Articles | Volume 9, issue 16
https://doi.org/10.5194/acp-9-6033-2009
https://doi.org/10.5194/acp-9-6033-2009
20 Aug 2009
 | 20 Aug 2009

Comment on "Comparisons with analytical solutions from Khvorostyanov and Curry (2007) on the critical droplet radii and supersaturations of CCN with insoluble fractions" by Kokkola et al. (2008)

V. I. Khvorostyanov and J. A. Curry

Related subject area

Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
A thermal-driven graupel generation process to explain dry-season convective vigor over the Amazon
Toshi Matsui, Daniel Hernandez-Deckers, Scott E. Giangrande, Thiago S. Biscaro, Ann Fridlind, and Scott Braun
Atmos. Chem. Phys., 24, 10793–10814, https://doi.org/10.5194/acp-24-10793-2024,https://doi.org/10.5194/acp-24-10793-2024, 2024
Short summary
Modeling homogeneous ice nucleation from drop-freezing experiments: impact of droplet volume dispersion and cooling rates
Ravi Kumar Reddy Addula, Ingrid de Almeida Ribeiro, Valeria Molinero, and Baron Peters
Atmos. Chem. Phys., 24, 10833–10848, https://doi.org/10.5194/acp-24-10833-2024,https://doi.org/10.5194/acp-24-10833-2024, 2024
Short summary
Cloud water adjustments to aerosol perturbations are buffered by solar heating in non-precipitating marine stratocumuli
Jianhao Zhang, Yao-Sheng Chen, Takanobu Yamaguchi, and Graham Feingold
Atmos. Chem. Phys., 24, 10425–10440, https://doi.org/10.5194/acp-24-10425-2024,https://doi.org/10.5194/acp-24-10425-2024, 2024
Short summary
Glaciation of mixed-phase clouds: insights from bulk model and bin-microphysics large-eddy simulation informed by laboratory experiment
Aaron Wang, Steve Krueger, Sisi Chen, Mikhail Ovchinnikov, Will Cantrell, and Raymond A. Shaw
Atmos. Chem. Phys., 24, 10245–10260, https://doi.org/10.5194/acp-24-10245-2024,https://doi.org/10.5194/acp-24-10245-2024, 2024
Short summary
Microphysical processes involving the vapour phase dominate in simulated low-level Arctic clouds
Theresa Kiszler, Davide Ori, and Vera Schemann
Atmos. Chem. Phys., 24, 10039–10053, https://doi.org/10.5194/acp-24-10039-2024,https://doi.org/10.5194/acp-24-10039-2024, 2024
Short summary

Cited articles

Charlson, R. J., Seinfeld, J. H., Nenes, A., Kulmala, M., Laaksonen, A., and Facchini, M. C.: Reshaping the theory of cloud formation, Science, 292, 2025–2026, 2001.
Foster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D. W., Haywood, J., Lean, J., Lowe, D. C., Myhre, G., Nganga, J., Prinn, R., Raga, G., Schulz, M., and Van Dortland, R.: Changes in Atmospheric Constituents and in Radiative Forcing. Contribution of WG-I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Chapter 2, The Physical Science Basis, Cambridge University Press, 129–234, 2007.
Ghan, S., Chuang, C., and Penner, J.: A parameterization of cloud droplet nucleation. Part 1, Single aerosol species, Atmos. Res., {30,} 197–222, 1993.
Ghan, S., Chuang, C., Easter, R., and Penner, J.: A parameterization of cloud droplet nucleation. Part 2, Multiple aerosol types, Atmos. Res., 36, 39–54, 1995.
Hänel, G.: The properties of atmospheric aerosol particles as functions of the relative humidity at thermodynamic equilibrium with the surrounding moist air, Adv. Geophys., 19, 73–188, 1976.
Download
Altmetrics
Final-revised paper
Preprint