Articles | Volume 13, issue 12
Atmos. Chem. Phys., 13, 5999–6022, 2013
https://doi.org/10.5194/acp-13-5999-2013
Atmos. Chem. Phys., 13, 5999–6022, 2013
https://doi.org/10.5194/acp-13-5999-2013

Research article 21 Jun 2013

Research article | 21 Jun 2013

An examination of two pathways to tropical cyclogenesis occurring in idealized simulations with a cloud-resolving numerical model

M. E. Nicholls and M. T. Montgomery

Related authors

A numerical modelling study of the physical mechanisms causing radiation to accelerate tropical cyclogenesisand cause diurnal cycles
Melville E. Nicholls, Warren P. Smith, Roger A. Pielke Sr., Stephen M. Saleeby, and Norman B. Wood
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-569,https://doi.org/10.5194/acp-2019-569, 2019
Preprint withdrawn
Short summary
On the role of thermal expansion and compression in large-scale atmospheric energy and mass transports
Melville E. Nicholls and Roger A. Pielke Sr.
Atmos. Chem. Phys., 18, 15975–16003, https://doi.org/10.5194/acp-18-15975-2018,https://doi.org/10.5194/acp-18-15975-2018, 2018
Short summary
A numerical modelling investigation of the role of diabatic heating and cooling in the development of a mid-level vortex prior to tropical cyclogenesis – Part 1: The response to stratiform components of diabatic forcing
Melville E. Nicholls, Roger A. Pielke Sr., Donavan Wheeler, Gustavo Carrio, and Warren P. Smith
Atmos. Chem. Phys., 18, 14393–14416, https://doi.org/10.5194/acp-18-14393-2018,https://doi.org/10.5194/acp-18-14393-2018, 2018
Short summary
An investigation of how radiation may cause accelerated rates of tropical cyclogenesis and diurnal cycles of convective activity
M. E. Nicholls
Atmos. Chem. Phys., 15, 9003–9029, https://doi.org/10.5194/acp-15-9003-2015,https://doi.org/10.5194/acp-15-9003-2015, 2015

Related subject area

Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Cold cloud microphysical process rates in a global chemistry–climate model
Sara Bacer, Sylvia C. Sullivan, Odran Sourdeval, Holger Tost, Jos Lelieveld, and Andrea Pozzer
Atmos. Chem. Phys., 21, 1485–1505, https://doi.org/10.5194/acp-21-1485-2021,https://doi.org/10.5194/acp-21-1485-2021, 2021
Short summary
Precipitation enhancement in stratocumulus clouds through airborne seeding: sensitivity analysis by UCLALES-SALSA
Juha Tonttila, Ali Afzalifar, Harri Kokkola, Tomi Raatikainen, Hannele Korhonen, and Sami Romakkaniemi
Atmos. Chem. Phys., 21, 1035–1048, https://doi.org/10.5194/acp-21-1035-2021,https://doi.org/10.5194/acp-21-1035-2021, 2021
Short summary
Secondary ice production in summer clouds over the Antarctic coast: an underappreciated process in atmospheric models
Georgia Sotiropoulou, Étienne Vignon, Gillian Young, Hugh Morrison, Sebastian J. O'Shea, Thomas Lachlan-Cope, Alexis Berne, and Athanasios Nenes
Atmos. Chem. Phys., 21, 755–771, https://doi.org/10.5194/acp-21-755-2021,https://doi.org/10.5194/acp-21-755-2021, 2021
Short summary
Opinion: Cloud-phase climate feedback and the importance of ice-nucleating particles
Benjamin J. Murray, Kenneth S. Carslaw, and Paul R. Field
Atmos. Chem. Phys., 21, 665–679, https://doi.org/10.5194/acp-21-665-2021,https://doi.org/10.5194/acp-21-665-2021, 2021
Short summary
On the ice-nucleating potential of warm hydrometeors in mixed-phase clouds
Michael Krayer, Agathe Chouippe, Markus Uhlmann, Jan Dušek, and Thomas Leisner
Atmos. Chem. Phys., 21, 561–575, https://doi.org/10.5194/acp-21-561-2021,https://doi.org/10.5194/acp-21-561-2021, 2021
Short summary

Cited articles

Bister, M. and Emanuel, K. A.: The genesis of hurricane Guillermo: TEXMEX analyses and a modeling study, Mon. Weather Rev., 125, 2662–2682, 1997.
Braun, S. A.: A cloud-resolving simulation of Hurricane Bob (1991): Storm structure and eyewall buoyancy, Mon. Weather Rev., 130, 1573–1592, 2002.
Braun, S. A., Montgomery, M. T., Mallen, K. J., and Reasor, P. D.: Simulation and interpretation of the genesis of tropical storm GERT(2005) as part of the NASA tropical cloud systems and processes experiment, J. Atmos. Sci., 67, 999–1025, 2010.
Browner, S. P., Woodley, W. L., and Griffith, C. G.: Diurnal oscillation of the area of cloudiness associated with tropical storms, Mon. Weather Rev., 105, 856–864, 1977.
Charnock, H.: Wind stress on a water surface, Q. J. Roy. Meteorol. Soc., 81, 639–640, 1955.
Download
Altmetrics
Final-revised paper
Preprint