Articles | Volume 15, issue 5
Atmos. Chem. Phys., 15, 2463–2472, 2015
https://doi.org/10.5194/acp-15-2463-2015
Atmos. Chem. Phys., 15, 2463–2472, 2015
https://doi.org/10.5194/acp-15-2463-2015
Research article
05 Mar 2015
Research article | 05 Mar 2015

First quasi-Lagrangian in situ measurements of Antarctic Polar springtime ozone: observed ozone loss rates from the Concordiasi long-duration balloon campaign

R. Schofield et al.

Related authors

Measurement Report: Real-Time Remote Sensing of the Coastal Boundary Layer and its Interaction with Meteorology at Cape Grim, Australia
Zhenyi Chen, Robyn Schofield, Melita Keywood, Sam Cleland, Alastair G. Williams, Alan Griffiths, Stephen Wilson, Peter Rayner, and Xiaowen Shu
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-104,https://doi.org/10.5194/acp-2022-104, 2022
Preprint under review for ACP
Short summary
The contribution of coral-reef-derived dimethyl sulfide to aerosol burden over the Great Barrier Reef: a modelling study
Sonya L. Fiddes, Matthew T. Woodhouse, Steve Utembe, Robyn Schofield, Simon P. Alexander, Joel Alroe, Scott D. Chambers, Zhenyi Chen, Luke Cravigan, Erin Dunne, Ruhi S. Humphries, Graham Johnson, Melita D. Keywood, Todd P. Lane, Branka Miljevic, Yuko Omori, Alain Protat, Zoran Ristovski, Paul Selleck, Hilton B. Swan, Hiroshi Tanimoto, Jason P. Ward, and Alastair G. Williams
Atmos. Chem. Phys., 22, 2419–2445, https://doi.org/10.5194/acp-22-2419-2022,https://doi.org/10.5194/acp-22-2419-2022, 2022
Short summary
Coral-reef-derived dimethyl sulfide and the climatic impact of the loss of coral reefs
Sonya L. Fiddes, Matthew T. Woodhouse, Todd P. Lane, and Robyn Schofield
Atmos. Chem. Phys., 21, 5883–5903, https://doi.org/10.5194/acp-21-5883-2021,https://doi.org/10.5194/acp-21-5883-2021, 2021
Short summary
Comparison of formaldehyde tropospheric columns in Australia and New Zealand using MAX-DOAS, FTIR and TROPOMI
Robert G. Ryan, Jeremy D. Silver, Richard Querel, Dan Smale, Steve Rhodes, Matt Tully, Nicholas Jones, and Robyn Schofield
Atmos. Meas. Tech., 13, 6501–6519, https://doi.org/10.5194/amt-13-6501-2020,https://doi.org/10.5194/amt-13-6501-2020, 2020
Short summary
Seventeen years of ozone sounding at L'Aquila, Italy: evidence of mid-latitude stratospheric ozone recovery and tropospheric profile changes
Daniele Visioni, Giovanni Pitari, Vincenzo Rizi, Marco Iarlori, Irene Cionni, Ilaria Quaglia, Hideharu Akiyoshi, Slimane Bekki, Neal Butchart, Martin Chipperfield, Makoto Deushi, Sandip S. Dhomse, Rolando Garcia, Patrick Joeckel, Douglas Kinnison, Jean-François Lamarque, Marion Marchand, Martine Michou, Olaf Morgenstern, Tatsuya Nagashima, Fiona M. O'Connor, Luke D. Oman, David Plummer, Eugene Rozanov, David Saint-Martin, Robyn Schofield, John Scinocca, Andrea Stenke, Kane Stone, Kengo Sudo, Taichu Y. Tanaka, Simone Tilmes, Holger Tost, Yousuke Yamashita, and Guang Zeng
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-525,https://doi.org/10.5194/acp-2020-525, 2020
Preprint withdrawn
Short summary

Related subject area

Subject: Gases | Research Activity: Field Measurements | Altitude Range: Stratosphere | Science Focus: Chemistry (chemical composition and reactions)
Redistribution of total reactive nitrogen in the lowermost Arctic stratosphere during the cold winter 2015/2016
Helmut Ziereis, Peter Hoor, Jens-Uwe Grooß, Andreas Zahn, Greta Stratmann, Paul Stock, Michael Lichtenstern, Jens Krause, Vera Bense, Armin Afchine, Christian Rolf, Wolfgang Woiwode, Marleen Braun, Jörn Ungermann, Andreas Marsing, Christiane Voigt, Andreas Engel, Björn-Martin Sinnhuber, and Hermann Oelhaf
Atmos. Chem. Phys., 22, 3631–3654, https://doi.org/10.5194/acp-22-3631-2022,https://doi.org/10.5194/acp-22-3631-2022, 2022
Short summary
Comparison of inorganic chlorine in the Antarctic and Arctic lowermost stratosphere by separate late winter aircraft measurements
Markus Jesswein, Heiko Bozem, Hans-Christoph Lachnitt, Peter Hoor, Thomas Wagenhäuser, Timo Keber, Tanja Schuck, and Andreas Engel
Atmos. Chem. Phys., 21, 17225–17241, https://doi.org/10.5194/acp-21-17225-2021,https://doi.org/10.5194/acp-21-17225-2021, 2021
Short summary
Organic and inorganic bromine measurements around the extratropical tropopause and lowermost stratosphere: insights into the transport pathways and total bromine
Meike K. Rotermund, Vera Bense, Martyn P. Chipperfield, Andreas Engel, Jens-Uwe Grooß, Peter Hoor, Tilman Hüneke, Timo Keber, Flora Kluge, Benjamin Schreiner, Tanja Schuck, Bärbel Vogel, Andreas Zahn, and Klaus Pfeilsticker
Atmos. Chem. Phys., 21, 15375–15407, https://doi.org/10.5194/acp-21-15375-2021,https://doi.org/10.5194/acp-21-15375-2021, 2021
Short summary
GUV long-term measurements of total ozone column and effective cloud transmittance at three Norwegian sites
Tove M. Svendby, Bjørn Johnsen, Arve Kylling, Arne Dahlback, Germar H. Bernhard, Georg H. Hansen, Boyan Petkov, and Vito Vitale
Atmos. Chem. Phys., 21, 7881–7899, https://doi.org/10.5194/acp-21-7881-2021,https://doi.org/10.5194/acp-21-7881-2021, 2021
Short summary
Mixing at the extratropical tropopause as characterized by collocated airborne H2O and O3 lidar observations
Andreas Schäfler, Andreas Fix, and Martin Wirth
Atmos. Chem. Phys., 21, 5217–5234, https://doi.org/10.5194/acp-21-5217-2021,https://doi.org/10.5194/acp-21-5217-2021, 2021
Short summary

Cited articles

Bekki, S., Bodeker, G., Bais, A. F., Butchart, N., Eyring, V., Fahey, D., Kinnison, D. E., Langematz, U., Mayer, B., Portmann, R., Rozanov, A., Braesicke, P., Charlton-Perez, A. J., Chubarova, N. E., Cionni, I., Diaz, S. B., Gillett, R., Giorgetta, M. A., Komala, N., Lefevre, F., McLandress, C., Perlwitz, J., Peter, T., and Shibata, K.: Future Ozone and Its Impact on Surface UV, in: Scientific Assessment of Ozone Depletion: 2010, Global Ozone Research and Monitoring Project – Report No. 52, p. 516 pp., World Meteorological Organization, Geneva, Switzerland, 2011.
Bevilacqua, R. M., Aellig, C. P., Debrestian, D., Fromm, M., Hoppel, K., Lumpe, J., Shettle, E., Hornstein, J., Randall, C., Rusch, D., and Rosenfield, J. E.: POAM II ozone observations in the Antarctic ozone hole in 1994, 1995, and 1996, J. Geophys. Res., 102, 23643–23657, 1997.
Dameris, M., Godin-Beekman, S., Alexander, S. P., Braesicke, P., Chipperfield, M., de Laat, A. T. J., Orsolini, Y., Rex, M., and Santee, M. L.: Update on Polar Ozone: Past, Present, and Future, in: Scientific Assessment of Ozone Depletion: 2014, 1–67, Global Ozone Reserach and Monitoring Project – Report No. 55, World Meteorological Organization, Geneva, Switzerland, 2014.
Frieler, K., Rex, M., Salawitch, R. J., Canty, T., Streibel, M., Stimpfle, R. M., Pfeilsticker, K., Dorf, M., Weisenstein, D. K., and Godin-Beekmann, S.: Toward a better quantitative understanding of polar stratospheric ozone loss, Geophys. Res. Lett, 33, L10812, https://doi.org/10.1029/2005GL025466, 2006.
Hassler, B., Daniel, J. S., Johnson, B. J., Solomon, S., and Oltmans, S.: An assessment of changing ozone loss rates at South Pole: Twenty-five years of ozonesonde measurements, J. Geophys. Res., 116, D22301, https://doi.org/10.1029/2011JD016353, 2011.
Download
Short summary
Ozone measurements onboard three Concordiasi balloons flown in the stratosphere in the Antarctic spring of 2010 are presented. These measurements are the first long-duration in situ measurements of Antarctic springtime stratospheric ozone. By matching air parcels, ozone loss rates where derived. Downwind of the Antarctic Peninsula, very large ozone losses of up to 230 ppb per day or 16 ppbv per sunlit hour were observed. These high rates are consistent with almost complete chlorine activation.
Altmetrics
Final-revised paper
Preprint