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Abstract. A companion paper developed a vehicle emission

inventory with high temporal–spatial resolution (HTSVE)

with a bottom-up methodology based on local emission fac-

tors, complemented with the widely used emission factors of

COPERT model and near-real-time (NRT) traffic data on a

specific road segment for 2013 in urban Beijing (Jing et al.,

2016), which is used to investigate the impact of vehicle pol-

lution on air pollution in this study. Based on the sensitivity

analysis method of switching on/off pollutant emissions in

the Chinese air quality forecasting model CUACE, a mod-

elling study was carried out to evaluate the contributions of

vehicle emission to the air pollution in Beijing’s main urban

areas in the periods of summer (July) and winter (December)

2013. Generally, the CUACE model had good performance

of the concentration simulation of pollutants. The model sim-

ulation has been improved by using HTSVE. The vehicle

emission contribution (VEC) to ambient pollutant concen-

trations not only changes with seasons but also changes with

time. The mean VEC, affected by regional pollutant trans-

ports significantly, is 55.4 and 48.5 % for NO2 and 5.4 and

10.5 % for PM2.5 in July and December 2013 respectively.

Regardless of regional transports, relative vehicle emission

contribution (RVEC) to NO2 is 59.2 and 57.8 % in July and

December 2013, while it is 8.7 and 13.9 % for PM2.5. The

RVEC to PM2.5 is lower than the PM2.5 contribution rate

for vehicle emission in total emission, which may be due to

dry deposition of PM2.5 from vehicle emission in the near-

surface layer occuring more easily than from elevated source

emission.

1 Introduction

In recent years, the serious atmospheric environment prob-

lems in China attract special attention from governments, the

public, and researchers. Due to the control of coal combus-

tion, the type of air pollution is changing from smoke to

vehicle exhaust and mixed sources; additionally, secondary

aerosols and regional transport play an important role in se-

vere haze episodes (Zhang et al., 2006; Huang et al., 2014),

which makes it more difficult to control air pollution. Air pol-

lution caused by traffic emission has become the main con-

cern of pollution control, especially in metropolitan cities.

Direct emission pollutants from road traffic include nitrogen

oxides (NOx), carbon monoxide (CO), hydrocarbon (HC),

particulate matter (PM), and others (Zhou et al., 2005; Song

and Xie, 2006). Based on RAINS-ASIA computer model,

the direct emissions of sulfur dioxide (SO2), nitrogen ox-

ides (NOx), and CO from five sectors including industry,

power, domestic, transportation, and biofuels in 1990, 1995,

and 2020 were estimated for China by Streets and Wald-

hoff (2000); the transportation sector contributed in 1990 and
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1995 approximately 1 and 2 % to total SO2 emissions, 9 and

12 % to total NOx emissions and 14 and 22 % to total CO

emissions respectively. Traffic emission makes a significant

contribution to urban air pollution in many cities in China

(Qin and Chan, 1993; Fu et al., 2001), while more stringent

vehicle emission standards lead to simultaneous reduction of

surface ozone (O3) and fine particulate matter (PM2.5) con-

centrations (Saikawa et al., 2011).

Beijing, as the capital of China, is one of the most impor-

tant metropolitan cities in the world, providing living space

for a population of over 21 million. The number of vehicles

in Beijing increased rapidly during the last decades and hit

5.5 million in 2014, putting an immense pressure on the en-

vironment. Research on the impact of vehicle emission in

Beijing has been completed from different perspectives. Hao

et al. (2001) developed a vehicle emission inventory and in-

vestigated the contribution of traffic to atmospheric pollu-

tant concentrations utilizing a Gaussian dispersion model in

1995; vehicle emission contributed 76.8 and 40.2 % to total

CO and NOx emissions and 76.5 and 68.4 % to ambient CO

and NOx concentrations. During the Sino-African summit in

2006, the number concentrations of the particles and accu-

mulation modes were seemingly reduced by 20–60 % due to

the strict traffic restrictions (Cheng et al., 2008). Zhang et

al. (2011) evaluated the effectiveness of air pollution con-

trol through traffic restriction measures in August 2007 and

discovered road mobile sources were more effective on dust

elements than anthropogenic elements of PM. Based on posi-

tive matrix factorization (PMF), Liu et al. (2014) investigated

the source apportionment of ambient fine particles and found

that the vehicle emission was mainly responsible for particles

in the size range 10–50 nm and accounted for 47.9 % of parti-

cle number concentration during summertime in 2011. A se-

ries of emission control measurements and atmospheric ob-

servations during the 2008 Beijing Olympic Games created

a valuable case to research the effectiveness of control mea-

sures on mitigating air pollution. It was illustrated that the

black carbon (BC) concentration after traffic control during

the Olympics decreased by 74 % and that diesel trucks were

a major contribution to the ambient summertime BC levels

(X. Wang et al., 2009). With the 32.3 % traffic flow reduc-

tion, numerical simulation revealed that the average reduc-

tion rates of PM10, CO, and NO2 were 28, 19.3, and 12.3 %

respectively; however, there was also an increase of O3 at

a rate of 25.2 % (Wang and Xie, 2009). Compared with un-

controlled period, on-road air pollutant concentrations dur-

ing the Olympics air pollution control period, which is con-

cluded from versatile mobile laboratory moving along Bei-

jing’s Fourth Ring Road, decreased significantly by up to

54 % for CO, 41 % for NOx , 70 % for SO2, and 12 % for

BC (M. Wang et al., 2009). Hence, there is a certain contro-

versy between previous studies and a significant fluctuation

of pollutant concentration contribution in different periods.

Further research should be conducted on the effect of traffic

emission on Beijing’s air quality as a result of air pollution

and changes in pollutants’ emission characteristics in recent

years.

In a companion paper (Jing et al., 2016), a vehicle emis-

sion inventory with high temporal–spatial resolution for 2013

in Beijing was established via a bottom-up methodology

based on near-real-time (NRT) traffic data. This part (Part 2)

utilizes the Chinese Unified Atmospheric Chemistry Envi-

ronment (CUACE) model to simulate ambient pollutant con-

centrations and evaluate the contributions of vehicle emis-

sion in Beijing main urban areas in periods of summer and

winter 2013 based on the sensitivity analysis method of

switching on/off pollutant emissions. In Sect. 2, the details of

the methods, data sets, and model setup are shown. CUACE

model evaluation and the effect of new vehicle emission in-

ventory are presented in Sect. 3. The main conclusions are

presented in Sect. 4.

2 Data and method

2.1 Model description

Developed by the China Meteorological Administration

(CMA), the CUACE model is used in this study to sim-

ulate air quality in Beijing. CUACE is a unified chemical

weather numerical forecasting system which is independent

of weather and climate models. It consists of four functional

blocks: anthropogenic and natural emissions, atmospheric

gaseous chemical mechanisms, atmospheric aerosol chemi-

cal mechanisms, and a numerical assimilation system. The

gaseous chemical block is based on the Regional Acid Depo-

sition Model (RADM) covering 66 gaseous species (Stock-

well et al., 1990; Wang et al., 2015). The aerosol module

includes a mixing scheme, clear-sky processes, dry deposi-

tion, below-cloud scavenging, and in-cloud processes. Seven

aerosol species, i.e. sulfates (SF), soil dust, BC, organic car-

bon (OC), sea salts, nitrates (NI), and ammonium salts (AM),

are considered in aerosol chemical module. The first six

aerosol components were divided into 12 bins with a diame-

ter ranging from 0.01 to 40.96 µm. Based on the mixing as-

sumptions, the ambient size and density of aerosols in a size

bin are evaluated. The optical properties of these aerosols are

readily computed when the mixing state, composition, and

ambient size are determined. The details of sulphur chem-

istry, cloud chemistry, coagulation, nucleation, condensation,

etc. were depicted by Gong et al. (2003). CUACE is online

coupled to the fifth-generation Penn State/NCAR mesoscale

model (MM5) and Global/Regional Assimilation and Pre-

Diction System (GRAPSE); MM5 is selected to simulate

mesoscale meteorological fields in this study. For different

research target and application purposes, CUACE is designed

with an open interface to allow it to be easily integrated into

different time and spatial scale models. A more detailed de-

scription can refer to Gong et al. (2009). The performance

of CUACE was evaluated by many researchers. Wang et
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Figure 1. The model simulation domain (a) and observation sta-

tion distribution (circles represent meteorological station; triangles

represent environmental station) in the inner domain (b).

al. (2010) simulated dust weather occurring in April 2006

and indicated that CUACE could predict the outbreak, de-

velopment, transport, and depletion processes of sand and

dust storms accurately over China and the East Asian region.

Li et al. (2014) evaluated air quality prediction by CUACE

over Ürümqi and acquired a quite accurate forecasting of air

quality levels, especially for NO2 and PM10 levels. Given

the good performance in air quality prediction, CUACE has

been used for haze forecasting at the National Meteorologi-

cal Center of CMA and some local environmental protection

agencies.

2.2 Numerical simulation design

In this study, the MM5–CUACE model is configured to have

three nested domains to reduce spurious boundary effects in

the inner domain: a horizontal resolution of 27 km cover-

ing North China and the surrounding areas, a resolution of

9 km covering Jing–Jin–Ji (Beijing, Tianjin and Hebei), and

a resolution of 3 km covering Beijing and surrounding areas

(Fig. 1). In the vertical, there are a total of 35 full eta levels

extending to the model top at 10 hPa, with 16 levels below

2 km.

Two periods: July and December in 2013 are selected

for model integration to evaluate different seasonal impacts

(summer and winter respectively) of vehicle emission on air

quality. The time steps of the MM5 and CUACE models

are 15 and 150 s respectively. The driving field provides the

initial, lateral, and surface boundary conditions and trans-

mits the weather background information to MM5. How-

ever, for large domain or long-term simulations, the large-

scale weather situation simulated by MM5 may diverge from

that of the driving field. The methods to constrain MM5 to

the driving field involve frequent re-initialization, analysis

nudging, spectral nudging, and scale-selective bias correc-

tion (Bowden et al., 2013). A 36 h re-initialization run is ex-

ecuted to simulate meteorological conditions and air quality,

and the former 12 h simulation is discarded as spin-up time,

which is the same as Zhang et al. (2012). The initial and

boundary meteorological conditions are from T639 reanal-

ysis data with 30× 30 km spatial resolution and 6 h temporal

resolution supplied by CMA (Xiao et al., 2010). The initial

and boundary chemical conditions of the first simulation seg-

ment are based on averages from several field studies over

the eastern Pacific Ocean (McKeen et al., 2002), which were

used as the default profiles in WRF-Chem, and other seg-

ment initial and boundary conditions are derived from pre-

vious simulation segment. The extra 10-day run (i.e. 21 to

30 June, 21 to 30 November) was conducted to reduce the

effect of chemical initial and boundary conditions.

Two real simulations based on default emission of CUACE

and the improved emission with a vehicle emission inven-

tory with high temporal–spatial resolution (hereafter referred

to as HTSVE) are carried out to evaluate the accuracy of

pollutant concentrations simulated by CUACE and analyse

the influence of HTSVE on Beijing air quality (hereafter re-

ferred to as SIM1 and SIM2). The methods of investigating

the contribution rate to ambient pollution level (or source

apportionment), based on an air quality numerical model,

include source sensitivity simulations using the brute force

method (also referred as zero-out method) or the decoupled

direct method, air pollution tagged method, and the adjoint

method (An et al., 2015; Burr and Zhang, 2011; Zhang et

al., 2015). With comprehensible physical and chemical pro-

cesses, the adjoint method has a significant advantage in

source apportionment compared to sensitivity simulations or

the tagged method. However, complicated mathematics and

a large amount of data processing and programming result in

a limited number of available regional-scale air quality ad-

joint models at present. Recently, An et al. (2015) developed

an adjoint of the aerosol module in CUACE. The develop-

ment of gaseous adjoint module of CUACE is needed for

wider applications of source apportionment or source assimi-

lation. The tagged method tracks the contribution of pollutant

from specific sources and undergoes explicit atmospheric

processes, but it is not able to simulate indirect effects and

oxidant-limiting effects. With the ability to simulate indirect

effects and relatively simple model runs, source sensitivity

analysis is widely used in source attribution. However, signif-

icant source variations may result in misunderstandings due

to non-linearity and changes in atmospheric background con-

centrations. In a previous study, the impact of local Beijing

emission on air pollution is almost linear in source sensitivity

analysis (An et al., 2007). Sensitivity analysis is suitable for

investigating the contribution of vehicle emission in Beijing

due to limited change of emission in this study. The vehicle

emission contribution (VEC) to ambient pollutant concen-

tration is computed based on the sensitivity analysis method

of switching vehicle emission on (SIM2) and off (here after

refer to SIM3) in Beijing. This method keeps atmospheric

background pollution level basically steady, which has a sig-

nificant effect on the chemical conversion because of rel-

atively limited changes in emission. Meanwhile the effect

of vehicle emission on secondary pollution, e.g. secondary

aerosols which become important components of PM in Bei-

jing (Huang et al., 2014), was considered. The formula for
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Table 1. Numerical simulation schemes.

Numerical Emission

simulation source

SIM1 Default emission of CUACE

SIM2 Improved emission with Beijing HTSVE

SIM3 Switch off Beijing vehicle emission

SIM4 Switch off Beijing anthropogenic emission

VEC is as follows:

VEC=
CSIM2−CSIM3

CSIM2

× 100 %, (1)

where C represents pollutant concentration. In fact, the re-

gional transports of pollutants obviously has an effect on

VEC; we calculate relative vehicle emission contribution

(RVEC), which does not consider pollutant regional trans-

ports, in Eq. (2):

RVEC=
CSIM2−CSIM3

CSIM2−CSIM4

× 100 %, (2)

where SIM4 represents the simulation of switching off all

emission sources in Beijing. All simulation test schemes are

listed in Table 1.

2.3 Emission inventory

CUACE has an independent pollution emission module,

which contains natural and anthropogenic emissions includ-

ing many gas and particle matter emissions (Gong et al.,

2009). Anthropogenic emissions of SO2, NOx , CO, volatile

organic compounds, PM2.5, PM10, BC, OC, etc. used in the

emission module were developed by CMA based on the

INTEX-B inventory, the emissions database for global at-

mospheric research (EDGAR), and an environmental statis-

tics database. Gridded INTEX-B inventory covers 22 coun-

tries and regions in East Asia with a resolution of 0.5◦× 0.5◦

and is separated into industry emission, power station emis-

sion, residential emission, and vehicle emission (Zhang et

al., 2009). EDGAR is a joint project of the European Com-

mission Joint Research Centre and the Netherlands Envi-

ronmental Assessment Agency. The environmental statis-

tics database is supplied by the Environmental Protection

Agency. Some old data were corrected or updated according

to the variation rate of anthropogenic emissions from envi-

ronmental statistics database. Finally, the emission inventory

was pretreated by SMOKE for detailed temporal and spa-

tial distribution. Hourly emissions were obtained for CUACE

model input. The emission inventory is a key factor in air

quality numerical simulation. Annual emissions of CO, NOx ,

SO2, and PM2.5 in CUACE in Beijing are 3149.5, 173.8,

158.2, and 79.0 kt respectively. Comparing different research

(Table 2) found that there are many uncertainties of invento-

ries, especially for CO and NOx emissions, but it is difficult

Table 2. Emission of major anthropogenic species in Beijing (unit:

103 t yr−1).

Source CO NOx SO2 PM2.5

CUACE emission 3149.5 173.8 158.2 79.0

CUACE emission∗ 3119.3 183.2 158.2 78.8

An et al. (2007) 1021.8 227.0 211.3 53.4

Zhang et al. (2009) 2591.0 327.0 248.0 90.0

Cao et al. (2011) 1998.0 437.0 172.0 162.0

Wu et al. (2011) 236.2 172.5 67.9

Zhao et al. (2012) 2580.0 309.0 187.0 90.0

Q. Z. Wu et al. (2014) 1793.8 200.0 78.8 59.1

∗ represents CUACE emission with replaced vehicle emission by HTSVE.

Table 3. The rate of major species from vehicle emission in total

emission (unit: %).

CO NO NO2 HC PM2.5

CUACEa 29.8 32.1 30.4 80.0 23.4

CUACEb 31.1 35.5 33.6 49.0 25.3

HTSVEa 23.8 47.9 55.1 84.0 22.3

HTSVEb 21.3 46.6 53.9 55.8 20.6

a and b represent July and December.

to identify which one is more accurate. With rapid economic

development and the adjustment of energy structure, anthro-

pogenic emissions have a significant variation in recent years

in North China. However, the database of emission inventory

in previous studies (Table 2) is from before 2010, which is

the main reason for the differences between CUACE emis-

sion and others. For example, the Beijing municipal govern-

ment has commenced strict traffic restriction since 2008. The

number of vehicles in Beijing increased about 8 % in 2013.

The change of vehicle emission may be responsible for NO2

emission variation. Except for dates of basic data, the meth-

ods of establishing inventory, emission factors, and basic data

source would result in significant differences of emission in-

ventory.

This study focuses on vehicle sources and their influence.

HTSVE based on NRT traffic data was used to replace the

vehicle emission in CUACE emission module to analyse its

effects on air quality simulation. The detailed description of

vehicle emission with high temporal–spatial resolution and

comparison with vehicle emission in CUACE emission mod-

ule are presented in Part 1. The contribution of major species

from vehicle emission is presented in Table 3. The vehicle

emission of NO, NO2, and HC from HTSVE is higher while

that of CO and PM2.5 is lower than from CUACE.

Atmos. Chem. Phys., 16, 3171–3184, 2016 www.atmos-chem-phys.net/16/3171/2016/
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2.4 Observational data

2.4.1 Meteorological data

The accuracy of mesoscale meteorological fields simulated

by MM5 has a significant effect on air quality simulation,

and it should be evaluated with observation data firstly. In

this study, the observed near-surface meteorological fields

including 2 m temperature, 2 m specific humidity, and 10 m

wind speed are obtained from the Meteorological Infor-

mation Comprehensive Analysis and Process System (MI-

CAPS) of CMA. MICAPS surface data have eight conven-

tional observation times every day (00:00, 03:00, 06:00,

09:00, 12:00, 15:00, 18:00, 21:00 UTC) and 20 meteorologi-

cal stations located in the study region (Fig. 1a).

2.4.2 Air quality data

To evaluate simulated air quality by CUACE, hourly near-

surface average concentrations of NO2 and PM2.5 from

nine atmospheric environment monitoring stations in Bei-

jing (shown in Fig. 1b) in simulation periods were acquired

from the China National Environment Monitoring Centre.

The monitoring stations distributed in the study region could

reflect different area pollution levels and capture overall air

quality in Beijing.

3 Results and discussions

3.1 Model evaluation and the impact of new vehicle

emission inventory

The accuracy of air quality simulation based on numeri-

cal model greatly relates to mesoscale meteorological sim-

ulation. Although good performance of MM5 had been ob-

tained in previous studies, our results should be evaluated due

to variable performance under different regional, seasonal,

and physical parameterization conditions. Based on statis-

tical analysis, the 2 m temperature root mean square error

(RMSE) and correlation coefficient (R) are 3.4 K and 0.81 in

July and 3.8 K and 0.87 in December. MM5 can capture tem-

poral and spatial variation of near-surface temperature effec-

tively. The 2 m specific humidity RMSE and R are 2.4 g kg−1

and 0.56 in July and 0.9 g kg−1 and 0.82 in December, which

indicates that basic temporal and spatial variation of near-

surface specific humidity are simulated by MM5. The 10 m

wind speed RMSE and R are 1.4 m s−1 and 0.37 in July and

1.7 m s−1 and 0.57 in December. The RMSE was 1–4 K for

2 m temperature, 1–2 g kg−1 for 2 m specific humidity, and

1–4 m s−1 for 10 m wind speed in most studies (Han et al.,

2008; He et al., 2013, 2014; Jiménez-Guerrero et al., 2008;

Kioutsioukis et al., 2016; Papalexiou and Moussiopoulos,

2006; Miao et al., 2008). In this study, MM5 presents the

essential features of the local circulation over Beijing as seen

from the above analysis and its performance observed here

Figure 2. The comparison of site average NO2 and PM2.5 concen-

trations between SIM1, SIM2, and observation in July (a, b) and

December (c, d) 2013.

is comparable to other studies generally. The details of me-

teorological evaluation are provided in the Supplement. The

statistic parameters are depicted in He et al. (2014).

NO2 and PM2.5 are of major concern as they are suscepti-

ble to vehicle emission. Intervals of simulated and observed

daily mean near-surface NO2 and PM2.5 concentrations aver-

aged over nine sites during two periods are shown in Fig. 2.

CUACE underestimates the NO2 concentration significantly,

especially during serious pollution periods. Due to the in-

creasing emission of HTSVE (Table 2), the NO2 concentra-

tion from SIM2 increases 31.8 and 11.1 % in July and De-

cember respectively, resulting in significant improvement to

the previous underestimates. The RMSEs of NO2 daily mean

concentration decrease 17.6 and 10.9 % in two periods when

HTSVE is used. Temporal correlation coefficients of NO2

daily mean concentrations for SIM1 and SIM2 are 0.80 and

0.79 respectively in December, which indicates CUACE can

reproduce NO2 time trends accurately. However, low corre-

lation (0.21 and 0.12 for SIM1 and SIM2 respectively) in

July reflects the complexity of air quality numerical simula-

tion. Simulated PM2.5 daily mean concentration is basically

consistent with observed value. A minor difference of PM2.5

concentration is observed between SIM1 and SIM2 due to

fewer vehicle emission changes (Table 3). Based on tempo-

ral correlation analysis, SIM2 improves PM2.5 time trends

slightly, with correlation coefficients of 0.75 and 0.77 in

SIM1 and 0.76 and 0.78 in SIM2. Compared with SIM1, the

www.atmos-chem-phys.net/16/3171/2016/ Atmos. Chem. Phys., 16, 3171–3184, 2016
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Figure 3. The spatial distribution of near-surface NO2 and PM2.5 mean concentration from SIM2 in July (a, b) and December (c, d) 2013

respectively. Black lines represent the main traffic arteries in Beijing; scatter represents the mean concentrations of sites observation; white

arrows represent near-surface mean wind field.

RMSE of PM2.5 daily mean concentration slightly decreased

in SIM2. It is obvious that simulated PM2.5 concentration

is more accurate than simulated NO2 concentration in July;

similar phenomena was found in previous studies (Roustan

et al., 2011; Wu et al., 2011). CUACE’s ability is evaluated

through the comparison of model grid and site station val-

ues; however, this method has several uncertainties because

local information is involved. It should be noted that the life-

time of ambient NO2 is shorter than that of ambient PM2.5

due to the different chemical processes, and local character-

istics are more significant for NO2. The grid average con-

centration of NO2 simulated by CUACE weakens the sub-

grid local characteristics and results in poor performance of

NO2 simulation compared with PM2.5. The uncertainty of

the emission inventory increases with the spatial resolution

of the numerical model. Although vehicle emission was re-

placed with HTSVE, the uncertainty of emission inventories

of other sectors in Beijing and all emissions in surrounding

areas is still an important reason for the bias of pollutant con-

centrations. Seasonal differences in CUACE performance are

found in this study, with accurate simulation in winter, and

this may relate to meteorological conditions, especially wind

field bias as mentioned above. The uncertainty of the pho-

tochemical reaction, which is more significant in summer,

might result in a large bias compared to the performance of

NO2 in winter. Overall, the performance of CUACE is com-

parable with other studies in Beijing (Gao et al., 2011; Wu et

al., 2011). Because SIM2 had a better performance, it is used

as a baseline scenario in the flowing analysis.

Spatial distribution of pollutant concentration relates to

pollutant emission distribution and meteorological condi-

tion. The spatial distribution of pollutant concentration

from CUACE is basically consistent with site observations

(Fig. 3). The mean wind in urban Beijing is the southwest-

erly wind in July, and it drives local pollutant transports from

the southwest to the northeast. The high NO2 concentration

is located in northeastern Beijing, while two regions with

high PM2.5 concentration appear in the west and city cen-

tre (Fig. 3a and b). The spatial distribution of NO2 is differ-

ent from that of PM2.5 because of emission sources distri-

bution differences with one high-emission area on the inner

Fifth Ring Road for NO2 and two high-emission areas on

the west Sixth Ring Road and inner Third Ring Road for

PM2.5 (Fig. 4). High concentrations present in high emis-

sions or the downwind. The mean concentrations of NO2

and PM2.5 are 29.8 and 91.3 µg m−3 in July. Urban Beijing

is dominated by northwesterly wind in December, and pol-

lutant concentration distribution is obviously different from

that in July. NO2 concentration is high in southeastern Bei-

jing, and gradually decreases outward (Fig. 3c). High PM2.5

concentration is mostly located in western and southeastern

Beijing (Fig. 3d). A significant difference in NO2 distribu-

tion between July and December and a slight difference of

PM2.5 are found due to the combined effect of wind fields

and emission distributions. The mean concentrations of NO2

Atmos. Chem. Phys., 16, 3171–3184, 2016 www.atmos-chem-phys.net/16/3171/2016/
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and PM2.5 are 42.8 and 136.4 µg m−3 in December respec-

tively.

3.2 The effect of vehicle emission on urban air quality

VEC to ambient pollutant concentration is analysed through

comparison simulation with and without vehicle emission

(SIM2 and SIM3 respectively). Probability density function

(PDF) is a good way to describe the total representation. The

PDF of instantaneous VEC in two periods is shown in Fig. 5.

The maximum frequencies of VECs to NO2 in July and De-

cember are 55–60 and 50–55 % respectively. The frequencies

of VECs to NO2 from 15 to 60 % in December are larger

than in July (Fig. 5a), which indicates that a large contribu-

tion presents in summer while a small contribution presents

in winter. Based on one-way analysis of variance, the dif-

ference in VECs to NO2 in summer and winter is signifi-

cant. This may relate to seasonal differences of meteorolog-

ical condition and pollutant emission. In summer, high tem-

perature and strong solar radiation lead to strong atmosphere

oxidation ability, and therefore it is easy to convert from NO

to NO2, which results in large contribution to NO2 concentra-

tion. Meanwhile, the high rate of NO2 emission from vehicle

(Table 3) is another reason for the large contribution to ambi-

ent NO2 concentration in summer. The VEC to PM2.5 is con-

siderably lower than that to NO2. The maximum frequencies

of VECs to PM2.5 in July and December are 0–5 and 5–10 %

respectively. Different from NO2, the mean VEC to PM2.5 in

summer is smaller than that in winter, with a significant dif-

ference from one-way analysis of variance. Relative humid-

ity in summer is higher than that in winter, and high relative

humidity is conductive to gas–particle conversion processes

of other emission sources (Yao et al., 2014), which may be

one of the reasons for small VECs to PM2.5 in summer. The

strong turbulence mixing in summer makes rapidly vertical

exchange and transport of pollutant in boundary layer and fi-

nally results in small VECs to PM2.5 in summer. Wind field

variation is another reason for seasonal change of VECs to

PM2.5, which will be investigated in the following part.

As the local transports of pollutants, the VEC in Bei-

jing depends on wind field and spatial distribution of vehi-

cle emission. Wind dependency maps of VECs to NO2 and

PM2.5 are shown in Fig. 6. High VECs to NO2 in July ap-

peared in southerly wind with 3–4 m s−1 and in northerly

wind with 6–7 m s−1 in December. Due to the difference in

lifetime between NO2 and PM2.5, the wind dependency map

of PM2.5 is quite different from that of NO2. High VECs to

PM2.5 in July and December appeared in northerly wind due

to high vehicle emission of particle matter in the northeast-

ern part of the city (Jing et al., 2016). The dominant wind

is the southwesterly wind in July and northwest in Decem-

ber (Fig. 3), which bring a small VEC to PM2.5 in summer.

Significant regional transport, which is analysed in the next

section, is one of the reasons for relatively small VECs to

PM2.5 in summer.

Figure 7 shows time series of VECs to NO2 and PM2.5

daily mean concentrations in main urban areas (within the

Sixth Ring Road) in two periods. The VEC not only changes

with seasons, which is consistent with Cheng et al. (2007),

but also changes with time. Time series of regional mean

VECs of 49.8–60.0 % to ambient NO2 concentration in July,

with a mean contribution rate of 55.4 %. In December, re-

gional mean contribution on NO2 concentration decreases

to 28.5–57.9 % at different days, with a mean contribution

rate of 48.5 %. The VEC to ambient PM2.5 concentration

is less than 10.3 and 13.6 % at different times, with mean

contribution rate of 5.4 and 10.5 % in July and December

respectively. The change of VECs to PM2.5 between July

and December is most caused by meteorological condition

in two periods. With different lift time of PM2.5 and NO2,

PM2.5 concentration is more affected by regional transports,

while NO2 concentration is more affected by local emissions.

Therefore the contribution with time variation for PM2.5 is

different from that for NO2. Except for wind field, pollution

level is an important factor in VECs. It is obvious that low

VECs present in serious pollution, while high VECs present

in a low pollution concentration level, especially for NO2

(Fig. 8). The absolute contribution of vehicle emission in-

creases in severe pollution mostly because of adverse dis-

persion condition. However, pollutant regional transport is

enhanced in severe pollution, which results in a negative

correlation between VEC and pollution concentration level.

The VEC has a significant spatial variation; a previous study

found that PM2.5 had a larger contribution from vehicle emis-

sion in urban than in suburban (13.0–16.3 % vs. 5.1 %) (S. W.

Wu et al., 2014). Figure 9 shows the spatial distribution of the

mean contribution rate of vehicle emission in two periods.

Vehicle emission contributes 26.0–76.4 and 22.9–66.4 % of

NO2 at different regions in July and December. A significant

effect of vehicle emission on the ambient NO2 concentration

level is found in southeastern and northeastern Beijing. VECs

to PM2.5 are 1.2–15.4 and 2.4–24.4 % in July and December.

The large contribution appears in the northeast in both sum-

mer and winter, which is vastly different from the distribution

of NO2 contribution.

As can be seen from Table 4, receptor source apportion-

ment and numerical sensitivity analysis are two main meth-

ods to compute the VEC to ambient pollutant concentration;

additionally, VEC has significant uncertainties from previous

studies. In summary, vehicle emission contributes 4–17 and

22 % to PM2.5 concentrations based on receptor source ap-

portionment and numerical simulation methods and 56–74 %

to NOx concentrations based on the numerical simulation

method. The differences of the vehicle emission contribution

to PM2.5 with the different methods are relatively large. The

uncertainties of VEC are related to sampling or simulation

time, location, analysis method, and weather conditions. The

results from receptor source apportionment (chemical mass

balance, PMF, etc.) only represent the characteristics of re-

ceptor point and can be applied to primary pollutants (Cheng

www.atmos-chem-phys.net/16/3171/2016/ Atmos. Chem. Phys., 16, 3171–3184, 2016
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Figure 4. Annual mean emissions and the rate of vehicle emission in total emission for NO2 (a, c) and PM2.5 (b, d) respectively. Black lines

represent the main traffic arteries in Beijing.

Table 4. The contributions of traffic emission on ambient pollutant concentrations in Beijing.

Source Period Contribution (%) Method

Hao et al. (2001) 1995 NOx : 68.4; CO: 76.5 Numerical simulation based on ISCST3

Hao et al. (2005) 1999 NOx : 74; PM10: 14 Numerical simulation based on ISCST3

Zheng et al. (2005) 2000 PM2.5: 6.7 Chemical mass balance receptor model (CMB)

Song et al. (2006) 2000 PM2.5: 6.0–10.8 PCA/APCS and UNMIX

Cheng et al. (2007) 2002 PM10: 28.7–42.9 MM5–ARPS–CMAQ

Wang et al. (2008) 2001–2006 PM2.5: 5.9; PM10: 8.4 Positive matrix factorization (PMF)

Zhang et al. (2013) 2009–2010 PM2.5: 4 PMF

Yu et al. (2013) 2010 PM2.5: 17.1 PMF

S. W. Wu et al. (2014) 2010–2011 PM2.5: 12.0 PMF and mixed-effect models

Cheng et al. (2013) 2011 PM2.5: 22.5± 3.5 NOx : 56–67 MM5–CMAQ and source apportionment methods

Liu et al. (2014) 2011 PM(NC): 47.9 PMF

Huang et al. (2014) 201301 PM2.5: 5.6 CMB and PMF

Figure 5. The probability density function (PDF) of instantaneous

VECs for NO2 (a) and PM2.5 (b).

et al., 2015); however, it is different from numerical sensitiv-

ity analysis which normally describes the regional character-

istics and applies for primary and secondary pollutants. The

uncertainty of emission source in a numerical model may be

the main reason for significant differences of VECs in pre-

vious numerical studies. Though the simulation in this study

is relatively short, our results are still comparable with pre-

vious studies. Small differences between our study and pre-

vious studies can be attributed to different analyzing periods

and methods.

In this study, the rates of NO2 and PM2.5 from vehicle

emission account for 55.1 and 22.3 % in July and 53.9 and

Atmos. Chem. Phys., 16, 3171–3184, 2016 www.atmos-chem-phys.net/16/3171/2016/
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Figure 6. Wind dependency map of VECs to NO2 and PM2.5 in July (a, b) and December (c, d) 2013. Wind speeds are shown from 0 to

7.5 m s−1.

Figure 7. Time series of daily mean and standard deviation of vehi-

cle emission contribution rate on NO2 and PM2.5 concentrations of

Beijing main urban areas in July (a, b) and December (c, d) 2013.

20.6 % in December (Table 3) of total emission. Because of

the effect of pollutant regional transports, the contribution

rate of vehicle emission on ambient pollutant concentration

is lower than the rate of vehicle emission in total emissions.

The difference between these two rates became significantly

larger with more contribution of outside emission, which im-

plies the importance of weather condition. In order to avoid

the effect of weather on analysis results, the relative contribu-

Figure 8. The scatter of daily mean concentration vs. VECs for

NO2 and PM2.5 in July (a, b) and December (c, d).

tion of vehicle emission on pollutant concentrations is anal-

ysed in the following section.

The chemical components of PM2.5 represent the charac-

teristics of emission source and complexity of chemical pro-

www.atmos-chem-phys.net/16/3171/2016/ Atmos. Chem. Phys., 16, 3171–3184, 2016
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Table 5. The VECs of chemical components in PM2.5 in the urban

Beijing region (unit:%).

BC OC NI(NO−
3

) SF(SO2−
4

) AM(NH+
4

)

July 12.3 12.4 13.4 1.8 2.1

December 24.3 25.8 15.1 7.6 4.3

cesses of pollutants in the atmosphere. Based on the sen-

sitivity test, the VECs of BC, OC, and NI are large, while

they are relatively small for SF and AM (Table 5). The VECs

of BC and OC in December are approximately twice of that

in July. Seasonal changes for the rates of BC and OC from

vehicle emission in total emission are not apparent, which

indicates that the seasonal change of VECs is unrelated to

vehicle emission. Beijing is controlled by southerly wind,

which results in significant regional transport. Additionally,

it causes small (large) VECs of BC and OC in summer (win-

ter). Atmospheric chemical processes and dispersion con-

ditions are also the reason for seasonal change of different

components VECs. Using MM5–CMAQ model simulation,

Cheng et al. (2013) investigated the VEC to the PM2.5 and

found the VECs of BC were 32.3 and 30.7 % in summer and

winter respectively. Our results are comparable with Cheng

et al. (2013) in winter, while they show some difference in

summer.

3.3 Relative contribution of vehicle emission

Air pollution in Beijing is attributed not only to local emis-

sions but also to regional transports. Using the CMAQ model,

An et al. (2007) investigated the contribution to pollutant

concentrations in Beijing by using emission switch on/off

method; the contribution of non-local emission accounted for

15–53 % of PM2.5. Wu et al. (2011) studied the contribution

to air pollution during CARE-Beijing 2006, and local emis-

sion in Beijing accounted for 65 % of SO2, 75 % of PM10,

and 90 % of NO2 concentrations. Pollutant regional trans-

port depends on atmospheric circulation and regional emis-

sion characteristics. By comparing pollutant concentrations

between SIM2 and SIM4, local emissions in Beijing con-

tribute 93.6 and 62.6 % to NO2 and PM2.5 concentrations in

July and 83.8 and 76.1 % to NO2 and PM2.5 concentrations

in December, which have a profound effect on RVEC.

Figure 10 depicts the spatial distribution of RVECs to NO2

and PM2.5 in July and December, and a similar distribu-

tion is found in two periods. The RVEC to NO2 is large

in main southeastern and northeastern urban areas, while

small in main western urban areas. Time series of regional

mean RVECs to NO2 in main urban areas range from 52.3 to

63.4 % and 49.4 to 61.2 %, with means of 59.2 and 57.8 %,

in July and December respectively. Different from NO2, the

RVEC to PM2.5 is large northeast of main urban areas in the

two periods. Time series of regional mean RVECs to PM2.5

range from 5.7 to 11.3 % and 9.9 to 16.1 %, with means of 8.7

and 13.9 %, in July and December respectively. The differ-

ences of RVECs to NO2 and PM2.5 in July and December are

significant based on one-way analysis of variance. The spa-

tial distribution of RVEC is tremendously affected by vehicle

emission, as they are mostly consistent with the rate of vehi-

cle emission in total emission (Fig. 4). As pointed out by Jing

et al. (2016), the uncertainty of HTSVE is very small through

multiple comparison with statistical data and real-time ob-

servation. However, the uncertainty of other sector emissions

has a negative influence on the precision of RVECs, which

needs more improvement for accurate environmental man-

agement. Local circulation also determines the spatial dis-

tribution of RVECs. High PM2.5 emission from vehicles is

found between north Fourth Ring Road and north Fifth Ring

Road (See Part 1, Fig. 9). Controlled by southwesterly wind,

PM2.5 from vehicles is easily transferred out of the main

urban areas, which results in low RVEC in July. However,

the majority of PM2.5 from vehicles stays in the main east-

ern area of the city controlled by northwesterly wind, which

results in high RVEC in December. Based on the zero-out

method, Cheng et al. (2013) found the contribution rates to

pollutant concentrations were higher than those to the emis-

sions because near-surface emission from vehicles facilitated

greater contribution to local pollutant concentrations on the

ground level. Regardless of regional transports, the contri-

bution of vehicle emission to ambient PM2.5 concentration

is substantial lower than the rate of vehicle emission to to-

tal emission in this study. Our finding is seemingly in con-

flict with Cheng et al. (2013) but may be more reasonable

for the following reasons. Different from elevated emission,

PM2.5 from vehicle emission in the near-surface layer easily

descends to the ground or is absorbed by vegetation, which

leads to a low contribution rate to PM2.5 concentration. Sec-

ondary aerosol generated by photochemical reaction is differ-

ent for different sector emissions. The VEC to SF is low in

Beijing (Table 5), which indirectly causes low VEC to PM2.5.

Furthermore, pollutant regional transport and the background

concentration may result in lower VEC to PM2.5 than the rate

of emission.

4 Conclusions

Air quality simulation has been improved by using HTSVE.

In summer (July), high NO2 concentration was located in the

northeastern part of city, while two regions with high PM2.5

concentration appeared in the western and centre areas of the

city. In winter (December), NO2 concentration was high in

the southeast and then gradually decreased outward, while

high PM2.5 concentration was mostly located in western and

southeastern parts of the city. The VEC in Beijing depends

on wind field, spatial distribution of vehicle emission, and

air pollution level. High VECs to NO2 in July appeared along

with southerly wind and a low pollution concentration level

and with northerly wind and a low pollution concentration
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Figure 9. The spatial distribution of mean contribution rate of vehicle emission on NO2 and PM2.5 in July (a, b) and December (c, d) 2013.

Black lines represent the main traffic arteries in Beijing; white arrows represent near-surface mean wind field.

Figure 10. The spatial distribution of vehicle emission contribution in local emission to NO2 and PM2.5 in July (a, b) and December (c, d)

2013. Black lines represent the main traffic arteries in Beijing; white arrows represent near-surface mean wind field.

www.atmos-chem-phys.net/16/3171/2016/ Atmos. Chem. Phys., 16, 3171–3184, 2016
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level for that in December. High VECs to PM2.5 in July and

December appeared along with northerly wind and low pol-

lution concentration level.

Seasonal change of VECs was observed in this study. The

mean VECs to NO2 were 55.4 and 48.5 %, while the mean

VECs to PM2.5 were 5.4 and 10.5 % in July and Decem-

ber respectively. Regional pollutant transport was one of the

most important reasons for the small contribution rate for

ambient pollutant concentrations compared with the contri-

bution rate for pollutant emission in Beijing. Sensitivity anal-

ysis indicated that all local emissions in Beijing contributed

93.6 and 62.6 % to NO2 and PM2.5 concentrations in July

and 83.8 and 76.1 % to NO2 and PM2.5 concentrations in

December, which had an important effect on RVEC. Re-

gardless of regional transports, the RVECs to NO2 was large

in the main southeastern and northeastern urban areas and

main northeastern urban areas for PM2.5. The mean RVECs

to NO2 were 59.2 and 57.8 %, while the mean RVECs to

PM2.5 were 8.7 and 13.9 % in July and December respec-

tively. The RVEC to PM2.5 was lower than PM2.5 contribu-

tion rate for vehicle emission, which was be due to dry de-

position of PM2.5 from vehicle emission in the near-surface

layer occuring more easily than from elevated source emis-

sion

The Supplement related to this article is available online

at doi:10.5194/acp-16-3171-2016-supplement.
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