Articles | Volume 14, issue 4
https://doi.org/10.5194/acp-14-1869-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-14-1869-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
On the presence of equatorial waves in the lower stratosphere of a general circulation model
P. Maury
Laboratoire de Météorologie Dynamique, UMR8539, IPSL, CNRS/ENS/UPMC/École Polytechnique, Paris, France
Laboratoire de Météorologie Dynamique, UMR8539, IPSL, CNRS/ENS/UPMC/École Polytechnique, Paris, France
Related authors
No articles found.
Hiroaki Naoe, Jorge L. García-Franco, Chang-Hyun Park, Mario Rodrigo, Froila M. Palmeiro, Federico Serva, Masakazu Taguchi, Kohei Yoshida, James A. Anstey, Javier García-Serrano, Seok-Woo Son, Yoshio Kawatani, Neal Butchart, Kevin Hamilton, Chih-Chieh Chen, Anne Glanville, Tobias Kerzenmacher, François Lott, Clara Orbe, Scott Osprey, Mijeong Park, Jadwiga H. Richter, Stefan Versick, and Shingo Watanabe
Weather Clim. Dynam., 6, 1419–1442, https://doi.org/10.5194/wcd-6-1419-2025, https://doi.org/10.5194/wcd-6-1419-2025, 2025
Short summary
Short summary
Links between the stratospheric Quasi-Biennial Oscillation (QBO) and atmospheric circulations in the tropics, subtropics, and polar regions, as well as their modulation by the El Nino–Southern Oscillation, are examined through model experiments. The QBO–polar vortex connection is reproduced by a multi-model ensemble at about half the observed amplitude. Weak performance of QBO signals in these regions is likely due to unrealistically weak QBO amplitudes in the lower stratosphere.
Yoshio Kawatani, Kevin Hamilton, Shingo Watanabe, Masakazu Taguchi, Federico Serva, James A. Anstey, Jadwiga H. Richter, Neal Butchart, Clara Orbe, Scott M. Osprey, Hiroaki Naoe, Dillon Elsbury, Chih-Chieh Chen, Javier García-Serrano, Anne Glanville, Tobias Kerzenmacher, François Lott, Froila M. Palmeiro, Mijeong Park, Stefan Versick, and Kohei Yoshida
Weather Clim. Dynam., 6, 1045–1073, https://doi.org/10.5194/wcd-6-1045-2025, https://doi.org/10.5194/wcd-6-1045-2025, 2025
Short summary
Short summary
The Quasi-Biennial Oscillation (QBO) of the tropical stratospheric mean winds has been relatively steady over the 7 decades it has been observed, but there are always cycle-to-cycle variations. This study used several global atmospheric models to investigate systematic modulation of the QBO by the El Niño/La Niña cycle. All models simulated shorter periods during El Niño, in agreement with observations. By contrast, the models disagreed even on the sign of the El Niño effect on QBO amplitude.
Verónica Martínez-Andradas, Alvaro de la Cámara, Pablo Zurita-Gotor, François Lott, and Federico Serva
Weather Clim. Dynam., 6, 329–343, https://doi.org/10.5194/wcd-6-329-2025, https://doi.org/10.5194/wcd-6-329-2025, 2025
Short summary
Short summary
Global circulation model biases are present when simulating sudden stratospheric warmings (SSWs). These are important extreme phenomena that occur in the wintertime stratosphere, driven by the breaking of atmospheric waves. The present work shows that there is a large spread of the wave forcing during the development of SSWs in different models. In the mesosphere, gravity waves are found to force advection of the residual circulation, while planetary waves tend to decelerate the wind.
Dillon Elsbury, Federico Serva, Julie M. Caron, Seung-Yoon Back, Clara Orbe, Jadwiga H. Richter, James A. Anstey, Neal Butchart, Chih-Chieh Chen, Javier García-Serrano, Anne Glanville, Yoshio Kawatani, Tobias Kerzenmacher, Francois Lott, Hiroaki Naoe, Scott Osprey, Froila M. Palmeiro, Seok-Woo Son, Masakazu Taguchi, Stefan Versick, Shingo Watanabe, and Kohei Yoshida
EGUsphere, https://doi.org/10.5194/egusphere-2024-3950, https://doi.org/10.5194/egusphere-2024-3950, 2025
Short summary
Short summary
This study examines how the Madden-Julian Oscillation (MJO), a major tropical weather pattern, is influenced by persistent El Niño or La Niña sea surface temperature conditions during winter. Using a coordinated set of climate model experiments, we find that El Niño strengthens Kelvin waves, speeding up MJO propagation, while La Niña strengthens Rossby waves, slowing it down. Better understanding these interactions between the MJO and ocean helps us better understand natural climate variability.
Jacopo Riboldi, Efi Rousi, Fabio D'Andrea, Gwendal Rivière, and François Lott
Weather Clim. Dynam., 3, 449–469, https://doi.org/10.5194/wcd-3-449-2022, https://doi.org/10.5194/wcd-3-449-2022, 2022
Short summary
Short summary
A revisited space and time spectral decomposition allows us to determine which harmonics dominate the upper-tropospheric flow evolution over a given time period as well as their propagation. This approach is used to identify Rossby wave patterns with a circumglobal extent, affecting weather evolution over different Northern Hemisphere regions. The results cast light on the processes originating and supporting these wave patterns, advocating at the same time for the usefulness of the technique.
Cited articles
Adler, R., Huffman, G. J., Chang, A., Ferraro, R., Xie, P.-P., Janowiak, J., Rudolf, B., Schneider, U., Curtis, S., Bolvin, D., Gruber, A., Susskind, J., Arkin, P., and Nelkin, E.: The Version 2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979–Present), J. Hydrometeorol, 4, 1147–1167, 2003.
Alexander, M. J. and Ortland, D. A.: Equatorial waves in H}igh Resolution Dynamics Limb Sounder {HIRDLS data, J. Geophys. Res., 115, D24111, https://doi.org/10.1029/2010JD014782, 2010.
Andrews, D. G., Holton, J. R., and Leovy, C. B.: Middle atmosphere dynamics, Harcourt Brace Jovanovich, 1987.
Baldwin, M. P., Gray, L. J., Dunkerton, T. J., Hamilton, K., Haynes, P. H., Randel, W. J., Holton, J. R., Alexander, M. J., Hirota, I., Horinouchi, T., Jones, D. B. A., Kinnersley, J. S., Marquardt, C., Sato, K., and Takahashi, M.: The Quasi-biennial oscillation, Rev. Geophys., 39, 179–229, 2001.
Boville, B. A. and Randel, W. R.: Equatorial waves in a stratospheric GCM: effects of vertical resolution, J. Atmos. Sci., 49, 785–801, 1992.
Cho, H.-K., Bowman, K., and North, G.: Equatorial Waves Including the MaddenJulian Oscillation in TRMM Rainfall and OLR Data, J. Climate, 17, 4387–4406, 2004.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Eliassen, A. and Palm, E.: On the transfer of energy in stationary moutain waves, Geofys. Publ., 22, 1–23, 1961.
Emanuel, K.: A scheme for representing cumulus convection in large-scale models, J. Atmos. Sci., 48, 2313–2335, 1991.
Emanuel, K.: A cumulus representation based on the episodic mixing model: the importance of mixing and microphysics in predicting humidity, Meteor. Mon., 24, 1993.
Ern, M. and Preusse, P.: Wave fluxes of equatorial Kelvin waves and QBO zonal wind forcing derived from SABER and ECMWF temperature space-time spectra, Atmos. Chem. Phys., 9, 3957–3986, https://doi.org/10.5194/acp-9-3957-2009, 2009.
Ern, M., Preusse, P., Krebsbach, M., Mlynczak, M. G., and Russell III, J. M.: Equatorial wave analysis from SABER and ECMWF temperatures, Atmos. Chem. Phys., 8, 845–869, https://doi.org/10.5194/acp-8-845-2008, 2008.
Ern, M., Cho, H.-K., Preusse, P., and Eckermann, S. D.: Properties of the average distribution of equatorial Kelvin waves investigated with the GROGRAT ray tracer, Atmos. Chem. Phys., 9, 7973–7995, https://doi.org/10.5194/acp-9-7973-2009, 2009.
Fujiwara, M., Hasebe, F., Shiotani, M., Nishi, N., Voemel, H., and Oltmans, S. J.: Water vapor control at the tropopause by equatorial Kelvin waves observed over the Galapagos, Geophys. Res. Lett., 28, 3143–3146, 2001.
Garcia, R. R. and Salby, M. L.: Transient response to localized episodic heating in the tropics. Part II: Far-field behavior, J. Atmos. Sci., 44, 499–530, 1987.
Hendon, H. and Wheeler, M.: Some space-time spectral analysis of tropical convection and planetary scale waves, J. Atmos. Sci., 65, 2936–2948, 2008.
Hines, C. O.: Doppler spread parameterization of gravity wave momentum deposit in the middle atmosphere. Part I: Basic formulation, J. Atmos. Sol.-Terr. Phy., 59, 371–386, 1997.
Holton, J. R. and Lindzen, R. S.: An updated theory for the quasi-biennial cycle in the tropical stratosphere, J. Atmos. Sci., 29, 1076–1080, 1972.
Holton, J. R.: On the Frequency Distribution of Atmospheric Kelvin Waves, J. Atmos. Sci., 30, 499–501, 1973.
Horinouchi, T., Pawson, S., Shibata, K., Manzini, E., Giorgetta, M., and Sassi, F.: Tropical cumulus convection and upward propagating waves in middle-atmospheric GCMs, J. Atmos. Sci., 60, 2765–2782, 2003.
Hourdin, F., Musat, I., Bony, S., Braconnot, P., Codron, F., Dufresne, J.-L., Fairhead, L., Filiberti, M.-A., Friedlingstein, P., Grandpeix, J.-Y., Krinner, G., LeVan, P., Li, Z.-X., and Lott, F.: The LMDz4 general circulation model: Climate performance and sensitivity to parametrized physics with emphasis on tropical convection, Clim. Dynam., 27, 787–813, https://doi.org/10.1007/s00382-006-0158-0, 2006.
Jensen, E. J., Ackerman, A. S., Tabazadeh, A., and Toon, O. B.: A conceptual model of the dehydration of air due to freeze-drying by optically thin laminar cirrus rising slowly across the tropical tropopause, J. Geophys. Res., 106, 17237–17252, 2001.
Liebmann, B. and Hartmann, D. L.: Interannual Variations of Outgoing IR Associated with Tropical Circulation Changes During 1974–78, J. Atmos. Sci., 39, 1153–1162, 1982.
Liebmann, B. and Hendon, H. H.: Synoptic-scale disturbances near the Equator, J. Atmos. Sci., 47, 1463–1479, 1990.
Lindzen, R. S.: The Interaction of Waves and Convection in the Tropics, J. Atmos. Sci., 60, 3009–3020, 2003.
Lott, F. and Miller, M.: A new subgrid scale orographic drag parameterization its testing in the ECMWF model, Q. J. Roy. Meteor. Soc., 123, 101–127, 1997.
Lott, F., Fairhead, L., Hourdin, F., and Levan, P.: The stratospheric version of LMDz: Dynamical Climatologies, Arctic Oscillation, and Impact on the Surface Climate, Clim. Dynam., 25, 851–868, https://doi.org/10.1007/s00382-005-0064-x, 2005.
Lott, F., Kuttippurath, J., and Vial, F.: A Climatology of the Gravest Waves in the Equatorial Lower and Middle Stratosphere: Method and Results for the ERA-40 Reanalysis and the LMDz GCM, J. Atmos. Sci., 66, 1327–1346, https://doi.org/10.1175/2008JAS2880.1, 2009.
Lott, F., Guez, L., and Maury, P.: A stochastic parameterization of non-orographic gravity waves: Formalism and impact on the equatorial stratosphere, Geophys. Res. Lett., 39, L06807, https://doi.org/10.1029/2012GL051001, 2012.
Manzini, E. and Hamilton, K.: Middle Atmospheric Traveling Waves Forced by Latent and Convective Heating, J. Atmos. Sci., 50, 2180–2200, 1993.
Maury, P., Lott, F., Guez, L., and Duvel, J.-P.: Tropical variability and stratospheric equatorial waves in the IPSLCM5 model., Clim. Dynam., 40, 2331–2344, https://doi.org/10.1007/s00382-011-1273-0, 2013.
Pires, P., Redelsperger, J. L., and Lafore, J. P.: Equatorial atmospheric waves and their association to convection, Mon. Weather Rev., 127, 1167–1184, 1997.
Randel, W. J. and Wu, F.: Kelvin wave variability near the equatorial tropopause observed in GPS radio occultation measurements, J. Geophys. Res., 110, D03102, https://doi.org/10.1029/2004JD005006, 2005.
Ricciardulli, L. and Garcia, R.: The excitation of equatorial waves by deep convection in the NCAR Community Climate Model CCM3, J. Atmos. Sci., 57, 3461–3487, 2000.
Straub, K. H. and Kiladis, G. N.: Extratropical Forcing of Convectively Coupled Kelvin Waves during Austral Winter, J. Atmos. Sci., 60, 526–543, 2003.
Tiedtke, M.: A comprehensive mass flux scheme for cumulus parameterization in large-scale models., Mon. Weather Rev., 117, 1779–1800, 1989.
Tindall, J. C., Thuburn, J., and Highwood, E. J.: Equatorial waves in the lower stratosphere. II: Annual and interannual variability, Q. J. Roy. Meteor. Soc., 132, 195–212, https://doi.org/10.1256/qj.04.153, 2006.
Tukey, J. W.: An introduction to the calculations of numerical spectrum analysis, Spectr. Anal. Time Ser., 25–46, 1967
Wallace, J. M. and Kousky, V. E.: Observational evidence of Kelvin waves in the tropical stratosphere, J. Atmos. Sci., 25, 900–907, 1968.
Wheeler, M. and Kiladis, G.: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber-frequency domain, J. Atmos. Sci., 56, 374–399, 1999.
Yanai, M. and Maruyama, T.: Stratospheric wave disturbances propagating over the equatorial Pacific, J. Meteorol. Soc. Jpn., 44, 291–294, 1966.
Yang, G., Hoskins, B., and Slingo, J.: Equatorial waves in opposite QBO phases, J. Atmos. Sci., 68, 839–862, https://doi.org/10.1175/2010JAS3514.1, 2011.
Altmetrics
Final-revised paper
Preprint