele Stortini, Sergio Teggi, and Grazia Ghermandi
Atmos. Chem. Phys., 24, 10475–10512, https://doi.org/10.5194/acp-24-10475-2024, https://doi.org/10.5194/acp-24-10475-2024, 2024
Short summary
Short summary
In a study of two consecutive winter seasons, we used measurements and modelling tools to identify the levels and sources of black carbon pollution in a medium-sized urban area of the Po Valley, Italy. Our findings show that biomass burning and traffic-related emissions (especially from Euro 4 diesel cars) significantly contribute to BC concentrations. This research offers crucial insights for policymakers and urban planners aiming to improve air quality in cities.
Pascal Lemaitre, Arnaud Quérel, Alexis Dépée, Alice Guerra Devigne, Marie Monier, Thibault Hiron, Chloé Soto Minguez, Daniel Hardy, and Andrea Flossmann
Atmos. Chem. Phys., 24, 9713–9732, https://doi.org/10.5194/acp-24-9713-2024, https://doi.org/10.5194/acp-24-9713-2024, 2024
Short summary
Short summary
A new in-cloud scavenging scheme is proposed. It is based on a microphysical model of cloud formation and may be applied to long-distance atmospheric transport models (> 100 km) and climatic models. This model is applied to the two most extreme precipitating cloud types in terms of both relative humidity and vertical extension: cumulonimbus and stratus.
Alex Rowell, James Brean, David C. S. Beddows, Tuukka Petäjä, Máté Vörösmarty, Imre Salma, Jarkko V. Niemi, Hanna E. Manninen, Dominik van Pinxteren, Thomas Tuch, Kay Weinhold, Zongbo Shi, and Roy M. Harrison
Atmos. Chem. Phys., 24, 9515–9531, https://doi.org/10.5194/acp-24-9515-2024, https://doi.org/10.5194/acp-24-9515-2024, 2024
Short summary
Short summary
Different sources of airborne particles in the atmospheres of four European cities were distinguished by recognising their particle size distributions using a statistical procedure, positive matrix factorisation. The various sources responded differently to the changes in emissions associated with COVID-19 lockdowns, and the reasons are investigated. While traffic emissions generally decreased, particles formed from reactions of atmospheric gases decreased in some cities but increased in others.
Amy H. Peace, Ying Chen, George Jordan, Daniel G. Partridge, Florent Malavelle, Eliza Duncan, and Jim M. Haywood
Atmos. Chem. Phys., 24, 9533–9553, https://doi.org/10.5194/acp-24-9533-2024, https://doi.org/10.5194/acp-24-9533-2024, 2024
Short summary
Short summary
Natural aerosols from volcanic eruptions can help us understand how anthropogenic aerosols modify climate. We use observations and model simulations of the 2014–2015 Holuhraun eruption plume to examine aerosol–cloud interactions in September 2014. We find a shift to clouds with smaller, more numerous cloud droplets in the first 2 weeks of the eruption. In the third week, the background meteorology and previous conditions experienced by air masses modulate the aerosol perturbation to clouds.
Hua Lu, Min Xie, Bingliang Zhuang, Danyang Ma, Bojun Liu, Yangzhihao Zhan, Tijian Wang, Shu Li, Mengmeng Li, and Kuanguang Zhu
Atmos. Chem. Phys., 24, 8963–8982, https://doi.org/10.5194/acp-24-8963-2024, https://doi.org/10.5194/acp-24-8963-2024, 2024
Short summary
Short summary
To identify cloud, aerosol, and planetary boundary layer (PBL) interactions from an air quality perspective, we summarized two pollution patterns characterized by denser liquid cloud and by obvious cloud radiation interaction (CRI). Numerical simulation experiments showed CRI could cause a 50 % reduction in aerosol radiation interaction (ARI) under a low-trough system. The results emphasized the nonnegligible role of CRI and its inhibition of ARI under wet and cloudy pollution synoptic patterns.
Emilie Fons, Ann Kristin Naumann, David Neubauer, Theresa Lang, and Ulrike Lohmann
Atmos. Chem. Phys., 24, 8653–8675, https://doi.org/10.5194/acp-24-8653-2024, https://doi.org/10.5194/acp-24-8653-2024, 2024
Short summary
Short summary
Aerosols can modify the liquid water path (LWP) of stratocumulus and, thus, their radiative effect. We compare storm-resolving model and satellite data that disagree on the sign of LWP adjustments and diagnose this discrepancy with causal inference. We find that strong precipitation, the absence of wet scavenging, and cloud deepening under a weak inversion contribute to positive LWP adjustments to aerosols in the model, despite weak negative effects from cloud-top entrainment enhancement.
Muhammed Irfan, Thomas Kühn, Taina Yli-Juuti, Anton Laakso, Eemeli Holopainen, Douglas R. Worsnop, Annele Virtanen, and Harri Kokkola
Atmos. Chem. Phys., 24, 8489–8506, https://doi.org/10.5194/acp-24-8489-2024, https://doi.org/10.5194/acp-24-8489-2024, 2024
Short summary
Short summary
The study examines how the volatility of semi-volatile organic compounds affects secondary organic aerosol (SOA) formation and climate. Our simulations show that uncertainties in these volatilities influence aerosol mass and climate impacts. Accurate representation of these compounds in climate models is crucial for predicting global climate patterns.
Alkiviadis Kalisoras, Aristeidis K. Georgoulias, Dimitris Akritidis, Robert J. Allen, Vaishali Naik, Chaincy Kuo, Sophie Szopa, Pierre Nabat, Dirk Olivié, Twan van Noije, Philippe Le Sager, David Neubauer, Naga Oshima, Jane Mulcahy, Larry W. Horowitz, and Prodromos Zanis
Atmos. Chem. Phys., 24, 7837–7872, https://doi.org/10.5194/acp-24-7837-2024, https://doi.org/10.5194/acp-24-7837-2024, 2024
Short summary
Short summary
Effective radiative forcing (ERF) is a metric for estimating how human activities and natural agents change the energy flow into and out of the Earth’s climate system. We investigate the anthropogenic aerosol ERF, and we estimate the contribution of individual processes to the total ERF using simulations from Earth system models within the Coupled Model Intercomparison Project Phase 6 (CMIP6). Our findings highlight that aerosol–cloud interactions drive ERF variability during the last 150 years.
Qianqian Song, Paul Ginoux, María Gonçalves Ageitos, Ron L. Miller, Vincenzo Obiso, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 24, 7421–7446, https://doi.org/10.5194/acp-24-7421-2024, https://doi.org/10.5194/acp-24-7421-2024, 2024
Short summary
Short summary
We implement and simulate the distribution of eight dust minerals in the GFDL AM4.0 model. We found that resolving the eight minerals reduces dust absorption compared to the homogeneous dust used in the standard GFDL AM4.0 model that assumes a globally uniform hematite content of 2.7 % by volume. Resolving dust mineralogy results in significant impacts on radiation, land surface temperature, surface winds, and precipitation over North Africa in summer.
Mingxu Liu, Hitoshi Matsui, Douglas Hamilton, Sagar Rathod, Kara Lamb, and Natalie Mahowald
EGUsphere, https://doi.org/10.5194/egusphere-2024-1454, https://doi.org/10.5194/egusphere-2024-1454, 2024
Short summary
Short summary
Atmospheric aerosol deposition provides iron to promote marine primary production, yet its amount remains highly uncertain. This study demonstrates that iron-containing particle size at emission is a critical factor in regulating their input to open oceans by performing global aerosol simulations. Further observational constraints on this are needed to reduce modelling uncertainties.
Senyi Kong, Zheng Wang, and Lei Bi
Atmos. Chem. Phys., 24, 6911–6935, https://doi.org/10.5194/acp-24-6911-2024, https://doi.org/10.5194/acp-24-6911-2024, 2024
Short summary
Short summary
The retrieval of refractive indices of dust aerosols from laboratory optical measurements is commonly done assuming spherical particles. This paper aims to investigate the uncertainties in the shortwave refractive indices and corresponding optical properties by considering non-spherical and inhomogeneous models for dust samples. The study emphasizes the significance of using non-spherical models for simulating dust aerosols.
Wenxuan Hua, Sijia Lou, Xin Huang, Lian Xue, Ke Ding, Zilin Wang, and Aijun Ding
Atmos. Chem. Phys., 24, 6787–6807, https://doi.org/10.5194/acp-24-6787-2024, https://doi.org/10.5194/acp-24-6787-2024, 2024
Short summary
Short summary
In this study, we diagnose uncertainties in carbon monoxide and organic carbon emissions from four inventories for seven major wildfire-prone regions. Uncertainties in vegetation classification methods, fire detection products, and cloud obscuration effects lead to bias in these biomass burning (BB) emission inventories. By comparing simulations with measurements, we provide certain inventory recommendations. Our study has implications for reducing uncertainties in emissions in further studies.
Chandrakala Bharali, Mary Barth, Rajesh Kumar, Sachin D. Ghude, Vinayak Sinha, and Baerbel Sinha
Atmos. Chem. Phys., 24, 6635–6662, https://doi.org/10.5194/acp-24-6635-2024, https://doi.org/10.5194/acp-24-6635-2024, 2024
Short summary
Short summary
This study examines the role of atmospheric aerosols in winter fog over the Indo-Gangetic Plains of India using WRF-Chem. The increase in RH with aerosol–radiation feedback (ARF) is found to be important for fog formation as it promotes the growth of aerosols in the polluted environment. Aqueous-phase chemistry in the fog increases PM2.5 concentration, further affecting ARF. ARF and aqueous-phase chemistry affect the fog intensity and the timing of fog formation by ~1–2 h.
Wenxin Zhao, Yu Zhao, Yu Zheng, Dong Chen, Jinyuan Xin, Kaitao Li, Huizheng Che, Zhengqiang Li, Mingrui Ma, and Yun Hang
Atmos. Chem. Phys., 24, 6593–6612, https://doi.org/10.5194/acp-24-6593-2024, https://doi.org/10.5194/acp-24-6593-2024, 2024
Short summary
Short summary
We evaluate the long-term (2000–2020) variabilities of aerosol absorption optical depth, black carbon emissions, and associated health risks in China with an integrated framework that combines multiple observations and modeling techniques. We demonstrate the remarkable emission abatement resulting from the implementation of national pollution controls and show how human activities affected the emissions with a spatiotemporal heterogeneity, thus supporting differentiated policy-making by region.
Peng Xian, Jeffrey S. Reid, Melanie Ades, Angela Benedetti, Peter R. Colarco, Arlindo da Silva, Tom F. Eck, Johannes Flemming, Edward J. Hyer, Zak Kipling, Samuel Rémy, Tsuyoshi Thomas Sekiyama, Taichu Tanaka, Keiya Yumimoto, and Jianglong Zhang
Atmos. Chem. Phys., 24, 6385–6411, https://doi.org/10.5194/acp-24-6385-2024, https://doi.org/10.5194/acp-24-6385-2024, 2024
Short summary
Short summary
The study compares and evaluates monthly AOD of four reanalyses (RA) and their consensus (i.e., ensemble mean). The basic verification characteristics of these RA versus both AERONET and MODIS retrievals are presented. The study discusses the strength of each RA and identifies regions where divergence and challenges are prominent. The RA consensus usually performs very well on a global scale in terms of how well it matches the observational data, making it a good choice for various applications.
Roger Teoh, Zebediah Engberg, Ulrich Schumann, Christiane Voigt, Marc Shapiro, Susanne Rohs, and Marc E. J. Stettler
Atmos. Chem. Phys., 24, 6071–6093, https://doi.org/10.5194/acp-24-6071-2024, https://doi.org/10.5194/acp-24-6071-2024, 2024
Short summary
Short summary
The radiative forcing (RF) due to aviation contrails is comparable to that caused by CO2. We estimate that global contrail net RF in 2019 was 62.1 mW m−2. This is ~1/2 the previous best estimate for 2018. Contrail RF varies regionally due to differences in conditions required for persistent contrails. COVID-19 reduced contrail RF by 54% in 2020 relative to 2019. Globally, 2 % of all flights account for 80 % of the annual contrail energy forcing, suggesting a opportunity to mitigate contrail RF.
Ragnhild Bieltvedt Skeie, Rachael Byrom, Øivind Hodnebrog, Caroline Jouan, and Gunnar Myhre
EGUsphere, https://doi.org/10.5194/egusphere-2024-1394, https://doi.org/10.5194/egusphere-2024-1394, 2024
Short summary
Short summary
In 2020 new regulations by the International Maritime Organization of sulphur emissions came into force that reduced emissions of SO2 from the shipping sector by approximately 80 %. In this study, we use multiple models to calculate by how much the Earth energy balance changed due to the emission reduction, the so called effective radiative forcing. The calculated effective radiative forcing is weak, comparable to the effect of the increase in CO2 over the last two to three years.
Haotian Zu, Biwu Chu, Yiqun Lu, Ling Liu, and Xiuhui Zhang
Atmos. Chem. Phys., 24, 5823–5835, https://doi.org/10.5194/acp-24-5823-2024, https://doi.org/10.5194/acp-24-5823-2024, 2024
Short summary
Short summary
The nucleation of iodic acid (HIO3) and iodous acid (HIO2) was proven to be critical in marine areas. However, HIO3–HIO2 nucleation cannot effectively derive the rapid nucleation in some polluted coasts. We find a significant enhancement of dimethylamine (DMA) on the HIO3–HIO2 nucleation in marine and polar regions with abundant DMA sources, which may establish reasonable connections between the HIO3–HIO2 nucleation and the rapid formation of new particles in polluted marine and polar regions.
Junghwa Lee, Patric Seifert, Tempei Hashino, Maximilian Maahn, Fabian Senf, and Oswald Knoth
Atmos. Chem. Phys., 24, 5737–5756, https://doi.org/10.5194/acp-24-5737-2024, https://doi.org/10.5194/acp-24-5737-2024, 2024
Short summary
Short summary
Spectral bin model simulations of an idealized supercooled stratiform cloud were performed with the AMPS model for variable CCN and INP concentrations. We performed radar forward simulations with PAMTRA to transfer the simulations into radar observational space. The derived radar reflectivity factors were compared to observational studies of stratiform mixed-phase clouds. These studies report a similar response of the radar reflectivity factor to aerosol perturbations as we found in our study.
Masaru Yoshioka, Daniel P. Grosvenor, Ben B. B. Booth, Colin P. Morice, and Kenneth S. Carslaw
EGUsphere, https://doi.org/10.5194/egusphere-2024-1428, https://doi.org/10.5194/egusphere-2024-1428, 2024
Short summary
Short summary
Sulfur emissions from shipping has been reduced by about 80 % as a result of the new regulation introduced in 2020. This has reduced aerosol in the atmosphere and its cooling effect through interactions with clouds. As a result, our coupled climate model simulations predict a global warming of 0.04 K averaged over three decades, potentially surpassing the Paris target of 1.5 K or contributing to recent temperature spikes, particularly notable in the Arctic with a mean warming of 0.15 K.
Basudev Swain, Marco Vountas, Aishwarya Singh, Nidhi L. Anchan, Adrien Deroubaix, Luca Lelli, Yanick Ziegler, Sachin S. Gunthe, Hartmut Bösch, and John P. Burrows
Atmos. Chem. Phys., 24, 5671–5693, https://doi.org/10.5194/acp-24-5671-2024, https://doi.org/10.5194/acp-24-5671-2024, 2024
Short summary
Short summary
Arctic amplification (AA) accelerates the warming of the central Arctic cryosphere and affects aerosol dynamics. Limited observations hinder a comprehensive analysis. This study uses AEROSNOW aerosol optical density (AOD) data and GEOS-Chem simulations to assess AOD variability. Discrepancies highlight the need for improved observational integration into models to refine our understanding of aerosol effects on cloud microphysics, ice nucleation, and radiative forcing under evolving AA.
Vincenzo Obiso, María Gonçalves Ageitos, Carlos Pérez García-Pando, Jan P. Perlwitz, Gregory L. Schuster, Susanne E. Bauer, Claudia Di Biagio, Paola Formenti, Kostas Tsigaridis, and Ron L. Miller
Atmos. Chem. Phys., 24, 5337–5367, https://doi.org/10.5194/acp-24-5337-2024, https://doi.org/10.5194/acp-24-5337-2024, 2024
Short summary
Short summary
We calculate the dust direct radiative effect (DRE) in an Earth system model accounting for regionally varying soil mineralogy through a new observationally constrained method. Linking dust absorption at solar wavelengths to the varying amount of specific minerals (i.e., iron oxides) improves the modeled range of dust single scattering albedo compared to observations and increases the global cooling by dust. Our results may contribute to improved estimates of the dust DRE and its climate impact.
Charlotte M. Beall, Po-Lun Ma, Matthew W. Christensen, Johannes Mülmenstädt, Adam Varble, Kentaroh Suzuki, and Takuro Michibata
Atmos. Chem. Phys., 24, 5287–5302, https://doi.org/10.5194/acp-24-5287-2024, https://doi.org/10.5194/acp-24-5287-2024, 2024
Short summary
Short summary
Single-layer warm liquid clouds cover nearly one-third of the Earth's surface, and uncertainties regarding the impact of aerosols on their radiative properties pose a significant challenge to climate prediction. Here, we demonstrate how satellite observations can be used to constrain Earth system model estimates of the radiative forcing from the interactions of aerosols with clouds due to warm rain processes.
Xiaoli Wei, Qian Cui, Leiming Ma, Feng Zhang, Wenwen Li, and Peng Liu
Atmos. Chem. Phys., 24, 5025–5045, https://doi.org/10.5194/acp-24-5025-2024, https://doi.org/10.5194/acp-24-5025-2024, 2024
Short summary
Short summary
A new aerosol-type classification algorithm has been proposed. It includes an optical database built by Mie scattering and a complex refractive index working as a baseline to identify different aerosol types. The new algorithm shows high accuracy and efficiency. Hence, a global map of aerosol types was generated to characterize aerosol types across the five continents. It will help improve the accuracy of aerosol inversion and determine the sources of aerosol pollution.
Zhiqiang Zhang, Ying Li, Haiyan Ran, Junling An, Yu Qu, Wei Zhou, Weiqi Xu, Weiwei Hu, Hongbin Xie, Zifa Wang, Yele Sun, and Manabu Shiraiwa
Atmos. Chem. Phys., 24, 4809–4826, https://doi.org/10.5194/acp-24-4809-2024, https://doi.org/10.5194/acp-24-4809-2024, 2024
Short summary
Short summary
Secondary organic aerosols (SOAs) can exist in liquid, semi-solid, or amorphous solid states, which are rarely accounted for in current chemical transport models. We predict the phase state of SOA particles over China and find that in northwestern China SOA particles are mostly highly viscous or glassy solid. Our results indicate that the particle phase state should be considered in SOA formation in chemical transport models for more accurate prediction of SOA mass concentrations.
Alejandro Baró Pérez, Michael S. Diamond, Frida A.-M. Bender, Abhay Devasthale, Matthias Schwarz, Julien Savre, Juha Tonttila, Harri Kokkola, Hyunho Lee, David Painemal, and Annica M. L. Ekman
Atmos. Chem. Phys., 24, 4591–4610, https://doi.org/10.5194/acp-24-4591-2024, https://doi.org/10.5194/acp-24-4591-2024, 2024
Short summary
Short summary
We use a numerical model to study interactions between humid light-absorbing aerosol plumes, clouds, and radiation over the southeast Atlantic. We find that the warming produced by the aerosols reduces cloud cover, especially in highly polluted situations. Aerosol impacts on drizzle play a minor role. However, aerosol effects on cloud reflectivity and moisture-induced changes in cloud cover dominate the climatic response and lead to an overall cooling by the biomass burning plumes.
Danny M. Leung, Jasper F. Kok, Longlei Li, David M. Lawrence, Natalie M. Mahowald, Simone Tilmes, and Erik Kluzek
EGUsphere, https://doi.org/10.5194/egusphere-2024-1124, https://doi.org/10.5194/egusphere-2024-1124, 2024
Short summary
Short summary
This study derives a desert dust emission dataset for 1841–2000, by employing a combination of observed dust records from sedimentary cores as well as reanalyzed global dust cycle constraints. We evaluate the ability of global models to replicate the observed historical dust variability by using the emission dataset to force a historical simulation in an Earth system model. We show that prescribing our emissions forces the model to match better against observations than other mechanistic models.
Sampa Das, Peter R. Colarco, Huisheng Bian, and Santiago Gassó
Atmos. Chem. Phys., 24, 4421–4449, https://doi.org/10.5194/acp-24-4421-2024, https://doi.org/10.5194/acp-24-4421-2024, 2024
Short summary
Short summary
The smoke aerosols emitted from vegetation burning can alter the regional energy budget via multiple pathways. We utilized detailed observations from the NASA ORACLES airborne campaign based in Namibia during September 2016 to improve the representation of smoke aerosol properties and lifetimes in our GEOS Earth system model. The improved model simulations are for the first time able to capture the observed changes in the smoke absorption during long-range plume transport.
Jia Liu, Cancan Zhu, Donghui Zhou, and Jinbao Han
EGUsphere, https://doi.org/10.5194/egusphere-2024-1000, https://doi.org/10.5194/egusphere-2024-1000, 2024
Short summary
Short summary
The hydrophilic coatings of aged black carbon (BC) particles absorb moisture during the hygroscopic growth process, but it is difficult to characterize how much water is absorbed under different relative humidities (RHs). In this study, we propose a method to obtain the water content in the coatings based on the equivalent complex refractive index retrieved from optical properties, and this method is verified from theoretical inspect. This method performs well for thickly coated BC at high RHs.
Jingmin Li, Mattia Righi, Johannes Hendricks, Christof G. Beer, Ulrike Burkhardt, and Anja Schmidt
EGUsphere, https://doi.org/10.5194/egusphere-2024-1024, https://doi.org/10.5194/egusphere-2024-1024, 2024
Short summary
Short summary
Aiming to understand underlying patterns and trends in aerosols, we characterize the spatial patterns and long-term evolution of lower tropospheric aerosols by clustering multiple aerosol properties from preindustrial times to the year 2050 under three SSP scenarios. The results provide a clear and condensed picture of the spatial extent and distribution of aerosols for different time periods and emission scenarios.
Emilio Cuevas-Agulló, David Barriopedro, Rosa Delia García, Silvia Alonso-Pérez, Juan Jesús González-Alemán, Ernest Werner, David Suárez, Juan José Bustos, Gerardo García-Castrillo, Omaira García, África Barreto, and Sara Basart
Atmos. Chem. Phys., 24, 4083–4104, https://doi.org/10.5194/acp-24-4083-2024, https://doi.org/10.5194/acp-24-4083-2024, 2024
Short summary
Short summary
During February–March (FM) 2020–2022, unusually intense dust storms from northern Africa hit the western Euro-Mediterranean (WEM). Using dust products from satellites and atmospheric reanalysis for 2003–2022, results show that cut-off lows and European blocking are key drivers of FM dust intrusions over the WEM. A higher frequency of cut-off lows associated with subtropical ridges is observed in the late 2020–2022 period.
Yahui Che, Bofu Yu, and Katherine Bracco
Atmos. Chem. Phys., 24, 4105–4128, https://doi.org/10.5194/acp-24-4105-2024, https://doi.org/10.5194/acp-24-4105-2024, 2024
Short summary
Short summary
Dust events occur more frequently during the Austral spring and summer in dust regions, including central Australia, the southwest of Western Australia, and the northern and southern regions of eastern Australia using remote sensing and reanalysis datasets. High-concentration dust is distributed around central Australia and in the downwind northern and southern Australia. Typically, around 50 % of the dust lifted settles on Australian land, with the remaining half being deposited in the ocean.
Jonathan Elsey, Nicolas Bellouin, and Claire Ryder
Atmos. Chem. Phys., 24, 4065–4081, https://doi.org/10.5194/acp-24-4065-2024, https://doi.org/10.5194/acp-24-4065-2024, 2024
Short summary
Short summary
Aerosols influence the Earth's energy balance. The uncertainty in this radiative forcing is large depending partly on uncertainty in measurements of aerosol optical properties. We have developed a freely available new framework of millions of radiative transfer simulations spanning aerosol uncertainty and assess the impact on radiative forcing uncertainty. We find that reducing these uncertainties would reduce radiative forcing uncertainty, but non-aerosol uncertainties must also be considered.
Jing Li, Nan Wu, Biwu Chu, An Ning, and Xiuhui Zhang
Atmos. Chem. Phys., 24, 3989–4000, https://doi.org/10.5194/acp-24-3989-2024, https://doi.org/10.5194/acp-24-3989-2024, 2024
Short summary
Short summary
Iodic acid (HIO3) nucleates with iodous acid (HIO2) efficiently in marine areas; however, whether methanesulfonic acid (MSA) can synergistically participate in the HIO3–HIO2-based nucleation is unclear. We provide molecular-level evidence that MSA can efficiently promote the formation of HIO3–HIO2-based clusters using a theoretical approach. The proposed MSA-enhanced iodine nucleation mechanism may help us to deeply understand marine new particle formation events with bursts of iodine particles.
Yueming Cheng, Tie Dai, Junji Cao, Daisuke Goto, Jianbing Jin, Teruyuki Nakajima, and Guangyu Shi
EGUsphere, https://doi.org/10.5194/egusphere-2024-840, https://doi.org/10.5194/egusphere-2024-840, 2024
Short summary
Short summary
In March 2021, East Asia experienced an outbreak of severe dust storms after an absence of one and a half decades. Here, we innovative used the time-lagged ground-based aerosol size information with the fixed-lag ensemble Kalman smoother to optimize the dust emission and reproduce the dust storm. This work is valuable for the quantification of health damage, aviation risks, and profound impacts on the Earth system, but also to reveal the climatic driving force and the process of desertification.
Hao Wang, Xiaohong Liu, Chenglai Wu, and Guangxing Lin
Atmos. Chem. Phys., 24, 3309–3328, https://doi.org/10.5194/acp-24-3309-2024, https://doi.org/10.5194/acp-24-3309-2024, 2024
Short summary
Short summary
We quantified different global- and regional-scale drivers of biogenic volatile organic compound (BVOC) emission trends over the past 20 years. The results show that global greening trends significantly boost BVOC emissions and deforestation reduces BVOC emissions in South America and Southeast Asia. Elevated temperature in Europe and increased soil moisture in East and South Asia enhance BVOC emissions. The results deepen our understanding of long-term BVOC emission trends in hotspots.
Christof G. Beer, Johannes Hendricks, and Mattia Righi
Atmos. Chem. Phys., 24, 3217–3240, https://doi.org/10.5194/acp-24-3217-2024, https://doi.org/10.5194/acp-24-3217-2024, 2024
Short summary
Short summary
Ice-nucleating particles (INPs) have important influences on cirrus clouds and the climate system; however, the understanding of their global impacts is still uncertain. We perform numerical simulations with a global aerosol–climate model to analyse INP-induced cirrus changes and the resulting climate impacts. We evaluate various sources of uncertainties, e.g. the ice-nucleating ability of INPs and the role of model dynamics, and provide a new estimate for the global INP–cirrus effect.
Jiawei Li, Zhiwei Han, Pingqing Fu, Xiaohong Yao, and Mingjie Liang
Atmos. Chem. Phys., 24, 3129–3161, https://doi.org/10.5194/acp-24-3129-2024, https://doi.org/10.5194/acp-24-3129-2024, 2024
Short summary
Short summary
Organic aerosols of marine origin are important for aerosol climatic effects but are poorly understood. For the first time, an online coupled regional chemistry–climate model is applied to explore the characteristics of emission, distribution, and direct and indirect radiative effects of marine organic aerosols over the western Pacific, which reveals an important role of marine organic aerosols in perturbing cloud and radiation and promotes understanding of global aerosol climatic impact.
Yawen Liu, Yun Qian, Philip J. Rasch, Kai Zhang, Lai-yung Ruby Leung, Yuhang Wang, Minghuai Wang, Hailong Wang, Xin Huang, and Xiu-Qun Yang
Atmos. Chem. Phys., 24, 3115–3128, https://doi.org/10.5194/acp-24-3115-2024, https://doi.org/10.5194/acp-24-3115-2024, 2024
Short summary
Short summary
Fire management has long been a challenge. Here we report that spring-peak fire activity over southern Mexico and Central America (SMCA) has a distinct quasi-biennial signal by measuring multiple fire metrics. This signal is initially driven by quasi-biennial variability in precipitation and is further amplified by positive feedback of fire–precipitation interaction at short timescales. This work highlights the importance of fire–climate interactions in shaping fires on an interannual scale.
Xu Feng, Loretta J. Mickley, Michelle L. Bell, Tianjia Liu, Jenny A. Fisher, and Maria Val Martin
Atmos. Chem. Phys., 24, 2985–3007, https://doi.org/10.5194/acp-24-2985-2024, https://doi.org/10.5194/acp-24-2985-2024, 2024
Short summary
Short summary
During severe wildfire seasons, smoke can have a significant impact on air quality in Australia. Our study demonstrates that characterization of the smoke plume injection fractions greatly affects estimates of surface smoke PM2.5. Using the plume behavior predicted by the machine learning method leads to the best model agreement with observed surface PM2.5 in key cities across Australia, with smoke PM2.5 accounting for 5 %–52 % of total PM2.5 on average during fire seasons from 2009 to 2020.
Shiyi Lai, Ximeng Qi, Xin Huang, Sijia Lou, Xuguang Chi, Liangduo Chen, Chong Liu, Yuliang Liu, Chao Yan, Mengmeng Li, Tengyu Liu, Wei Nie, Veli-Matti Kerminen, Tuukka Petäjä, Markku Kulmala, and Aijun Ding
Atmos. Chem. Phys., 24, 2535–2553, https://doi.org/10.5194/acp-24-2535-2024, https://doi.org/10.5194/acp-24-2535-2024, 2024
Short summary
Short summary
By combining in situ measurements and chemical transport modeling, this study investigates new particle formation (NPF) on the southeastern Tibetan Plateau. We found that the NPF was driven by the presence of biogenic gases and the transport of anthropogenic precursors. The NPF was vertically heterogeneous and shaped by the vertical mixing. This study highlights the importance of anthropogenic–biogenic interactions and meteorological dynamics in NPF in this climate-sensitive region.
Adriana Rocha-Lima, Peter R. Colarco, Anton S. Darmenov, Edward P. Nowottnick, Arlindo M. da Silva, and Luke D. Oman
Atmos. Chem. Phys., 24, 2443–2464, https://doi.org/10.5194/acp-24-2443-2024, https://doi.org/10.5194/acp-24-2443-2024, 2024
Short summary
Short summary
Observations show an increasing aerosol optical depth trend in the Middle East between 2003–2012. We evaluate the NASA Goddard Earth Observing System (GEOS) model's ability to capture these trends and examine the meteorological and surface parameters driving dust emissions. Our results highlight the importance of data assimilation for long-term trends of atmospheric aerosols and support the hypothesis that vegetation cover loss may have contributed to increasing dust emissions in the period.
Marc Mallet, Aurore Voldoire, Fabien Solmon, Pierre Nabat, Thomas Drugé, and Romain Roehrig
EGUsphere, https://doi.org/10.5194/egusphere-2024-496, https://doi.org/10.5194/egusphere-2024-496, 2024
Short summary
Short summary
This study investigates the interactions between smoke aerosols and climate in tropical Africa using a coupled ocean-atmosphere-aerosol climate model. The work shows that smoke plumes have a significant impact by increasing the low cloud fraction, decreasing the ocean and continental surface temperature and by reducing the precipitation of the coastal Western Africa. It also highlights the key role of the ocean temperature response and its feedbacks for the September to November season.
Danny M. Leung, Jasper F. Kok, Longlei Li, Natalie M. Mahowald, David M. Lawrence, Simone Tilmes, Erik Kluzek, Martina Klose, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 24, 2287–2318, https://doi.org/10.5194/acp-24-2287-2024, https://doi.org/10.5194/acp-24-2287-2024, 2024
Short summary
Short summary
This study uses a premier Earth system model to evaluate a new desert dust emission scheme proposed in our companion paper. We show that our scheme accounts for more dust emission physics, hence matching better against observations than other existing dust emission schemes do. Our scheme's dust emissions also couple tightly with meteorology, hence likely improving the modeled dust sensitivity to climate change. We believe this work is vital for improving dust representation in climate models.
Alcide Zhao, Laura Wilcox, and Claire Ryder
EGUsphere, https://doi.org/10.5194/egusphere-2023-3075, https://doi.org/10.5194/egusphere-2023-3075, 2024
Short summary
Short summary
Climate models include desert dust aerosols, which interact with radiation and can change circulation patterns. We assess the effect of dust on the Indian and East Asian summer monsoons through multi-model experiments where dust emissions are doubled, isolating the effect of dust for the first time. We find that dust results in an enhanced Indian summer monsoon and a southward shift of equatorial rainfall. Our results show the importance of accurate dust representation in climate model.
Cited articles
An, X., Zhu, T., Wang, Z., Li, C., and Wang, Y.: A modeling analysis of a
heavy air pollution episode occurred in Beijing, Atmos. Chem. Phys., 7,
3103–3114, https://doi.org/10.5194/acp-7-3103-2007, 2007.
An, X. Q., Zhai, S. X., Jin, M., Gong, S. L., and Wang, Y.: Tracking
influential haze source areas in North China using an adjoint model,
GRAPES–CUACE, Geosci. Model Dev. Discuss., 8, 7313–7345,
https://doi.org/10.5194/gmdd-8-7313-2015, 2015.
Bowden, J. H., Nolte, C. G., and Otte, T. L.: Simulating the impact of the
large-scale circulation on the 2-m temperature and precipitation climatology,
Clim. Dynam., 40, 1903–1920, https://doi.org/10.1007/s00382-012-1440-y, 2013.
Burr, M. and Zhang, Y.: Source apportionment of fine particulate matter
over the Eastern U.S. Part I: source sensitivity simulations using CMAQ with
the brute force method, Atmos. Pollut. Res., 2, 299–316, 2011.
Cao, G. L., Zhang, X. Y., Gong, S. L., An, X. Q., and Wang, Y. Q.: Emission
inventories of primary particles and pollutant gases for China, Chinese Sci.
Bull., 56, 781–788, https://doi.org/10.1007/s11434-011-4373-7, 2011.
Cheng, I., Xu, X., and Zhang, L.: Overview of receptor-based source apportionment studies for speciated atmospheric mercury, Atmos. Chem. Phys., 15, 7877–7895, https://doi.org/10.5194/acp-15-7877-2015, 2015.
Cheng, S. Y., Chen, D. S., Li, J. B., Wang, H. Y., and Guo, X. R.: The
assessment of emission-source contributions to air quality by using a coupled
MM5-ARPS-CMAQ modeling system: A case study in the Beijing metropolitan
region, China, Environ. Modell. Softw., 22, 1601–1616,
https://doi.org/10.1016/j.envsoft.2006.11.003, 2007.
Cheng, S. Y., Lang, J. L., Zhou, Y., Han, L. H., Wang, G., and Chen, D. S.:
A new monitoring-simulation-source apportionment approach for investigating
the vehicular emission contribution to the PM2.5 pollution in Beijing, China,
Atmos. Environ., 79, 308–316, https://doi.org/10.1016/j.atmosenv.2013.06.043, 2013.
Cheng, Y. F., Heintzenberg, J., Wehner, B., Wu, Z. J., Su, H., Hu, M., and
Mao, J. T.: Traffic restrictions in Beijing during the Sino-African Summit
2006: aerosol size distribution and visibility compared to long-term in situ
observations, Atmos. Chem. Phys., 8, 7583–7594, https://doi.org/10.5194/acp-8-7583-2008,
2008.
Fu, L. X., Hao, J. M., He, D. Q., and He, K. B.: Assessment of vehicle
pollution in China, J. Air. Waste Manage., 51, 658–668, 2001.
Gao, Y., Liu, X., Zhao, C., and Zhang, M.: Emission controls versus
meteorological conditions in determining aerosol concentrations in Beijing
during the 2008 Olympic Games, Atmos. Chem. Phys., 11, 12437–12451,
https://doi.org/10.5194/acp-11-12437-2011, 2011.
Gong, S. L., Barrie, L. A., Blanchet, J. P., von Salzen K., Lohmann, U.,
Lesins, G., Spacek, L., Zhang, L. M., Girard, E., Lin, H., Leaitch, R.,
Leighton, H., Chylek, P., and Huang, P.: Canadian aerosol module: a
size-segregated simulation of atmospheric aerosol processes for climate and
air quality models 1. Model development, J. Geophys. Res., 108, 4007,
https://doi.org/10.1029/2001JD002002, 2003.
Gong, S. L., Zhang, X. Y., Zhou, C. H., Liu, H. L., An, X. Q., Niu, T., Xue,
M., Cao, G. L., and Cheng, Y. L.: Chemical weather forecasting system CUACE
and application in China's regional haze forecasting, in: Proceeding of the
26th Annual Meeting of Chinese Meteorological Society, Hangzhou, 2009.
Han, Z. W., Ueda, H., and An, J. L.: Evaluation and intercomparison of
meteorological predictions by five MM5-PBL parameterizations in combination
with three land-surface models, Atmos. Environ., 42, 233–249,
https://doi.org/10.1016/j.atmosenv.2007.09.053, 2008.
Hao, J. M., Wu, Y., Fu, L. X., He, K. B., and He, D. Q.: Motor vehicle
source contributions to air pollutants in Beijing, Environ. Sci., 22, 1–6,
2001.
Hao, J. M., Wang, L. T., Li, L., Hu, J. N., and Yu, X. C.: Air pollutants
contribution and control strategies of energy-use related sources in Beijing,
Sci. China Ser. D, 48, 138–146, 2005.
He, J. J., Yu, Y., Liu, N., and Zhao, S. P.: Numerical model-based relationship
between meteorological conditions and air quality and its implication for
urban air quality management, Int. J. Environ. Pollut., 53, 265–286, 2013.
He J. J., Yu, Y., Liu, N., Zhao, S. P., and Chen J. B.: Impact of land surface
information on WRF's performance in complex terrain area, Chinese J. Atmos.
Sci., 38, 484–494, https://doi.org/10.3878/j.issn.1006-9895.2013,
2014.
Huang, R. J., Zhang, Y. L., Bozzetti, C., Ho, K. F., Cao, J. J., Han, Y. M.,
Daellenbach, K. R., Slowik, J. G., Platt, S. M., Canonaco, F., Zotter P.,
Wolf, R., Pieber, S. M., Bruns, E. A., Crippa, M., Ciarelli, G., Piazzalunga,
A., Schwikowski, M., Abbaszade, G., Schnelle-Kreis, J., Zimmermann, R., An,
Z. S., Szidat, S., Baltensperger, U., Haddad, I. E., and Prévôt, A.
S. H.: High secondary aerosol contribution to particulate pollution during
haze events in China, Nature, 514, 218–222, https://doi.org/10.1038/nature13774, 2014.
Jiménez-Guerrero, P., Jorba, O., Baldasano, J. M., and Gassó, S.:
The use of a modeling system as a tool for air quality management: annual
high-resolution simulation and evaluation, Sci. Total Environ., 390,
323–340, https://doi.org/10.1016/j.scitotenv.2007.10.025, 2008.
Jing, B., Wu, L., Mao, H., Gong, S., He, J., Zou, C., Song, G., Li, X., and Wu,
Z.: Development of a vehicle emission inventory with high temporal–spatial
resolution based on NRT traffic data and its impact on air pollution in
Beijing – Part 1: Development and evaluation of vehicle emission inventory, 16, 3161–3170, https://doi.org/10.5194/acp-16-3161-2016,
2016.
Kioutsioukis, I., de Meij, A., Jakobs, H., Katragkou, E., Vinuesa, J., and
Kazantzidis, A.: High resolution WRF ensemble forecasting for irrigation:
Multi-variable evaluation, Atmos. Res., 167, 156–174,
https://doi.org/10.1016/j.atmosres.2015.07.015, 2016.
Li, M., Zhang, Z. Y., Liu, S. J., Yu, X. J., and Ju, C. X.: Verification of
CUACE air quality forecast in Urumqi, Desert Oasis Meteorol., 8, 63–68,
2014.
Liu, Z. R., Hu, B., Liu, Q., Sun, Y., and Wang, Y. S.: Source apportionment
of urban fine particle number concentration during summertime in Beijing,
Atmos. Environ., 96, 359–369, https://doi.org/10.1016/j.atmosenv.2014.06.055, 2014.
McKeen, S. A., Wotawa, G., Parrish, D. D., Holloway, J. S., Buhr, M. P.,
Hubler, G., Fehsenfeld, F. C., and Meagher, J. F.: Ozone production from
Canadian wildfires during June and July of 1995, J. Geophys. Res., 107,
4192, https://doi.org/10.1029/2001JD000697, 2002.
Miao, S. G., Chen, F., Lemone, M. A., Tewari, M., Li, Q. C., and Wang, Y.
C.: An observational and modeling study of characteristics of urban heat
island and boundary layer structures in Beijing, J. Appl. Meteorol. Clim.,
48, 484–501, https://doi.org/10.1175/2008JAMC1909.1, 2008.
Papalexiou, S. and Moussiopoulos, N.: Wind flow and photochemical air
pollution in Thessaloniki, Greece. Part II: Statistical evaluation of
European Zooming Model's simulation results, Environ. Modell. Softw., 21,
1752–1758, https://doi.org/10.1016/j.envsoft.2005.09.004, 2006.
Qin, Y. and Chan, L. Y.: Traffic source emission and street level air
pollution in urban areas of Guangzhou, South China (P.R.C.), Atmos. Environ.,
27B, 275–282, 1993.
Roustan, Y., Pausader, M., and Seigneur, C.: Estimating the effect of
on-road vehicle controls on future air quality in Paris, France. Atmos.
Environ., 45, 6828–6836, https://doi.org/10.1016/j.atmosenv.2010.10.010, 2011.
Saikawa, E., Kurokawa, J., Takigawa, M., Borken-Kleefeld, J., Mauzerall, D.
L., Horowitz, L. W., and Ohara, T.: The impact of China's vehicle emissions
on regional air quality in 2000 and 2020: a scenario analysis, Atmos. Chem.
Phys., 11, 9465–9484, https://doi.org/10.5194/acp-11-9465-2011, 2011.
Stockwell, W. R., Middleton, P., Chang, J. S., and Tang, X.: The second
generation regional acid deposition model chemical mechanism for regional
quality modeling, J. Geophys. Res., 95 16343–16376, 1990.
Song, X. Y. and Xie, S. D.: Development of vehicle emission inventory in
China, Environ. Sci., 27, 1041–1045, 2006.
Song, Y., Xie, S. D., Zhang, Y. H., Zeng, L. M., Salmon, L. G., and Zheng,
M.: Source apportionment of PM2.5 in Beijing using principal component
analysis/absolute principal component scores and UNMIX, Sci. Total. Environ.,
372, 278–286, https://doi.org/10.1016/j.scitotenv.2006.08.041, 2006.
Streets, D. G. and Waldhoff, S. T.: Present and future emissions of air
pollutants in China: SO2, NOx, and CO, Atmos. Environ., 34, 363–374,
https://doi.org/10.1016/S1352-2310(99)00167-3, 2000.
Wang, H., Gong, S. L., Zhang, H. L., Chen, Y., Shen, X. S., Chen, D. H.,
Xue, J. S., Shen, Y. F., Wu, X. J., and Jin, Z. Y.: A new-generation sand and
dust storm forecasting system GRAPES_CUACE/Dust: Model development,
verification and numerical simulation, Chinese Sci. Bull., 55, 635–649,
2010.
Wang, H., Xue, M., Zhang, X. Y., Liu, H. L., Zhou, C. H., Tan, S. C., Che, H.
Z., Chen, B., and Li, T.: Mesoscale modeling study of the interactions
between aerosols and PBL meteorology during a haze episode in Jing–Jin–Ji
(China) and its nearby surrounding region – Part 1: Aerosol distributions
and meteorological features, Atmos. Chem. Phys., 15, 3257–3275,
https://doi.org/10.5194/acp-15-3257-2015, 2015.
Wang, H. L., Zhuang, Y. H., Wang, Y., Sun, Y., Yuan, H., Zhuang, G. S., and
Hao, Z. P.: Long-term monitoring and source apportionment of PM2.5/PM10 in
Beijing, China, J. Environ. Sci., 20, 1323–1327,
https://doi.org/10.1016/S1001-0742(08)62228-7, 2008.
Wang, M., Zhu, T., Zheng, J., Zhang, R. Y., Zhang, S. Q., Xie, X. X., Han, Y.
Q., and Li, Y.: Use of a mobile laboratory to evaluate changes in on-road air
pollutants during the Beijing 2008 Summer Olympics, Atmos. Chem. Phys., 9,
8247–8263, https://doi.org/10.5194/acp-9-8247-2009, 2009.
Wang, T. and Xie, S.: Assessment of traffic-related air pollution in the
urban streets before and during the 2008 Beijing Olympic Games traffic
control period, Atmos. Environ., 43, 5682–5690,
https://doi.org/10.1016/j.atmosenv.2009.07.034, 2009.
Wang, X., Westerdahl, D., Chen, L. C., Wu, Y., Hao, J. M., Pan, X. C., Guo,
X. B., and Zhang, K. M.: Evaluating the air quality impacts of 2008 Beijing
Olympic Games: On-read emission factors and black carbon profiles, Atmos.
Environ., 43, 4535–4543, https://doi.org/10.1016/j.atmosenv.2009.06.054, 2009.
Wu, Q. Z., Wang, Z. F., Gbaguidi, A., Gao, C., Li, L. N., and Wang, W.: A
numerical study of contributions to air pollution in Beijing during
CAREBeijing-2006, Atmos. Chem. Phys., 11, 5997–6011,
https://doi.org/10.5194/acp-11-5997-2011, 2011.
Wu, Q. Z., Xu, W. S., Shi, A. J., Li, Y. T., Zhao, X. J., Wang, Z. F., Li, J. X., and Wang, L. N.: Air quality forecast of PM10
in Beijing with Community Multi-scale Air Quality Modeling (CMAQ) system: emission and improvement, Geosci. Model Dev., 7, 2243–2259, https://doi.org/10.5194/gmd-7-2243-2014, 2014.
Wu, S. W., Deng, F. R., Wei, H. Y., Huang, J., Wang, X., Hao, Y., Zheng, C.
J., Qin, Y., Lv, H. B., Shima, M., and Guo, X. B.: Association of
cardiopulmonary health effects with source-appointed ambient fine particulate
in Beijing, China: a combined analysis from the healthy volunteer natural
relocation (HVNR) study, Environ. Sci. Technol., 48, 3438–3448,
https://doi.org/10.1021/es404778w, 2014.
Xiao, D., Deng, L. T., Chen, J., and Hu, J. K.: Tentative verification and
comparison of WRF forecasts driven by data from T213 and T639 models,
Torrent, Rain Disast., 29, 20–29, 2010.
Yao, Q., Cai, Z. Y., Han, S. Q., Liu, A. X., and Liu, J. L.: Effects of
relative humidity on the aerosol size distribution and visibility in the
winter in Tianjin, China Environ. Sci., 34, 596–603, 2014.
Yu, L. D., Wang, G. F., Zhang, R. J., Zhang, L. M., Song, Y., Wu, B. B., Li,
X. F., An, K., and Chu, J. H.: Characterization and source apportionment of
PM2.5 in an urban environment in Beijing, Aerosol Air Qual. Res., 13,
574–583, https://doi.org/10.4209/aaqr.2012.07.0192, 2013.
Zhang, J. P., Zhu, T., Zhang, Q. H., Li, C. C., Shu, H. L., Ying, Y., Dai, Z.
P., Wang, X., Liu, X. Y., Liang, A. M., Shen, H. X., and Yi, B. Q.: The
impact of circulation patterns on regional transport pathways and air quality
over Beijing and its surroundings, Atmos. Chem. Phys., 12, 5031–5053,
https://doi.org/10.5194/acp-12-5031-2012, 2012.
Zhang, L., Liu, L. C., Zhao, Y. H., Gong, S. L., Zhang, X. Y., Henze, D., Capps,
S., Fu, T., Zhang, Q., Wang, Y. X.: Source attribution of particulate matter
pollution over North China with the adjoint method. Environ. Res. Lett., 10,
084011, https://doi.org/10.1088/1748-9326/10/8/084011, 2015.
Zhang, M. G., Pu, Y., Zhang, R., and Han, Z.: Simulation of sulfur transport
and transformation in East Asia with a comprehensive chemical transport
model, Environ. Modell. Softw., 21, 812–820, 2006.
Zhang, Q., Streets, D. G., Carmichael, G. R., He, K. B., Huo, H., Kannari,
A., Klimont, Z., Park, I. S., Reddy, S., Fu, J. S., Chen, D., Duan, L., Lei,
Y., Wang, L. T., and Yao, Z. L.: Asian emissions in 2006 for the NASA INTEX-B
mission, Atmos. Chem. Phys., 9, 5131–5153, https://doi.org/10.5194/acp-9-5131-2009,
2009.
Zhang, R., Jing, J., Tao, J., Hsu, S.-C., Wang, G., Cao, J., Lee, C. S. L.,
Zhu, L., Chen, Z., Zhao, Y., and Shen, Z.: Chemical characterization and
source apportionment of PM2.5 in Beijing: seasonal perspective, Atmos.
Chem. Phys., 13, 7053–7074, https://doi.org/10.5194/acp-13-7053-2013, 2013.
Zhang, R. J., Shen, Z. X., Zhang, L. M., Zhang, M. G., Wang, X., and Zhang,
K.: Element composition of particles during periods with and without traffic
restriction in Beijing: the effectiveness of traffic restriction measure,
Sci. Online Lett. Atmos., 7, 61–64, https://doi.org/10.2151/sola.2011-016, 2011.
Zhao, B., Wang, P., Ma, J. Z., Zhu, S., Pozzer, A., and Li, W.: A
high-resolution emission inventory of primary pollutants for the Huabei
region, China, Atmos. Chem. Phys., 12, 481–501, https://doi.org/10.5194/acp-12-481-2012,
2012.
Zheng, M., Salmon, L. G., Schauer, J. J., Zeng, L. M., Kiang, C. S., Zhang,
Y. H., and Cass, G. R.: Seasonal trends in PM2.5 source contributions in
Beijing, China, Atmos. Environ., 39, 3967–3976,
https://doi.org/10.1016/j.atmosenv.2005.03.036, 2005.
Zhou, Y., Fu, L. X., Yang, W. S., and Wang, Y.: Analysis of vehicle emission
in Beijing by remote sensing monitoring, Tech. Equip. Environ. Poll. Contr.,
6, 91–94, 2005.
Short summary
Based on a vehicle emission inventory with high temporal–spatial resolution established by bottom-up methodology, this paper evaluates the performance of the CUACE model and investigates the vehicle emission contribution (VEC) to ambient NO2 and PM2.5 with an emission source sensitivity method. With good performance of pollutant concentrations, numerical simulation revealed that the mean VEC is 55.4 and 48.5 % for NO2 and 5.4 and 10.5 % for PM2.5 in July and December 2013 respectively.
Based on a vehicle emission inventory with high temporal–spatial resolution established by...
Altmetrics
Final-revised paper
Preprint