Articles | Volume 14, issue 23
Atmos. Chem. Phys., 14, 12665–12682, 2014
Atmos. Chem. Phys., 14, 12665–12682, 2014

Research article 02 Dec 2014

Research article | 02 Dec 2014

Using cloud ice flux to parametrise large-scale lightning

D. L. Finney et al.

Related authors

The impact of lightning on tropospheric ozone chemistry using a new global lightning parametrisation
D. L. Finney, R. M. Doherty, O. Wild, and N. L. Abraham
Atmos. Chem. Phys., 16, 7507–7522,,, 2016
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Soot PCF: pore condensation and freezing framework for soot aggregates
Claudia Marcolli, Fabian Mahrt, and Bernd Kärcher
Atmos. Chem. Phys., 21, 7791–7843,,, 2021
Short summary
Air traffic and contrail changes over Europe during COVID-19: a model study
Ulrich Schumann, Ian Poll, Roger Teoh, Rainer Koelle, Enrico Spinielli, Jarlath Molloy, George S. Koudis, Robert Baumann, Luca Bugliaro, Marc Stettler, and Christiane Voigt
Atmos. Chem. Phys., 21, 7429–7450,,, 2021
Short summary
Is a more physical representation of aerosol activation needed for simulations of fog?
Craig Poku, Andrew N. Ross, Adrian A. Hill, Alan M. Blyth, and Ben Shipway
Atmos. Chem. Phys., 21, 7271–7292,,, 2021
Short summary
Microphysical processes producing high ice water contents (HIWCs) in tropical convective clouds during the HAIC-HIWC field campaign: evaluation of simulations using bulk microphysical schemes
Yongjie Huang, Wei Wu, Greg M. McFarquhar, Xuguang Wang, Hugh Morrison, Alexander Ryzhkov, Yachao Hu, Mengistu Wolde, Cuong Nguyen, Alfons Schwarzenboeck, Jason Milbrandt, Alexei V. Korolev, and Ivan Heckman
Atmos. Chem. Phys., 21, 6919–6944,,, 2021
Short summary
Impacts of secondary ice production on Arctic mixed-phase clouds based on ARM observations and CAM6 single-column model simulations
Xi Zhao, Xiaohong Liu, Vaughan T. J. Phillips, and Sachin Patade
Atmos. Chem. Phys., 21, 5685–5703,,, 2021
Short summary

Cited articles

Ahlgrimm, M. and Köhler, M.: Evaluation of trade cumulus in the ECMWF model with observations from CALIPSO, Mon. Weather Rev., 138, 3071–3083,, 2010.
Allen, D. J. and Pickering, K. E.: Evaluation of lightning flash rate parametrizations for use in a global chemical transport model, J. Geophys. Res., 107, 4711,, 2002.
Barthe, C. and Pinty, J.-P.: Simulation of electrified storms with comparison of the charge structure and lightning efficiency, J. Geophys. Res., 112, D19204,, 2007.
Barthe, C., Deierling, W., and Barth, M. C.: Estimation of total lightning from various storm parameters: A cloud-resolving model study, J. Geophys. Res., 115, D24202,, 2010.
Beirle, S., Koshak, W., Blakeslee, R., and Wagner, T.: Global patterns of lightning properties derived by OTD and LIS, Nat. Hazards Earth Syst. Sci. Discuss., 2, 2765–2787,, 2014.
Short summary
Lightning is important in atmospheric chemistry models as a source of nitrogen oxides which affect the greenhouse gases ozone and methane. We present a new approach to modelling lightning using the upward movement of ice in clouds, an essential part of the charging mechanism in thunderstorms. The new approach performs well compared to those already in use and provides a novel, physically based scheme that has the potential to improve the robustness of simulated flash rates and emissions.
Final-revised paper