Articles | Volume 16, issue 23
https://doi.org/10.5194/acp-16-15371-2016
https://doi.org/10.5194/acp-16-15371-2016
Research article
 | 
12 Dec 2016
Research article |  | 12 Dec 2016

The major stratospheric final warming in 2016: dispersal of vortex air and termination of Arctic chemical ozone loss

Gloria L. Manney and Zachary D. Lawrence

Related authors

The role of the stratospheric state in upward wave flux prior to Sudden Stratospheric Warmings: a SNAPSI analysis
Blanca Ayarzagüena, Amy H. Butler, Peter Hitchcock, Chaim I. Garfinkel, Zac D. Lawrence, Wuhan Ning, Philip Rupp, Zheng Wu, Hilla Afargan-Gerstman, Natalia Calvo, Álvaro de la Cámara, Martin Jucker, Gerbrand Koren, Daniel De Maeseneire, Gloria L. Manney, Marisol Osman, Masakazu Taguchi, Cory Barton, Dong-Chang Hong, Yu-Kyung Hyun, Hera Kim, Jeff Knight, Piero Malguzzi, Daniele Mastrangelo, Jiyoung Oh, Inna Polichtchouk, Jadwiga H. Richter, Isla R. Simpson, Seok-Woo Son, Damien Specq, and Tim Stockdale
EGUsphere, https://doi.org/10.5194/egusphere-2025-3611,https://doi.org/10.5194/egusphere-2025-3611, 2025
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Exploring ozone variability in the upper troposphere and lower stratosphere using dynamical coordinates
Luis F. Millán, Peter Hoor, Michaela I. Hegglin, Gloria L. Manney, Harald Boenisch, Paul Jeffery, Daniel Kunkel, Irina Petropavlovskikh, Hao Ye, Thierry Leblanc, and Kaley Walker
Atmos. Chem. Phys., 24, 7927–7959, https://doi.org/10.5194/acp-24-7927-2024,https://doi.org/10.5194/acp-24-7927-2024, 2024
Short summary
Multi-parameter dynamical diagnostics for upper tropospheric and lower stratospheric studies
Luis F. Millán, Gloria L. Manney, Harald Boenisch, Michaela I. Hegglin, Peter Hoor, Daniel Kunkel, Thierry Leblanc, Irina Petropavlovskikh, Kaley Walker, Krzysztof Wargan, and Andreas Zahn
Atmos. Meas. Tech., 16, 2957–2988, https://doi.org/10.5194/amt-16-2957-2023,https://doi.org/10.5194/amt-16-2957-2023, 2023
Short summary
Water vapour and ozone in the upper troposphere–lower stratosphere: global climatologies from three Canadian limb-viewing instruments
Paul S. Jeffery, Kaley A. Walker, Chris E. Sioris, Chris D. Boone, Doug Degenstein, Gloria L. Manney, C. Thomas McElroy, Luis Millán, David A. Plummer, Niall J. Ryan, Patrick E. Sheese, and Jiansheng Zou
Atmos. Chem. Phys., 22, 14709–14734, https://doi.org/10.5194/acp-22-14709-2022,https://doi.org/10.5194/acp-22-14709-2022, 2022
Short summary
Reanalysis intercomparison of potential vorticity and potential-vorticity-based diagnostics
Luis F. Millán, Gloria L. Manney, and Zachary D. Lawrence
Atmos. Chem. Phys., 21, 5355–5376, https://doi.org/10.5194/acp-21-5355-2021,https://doi.org/10.5194/acp-21-5355-2021, 2021
Short summary

Related subject area

Subject: Dynamics | Research Activity: Remote Sensing | Altitude Range: Stratosphere | Science Focus: Physics (physical properties and processes)
Observational perspective on sudden stratospheric warmings and blocking from Eliassen–Palm fluxes
Kamilya Yessimbet, Andrea K. Steiner, Florian Ladstädter, and Albert Ossó
Atmos. Chem. Phys., 24, 10893–10919, https://doi.org/10.5194/acp-24-10893-2024,https://doi.org/10.5194/acp-24-10893-2024, 2024
Short summary
Aeolus wind lidar observations of the 2019/2020 quasi-biennial oscillation disruption with comparison to radiosondes and reanalysis
Timothy P. Banyard, Corwin J. Wright, Scott M. Osprey, Neil P. Hindley, Gemma Halloran, Lawrence Coy, Paul A. Newman, Neal Butchart, Martina Bramberger, and M. Joan Alexander
Atmos. Chem. Phys., 24, 2465–2490, https://doi.org/10.5194/acp-24-2465-2024,https://doi.org/10.5194/acp-24-2465-2024, 2024
Short summary
Convective gravity wave events during summer near 54° N, present in both AIRS and Rayleigh–Mie–Raman (RMR) lidar observations
Eframir Franco-Diaz, Michael Gerding, Laura Holt, Irina Strelnikova, Robin Wing, Gerd Baumgarten, and Franz-Josef Lübken
Atmos. Chem. Phys., 24, 1543–1558, https://doi.org/10.5194/acp-24-1543-2024,https://doi.org/10.5194/acp-24-1543-2024, 2024
Short summary
Signatures of the Madden–Julian oscillation in middle-atmosphere zonal mean temperature: triggering the interhemispheric coupling pattern
Christoph G. Hoffmann, Lena G. Buth, and Christian von Savigny
Atmos. Chem. Phys., 23, 12781–12799, https://doi.org/10.5194/acp-23-12781-2023,https://doi.org/10.5194/acp-23-12781-2023, 2023
Short summary
The quasi-biennial oscillation (QBO) and global-scale tropical waves in Aeolus wind observations, radiosonde data, and reanalyses
Manfred Ern, Mohamadou A. Diallo, Dina Khordakova, Isabell Krisch, Peter Preusse, Oliver Reitebuch, Jörn Ungermann, and Martin Riese
Atmos. Chem. Phys., 23, 9549–9583, https://doi.org/10.5194/acp-23-9549-2023,https://doi.org/10.5194/acp-23-9549-2023, 2023
Short summary

Cited articles

Ajtić, J., Connor, B. J., Lawrence, B. N., Bodeker, G. E., Hoppel, K. W., Rosenfield, J. E., and Heuff, D. N.: Dilution of the Antarctic ozone hole into southern midlatitudes, 1998-2000, J. Geophys. Res., 109, D17107, https://doi.org/10.1029/2003JD004500, 2004.
Akiyoshi, H. and Zhou, L. B.: Midlatitude and high-latitude N2O distributions in the Northern Hemisphere in early and late Arctic polar vortex breakup years, J. Geophys. Res., 112, D18305, https://doi.org/10.1029/2007JD008491, 2007.
Allen, D. R. and Nakamura, N.: A seasonal climatology of effective diffusivity in the stratosphere, J. Geophys. Res., 106, 7917–7935, 2001.
Allen, D. R. and Nakamura, N.: Dynamical reconstruction of the record low column ozone over Europe on 30 November 1999, Geophys. Res. Lett., 29, 1362, https://doi.org/10.1029/2002GL014935, 2002.
Allen, D. R. and Nakamura, N.: Tracer Equivalent Latitude: A Diagnostic tool for isentropic transport studies, J. Atmos. Sci., 60, 287–304, 2003.
Download
Short summary
The 2015/16 Arctic winter stratosphere was the coldest on record through late February, raising the possibility of extensive chemical ozone loss. However, a major final sudden stratospheric warming in early March curtailed ozone destruction. We used Aura MLS satellite trace gas data and MERRA-2 meteorological data to show the details of transport, mixing, and dispersal of chemically processed air during the major final warming, and how these processes limited Arctic chemical ozone loss.
Share
Altmetrics
Final-revised paper
Preprint